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Abstract: The role of the β2-adrenergic receptor (ADRB2) gene in patients with chronic obstructive
pulmonary disease (COPD) is unclear. We investigated the association between ADRB2 variants and
the risk of exacerbations in COPD patients treated with inhaled β2-agonists. Within the Rotterdam
Study, a population-based cohort study, we followed 1053 COPD patients until the first COPD
exacerbation or end of follow-up and extracted rs1042713 (16Arg > Gly) and rs1042714 (27Gln > Glu)
in ADRB2. Exposure to inhaled β2-agonists was categorized into current, past, or non-use on the
index date (date of COPD exacerbation for cases and on the same day of follow-up for controls).
COPD exacerbations were defined as acute episodes of worsening symptoms requiring systemic
corticosteroids and/or antibiotics (moderate exacerbations), or hospitalization (severe exacerbations).
The associations between ADRB2 variants and COPD exacerbations were assessed using Cox
proportional hazards models, adjusting for age, sex, use of inhaled corticosteroids, daily dose of
β2-agonists, and smoking. In current users of β2-agonists, the risk of COPD exacerbation decreased
by 30% (hazard ratio (HR); 0.70, 95% CI: 0.59–0.84) for each copy of the Arg allele of rs1042713 and by
20% (HR; 0.80, 95% CI: 0.69–0.94) for each copy of the Gln allele of rs1042714. Furthermore, current
users carrying the Arg16/Gln27 haplotype had a significantly lower risk (HR; 0.70, 95% CI: 0.59–0.85)
of COPD exacerbation compared to the Gly16/Glu27 haplotype. In conclusion, we observed that
the Arg16/Gln27 haplotype in ADRB2 was associated with a reduced risk of COPD exacerbation in
current users of inhaled β2-agonists.
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1. Introduction

Chronic Obstructive Pulmonary Disease (COPD) is a common disease, which is characterized by
a persistent expiratory airflow limitation that is usually progressive [1]. Exacerbations of respiratory
symptoms frequently occur in COPD patients and are triggered by environmental pollutants, respiratory
infections with bacteria or viruses, and unknown factors [1]. Inhaled β2-receptor agonists are one of
the main classes of bronchodilators used to treat airflow obstruction [1]. The β2-adrenergic receptor
is a member of the G protein-coupled transmembrane receptors widely located on airway smooth
muscle cells that mediate relaxation and thus bronchodilation [2,3], and therefore is an important drug
target in COPD treatment. The gene encoding the β2-adrenergic receptor, ADRB2, is a small intron-less
gene on chromosome 5q31-32 [2]. Multiple single nucleotide polymorphisms (SNPs) in this gene have
been described [2]. Two of these SNPs code for amino acid changes at positions 16 [arginine to glycine
(16Arg > Gly); rs1042713] and 27 [glutamine to glutamic acid (27Gln > Glu); rs1042714], both of which
are common variants and have previously been studied [4,5].

There is inconsistent evidence from previous studies on the association between ADRB2
polymorphisms and treatment response to inhaledβ2-agonists on COPD exacerbations [6–8], short-term
bronchodilator response (BDRs) [9,10], and long-term changes in forced expiratory volume in 1 s (FEV1)
in patients with COPD [10]. In addition, most studies assessed the effect of each SNP in isolation but
not the combined effect of their haplotypes.

In this study, our main objective was to investigate whether two functional SNPs of the ADRB2
gene, rs1042713 (16Arg > Gly) and rs1042714 (27Gln > Glu), and their haplotypes were associated with
risk of exacerbations in COPD patients treated with inhaled β2-agonists.

2. Methods

2.1. Setting and Study Population

The current study was conducted using data from the Rotterdam Study, an ongoing prospective
population-based cohort study among inhabitants of the Ommoord district of Rotterdam, the Netherlands.
The rationale and design of the Rotterdam Study have been described elsewhere [11]. The Rotterdam
Study (RS) includes three sub-cohorts RS-I, RS-II, and RS-III. Baseline data were collected from 1989 to
1992 in RS-I (n = 7983), from 2000 to 2003 in RS-II (n = 3011), and from 2006 to 2009 in RS-III (n = 3932).
Follow-up examinations were conducted periodically, which consisted of a home interview and an
extensive set of tests at the research facility. In addition, the data from the medical records of the general
practitioners (GPs), nursing homes, and hospitals were collected. The Medical Ethics Committee of the
Erasmus Medical Center approved the Rotterdam Study, and written consent was obtained from all
participants. The study population for our analysis consisted of all participants with COPD who gave
informed consent for follow-up monitoring and had pharmacy, genetic, and covariables data available
until 1 January 2011.

2.2. COPD and COPD Exacerbations

The diagnosis of COPD was confirmed by pre-bronchodilator obstructive spirometry (forced
expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) < 0.7) [12]. In case spirometry was
uninterpretable, COPD cases were diagnosed by a physician based on clinical history, physical
examination, and spirometry [12]. COPD diagnosed prior to study start was defined as prevalent
COPD, and incident COPD was defined as the first diagnosis of COPD during follow-up.

Subjects were followed from cohort entry or the date of COPD diagnosis (incident COPD) until the
first COPD exacerbation, death, lost to follow-up, or the end of the study period (i.e., 1 January 2011),
whichever came first. A moderate COPD exacerbation was defined as an acute episode of worsening
of COPD symptoms requiring a course of systemic corticosteroid and/or antibiotics [13]. If a patient
was hospitalized because of COPD exacerbation, it was classified as a severe COPD exacerbation [13].
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The first COPD exacerbation was defined as the outcome of interest and the date of outcome was taken
as the index date.

2.3. Drug Exposure

Medication dispensing data were obtained from the computerized pharmacies in the study
district. Records of all filled prescriptions from 1 January 1991 onwards were available and included
information on the product name, the Anatomical Therapeutic Chemical Classification (ATC) codes [14],
the dispensing date, the prescribed dosing regimen, and the amount dispensed. The studiedβ2-agonists
inhalers comprised of (i) short-acting β2-agonists (SABA): salbutamol either in monotherapy (R03AC02)
or as a fixed-dose combination with ipratropium bromide (R03AL02), terbutaline (R03AC03), fenoterol
either in monotherapy (R03AC04) or as a fixed-dose combination with ipratropium bromide (R03AL01),
and (ii) long-acting β2-agonists (LABA): salmeterol either in monotherapy (R03AC12) or as a fixed-dose
combination with fluticasone (R03AK06), formoterol either in monotherapy (R03AC13) or as a
fixed-dose combination with budesonide (R03AK07) or with beclometasone (R03AK08). The newer
β2-agonists inhalers like indacaterol or olodaterol either in monotherapy or as a fixed-dose combination
with inhaled corticosteroid (ICS) were not yet available on the Dutch market at the time the study was
conducted. To investigate a dose-response relationship, the prescribed daily dose of each β2-agonist
was expressed in standardized defined daily doses according to the ATC/DDD-stem of the World
Health Organization (DDDs) [14]. Patients were considered as “current users” if they used a β2-agonist
on the index date or when the last use of β2-agonists fell within 14 days prior to the index date. If the
date of last use of β2-agonists was more than 14 days prior to the index date, subjects were considered
as “past users”. Patients were considered as “non-users” if they had never used β2-agonists prior to the
index date during the study period. Data on ICS use, as monotherapy and/or fixed-dose combination
with LABA, were extracted from pharmacy records with ATC codes (R03BA, R03AK06, R03AK07,
and R03AK08). ICS users were compared to non-users as a reference group.

2.4. Genotyping

Subjects in RS were genotyped with Illumina 500 (+duo) and Illumina Human 610-Quad
BeadChips. The quality control (QC) procedures were applied. The genotype data were imputed with
the 1000-Genomes reference panel (phase 1, V.3) using MACH V.1.0.15/1.0.16. We extracted genotype
dosages for two SNPs rs1042713 (16Arg > Gly) and rs1042714 (27Gln > Glu) within the ADRB2 gene.
Imputation quality for both SNPs was high (>0.99).

2.5. Functional Annotation of Variants and Expression Quantitative Trait Loci (eQTL) Analysis

We retrieved all proxy SNPs in high linkage disequilibrium (LD) (r2 threshold > 0.8, limit distance
100 kb, and population panel CEU) with the ADRB2 variants; rs1042713 and rs1042714. For the
functional annotation of the variants, we checked their predicted functions, including effects on gene
regulation, protein structure, and splicing by using the HaploRegv4.1 (https://www.broadinstitute.org/

mammals/haploreg/haploreg.php) [15]. The correlation of the SNPs and its proxies in high LD with
the expression level of the ADRB2 gene in whole blood was checked using expression quantitative trait
loci (eQTL) data from GeneNetwork [16].

2.6. Covariables

Covariables consisted of age, sex, smoking, use of ICS, and the daily dose of β2-agonists. Data on
smoking were obtained from questionnaires and were categorized into “never” or “ever-smokers”.
Further details are described in the Supplementary Methods.

https://www.broadinstitute.org/mammals/haploreg/haploreg.php
https://www.broadinstitute.org/mammals/haploreg/haploreg.php
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2.7. Systematic Review

We conducted an extensive electronic literature search of Embase, Medline Ovid, and Cochrane
Central using multiple search terms (Supplementary Table S1) to identify all articles investigating the
association between the ADRB2 polymorphisms of interest, namely rs1042713 and/or rs1042714 and
the risk of COPD exacerbation in patients treated with inhaled β2-agonists. Our literature search was
restricted to studies published in English from inception until 30 September 2019. Further details are
described in the Supplementary Methods.

2.8. Statistical Analysis

Cox proportional hazards models were used to calculate hazard ratios (HRs) and their 95%
confidence intervals (CIs) to analyze the association between each polymorphism of the ADRB2 gene
(as well as their haplotypes) and time to first COPD exacerbation. The exposure status to inhaled
β2-agonists was analyzed as a time-dependent variable [17]. The model estimates the exposure
status of the case to inhaled β2-agonists on the event date (index date) and the exposure status of
all other participants in the cohort on the same date of follow-up [17]. Thus, each stratum consisted
of one case and all other cohort participants who were event-free on the index date and still in
follow-up [17]. To account for potential confounding by indication, we stratified the study population
into three categories, namely current users, past users, and non-users as defined in the methods section.
An additive genetic model was assumed for the analysis. For SNPs analyses, we included rs1042713
and rs1042714 separately in the models and adjusted for age, sex, and smoking in the total cohort
of COPD patients. In the categories of non-users and past users of β2-agonists, we adjusted for age,
sex, ICS use, and smoking. The model was further adjusted for the daily dose of β2-agonists as a
continuous variable in the category of current users.

The Haploview 4.2 [18] was used to estimate haplotypes frequencies and linkage disequilibrium
(LD) between two SNPs. The haplo.stats package [19] (version 1.7.7) for R was applied to analyze the
association between haplotypes and COPD exacerbations. The statistical methods of the haplo.stats
package assume that all subjects are unrelated and linkage phase of the genetic markers is unknown [19].
The haplo.design function [19] was used to calculate haplotype effects for the haplotypes: Arg16/Gln27
and Gly16/Gln27 in reference to the baseline effect of the most frequent haplotype (Gly16/Glu27).

Most studies evaluated the effect of polymorphisms of the ADRB2 gene among COPD patients with
a smoking history. Hence, we investigated the association in ever-smokers. Sensitivity analyses were
performed to evaluate the effect of ADRB2 polymorphisms in the strata of current users of SABA only
and LABA only. Because two SNPs (rs1042713 and rs1042714) were investigated, a Bonferroni-corrected
P-value lower than 2.5 × 10−2 (0.05/2) was considered statistically significant. The data were analyzed
using the SPSS statistical software version 24 (IBM SPSS Statistics for Windows; IBM Corp, Armonk,
NY, USA) and R package (version 3.3.3) for haplotype analysis using the haplo.stats.

3. Results

3.1. Characteristics of the Study Population

The study flow of participants is described in the Supplementary Figure S1. Table 1 shows the
baseline characteristics of the study population. The mean age (± SD) was 69.6 ± 9.0 years and 57.1%
of subjects were male. At the end of follow-up, 80.0% of the study population (n = 842) had at least one
COPD exacerbation. The minor allele frequencies for rs1042713 (Arg) and rs1042714 (Glu) were 0.35
and 0.47, respectively. Both SNPs were in Hardy-Weinberg equilibrium and they showed an LD with
r2 = 0.47 (D′ = 1). Three haplotypes were determined at positions 16 and 27, and haplotype frequencies
were as follows: Gly16/Glu27 (0.48), Arg16/Gln27 (0.35), and Gly16/Gln27 (0.17).
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Table 1. Baseline characteristics of COPD subjects.

Characteristics COPD Subjects

n 1053

Age (years), mean (SD) 69.6 ± 9.0

Sex (Male), no. (%) 601 (57.1)

Ever smoker *, no. (%) 891 (84.6)

Status at the end of follow up, no. (%)

Individuals with COPD exacerbation 842 (80.0)

Individuals without COPD exacerbation 211 (20.0)

BMI kg/m2, median (IQR) 25.9 (4.7)

Heart failure, no. (%) 82 (7.8)

Coronary heart diseases, no. (%) 132 (12.5)

Hypertension *, no. (%) 575 (54.6)

Diabetes mellitus, no. (%) 83 (7.9)

Minor allele (A) frequency (rs1042713) 0.35

rs1042713 genotype, no. (%)

Arg/Arg (AA) 134 (12.7)

Arg/Gly (AG) 473 (44.9)

Gly/Gly (GG) 446 (42.4)

Minor allele (G) frequency (rs1042714) 0.47

rs1042714 genotype, no. (%)

Glu/Glu (GG) 232 (22.0)

Glu/Gln (GC) 536 (50.9)

Gln/Gln (CC) 285 (27.1)

Haplotypes frequency

Gly16/Glu27 0.48

Arg16/Gln27 0.35

Gly16/Gln27 0.17

SD: standard deviation; BMI: body mass index; IQR: Interquartile Range (the difference between 75th and 25th
percentiles). * Data were missing on smoking in two subjects and on hypertension in 146 subjects.

3.2. Association of ADRB2 Polymorphisms and COPD Exacerbations

In current β2-agonist users, the risk of COPD exacerbation decreased by 30% (HR: 0.70, 95% CI;
0.59–0.84) for each copy of the Arg allele of rs1042713 and by 20% (HR: 0.80, 95% CI; 0.69–0.94) for
each copy of the Gln allele of rs1042714 in the adjusted models (Table 2). The rs1042713 and rs1042714
polymorphisms were not associated with the risk of COPD exacerbation in the total cohort of COPD
patients (irrespective of β2-agonists use) as well as in non-users and past users of inhaled β2-agonists
(Table 2).

To explore the combined effect of the two SNPs, we performed haplotype analysis (Figure 1).
In the adjusted model, current β2-agonist users carrying the Arg16/Gln27 haplotype had a reduced
risk of COPD exacerbation (HR: 0.70, 95% CI; 0.59–0.85) compared to the Gly16/Glu27 haplotype.
No protective effect of the Gly16/Gln27 haplotype on COPD exacerbation could be observed (Figure 1).

Haploreg v4.1 data showed that rs1042713 and rs1042714 have no non-synonymous proxy
variants in strong LD (r2 > 0.8) (Supplementary Tables S2 and S3). Moreover, the cis-eQTL data form
GeneNetwork showed that the Arg allele (A) of rs1042713 and the Gln allele (C) of rs1042714 are
associated with reduced levels of the ADRB2 gene in whole blood [16].
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Table 2. ADRB2 polymorphisms (per copy of the effect allele) and the risk of COPD exacerbations.

Db SNP No. * Effect Allele Events 1
Crude Model Adjusted Model

HR (95% CI) P HR (95% CI) P

Total COPD Population (irrespective of inhaled β2-agonist use)

rs1042713 Arg 2 n = 842 0.93
(0.84–1.02) NS 0.93

(0.84–1.02) NS

rs1042714 Gln 3 n = 842 0.97
(0.88–1.06) NS 0.97

(0.89–1.07) NS

Non-users of inhaled β2-agonist

rs1042713 Arg 2 n = 375 1.02
(0.88–1.18) NS 0.98

(0.85–1.13) NS

rs1042714 Gln3 n = 375 1.05
(0.91–1.21) NS 1.05

(0.91–1.21) NS

Past users of inhaled β2-agonists

rs1042713 Arg 2 n = 154 0.96
(0.76–1.22) NS 1.03

(0.81–1.31) NS

rs1042714 Gln 3 n = 154 0.88
(0.70–1.11) NS 0.97

(0.76–1.23) NS

Current users of inhaled β2-agonists

rs1042713 Arg 2 n = 313 0.70
(0.59–0.82) 3.1 × 10−5 0.70

(0.59–0.84) 9.2 × 10−5

rs1042714 Gln 3 n = 313 0.80
(0.69–0.94) 5.9 × 10−3 0.80

(0.69–0.94) 7.2 × 10−3

* Seattle single nucleotide polymorphisms (SNPs) database number. 1 Events, COPD exacerbations; HR, Hazard
ratio. 2 Arg (A) allele frequency: 0.35. 3 Gln (C) allele frequency: 0.53. NS; non-significant. Additive genetic model
was used for analyses. In total COPD population; adjusted for age, sex, and smoking. In non and past-users of
β2-agonist; adjusted for age, sex, smoking, and use of inhaled corticosteroids. In current-users; adjusted for age, sex,
smoking, use of inhaled corticosteroids, and the daily dose of β2-agonists.
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were adjusted for age, sex, smoking, use of inhaled corticosteroids, and the daily dose of β2-agonists.

3.3. Sensitivity Analyses

We repeated the analysis by excluding never-smokers from our cohort of current users of
β2-agonists (Table 3 and Figure 2). The results of SNPs and haplotypes analyses remained statistically
significant and with similar risk estimates as for the main analyses. When we performed the analysis in
strata of current users of SABA only and LABA only, we observed a statistically significantly reduced
risk of COPD exacerbations per copy of the Arg allele of rs1042713 among current users of SABA
(Table 4). In the LABA only treatment category, we observed a similar trend as in the main analysis;
however, the estimates lacked statistical significance (Table 4).
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Table 3. ADRB2 polymorphisms (per copy of the effect allele) and the risk of COPD exacerbations in
COPD population in current-users of β2-agonists (smokers only).

Db SNP No. * Effect Allele Events 1
Crude Model Adjusted Model

HR (95% CI) P HR (95% CI) P

rs1042713 Arg 2 n = 277 0.64
(0.53–0.77) 1.9 × 10−6 0.66

(0.55–0.80) 1.2 × 10−5

rs1042714 Gln 3 n = 277 0.73
(0.62–0.86) 2.1 × 10−4 0.74

(0.63–0.87) 3.8 × 10−4

* Seattle single nucleotide polymorphism (SNP) database number.1 Events, COPD exacerbations; HR, hazard ratio.
2 Arg (A) allele frequency: 0.35. 3 Gln (C) allele frequency: 0.53. Additive genetic model was used for analyses.
The analyses were adjusted for age, sex, use of inhaled corticosteroids, and the daily dose of β2-agonists.
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(0.59–0.90) 2.9 × 10−3 0.72

(0.58–0.90) 3.0 × 10−3

rs1042714 Gln 3 n = 205 0.81
(0.67–0.99) 3.6 × 10−2 0.80

(0.66–0.98) 3.0 × 10−2

LABA only

rs1042713 Arg 2 n = 85 0.73
(0.53–1.03) 7.1 × 10−2 0.70

(0.48–0.98) 4.0 × 10−2

rs1042714 Gln 3 n = 85 0.91
(0.67–1.22) 0.525 0.92

(0.67–1.27) 0.631

* Seattle single nucleotide polymorphism (SNP) database number. 1 Events, COPD exacerbations; SABA, short-acting
β2-agonists; LABA, long-acting β2-agonists; HR, Hazard ratio. 2 Arg (A) allele frequency: 0.35. 3 Gln (C) allele
frequency: 0.53. Additive genetic model was used for analyses. Adjusted model: adjusted for age, sex, use of
inhaled corticosteroids, the daily dose of β2-agonists and smoking.

3.4. Systematic Review

A flow chart (Supplementary Figure S2) describes study identification, screening, and inclusion.
Three clinical trials, as well as four observational studies that investigated the association of interest,
met the inclusion criteria. Due to differences in assessments and definitions of the outcome, data
could not be pooled (Table 5). Details of the results of the systematic review are provided in the
Supplementary Materials.
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Table 5. Overview of the studies included in the review.

Study (Year) Design Study Population Country Treatment Outcome Definition of COPD
Exacerbation SNP(s) Estimate/Association

All participants were on β2-agonists treatment

Rabe et al.
(2014) [7]

Randomized
controlled trial

2561 COPD patients
with a history of

smoking

Multi-center in
25 countries

Salmeterol plus
inhaled

corticosteroids

Time to first COPD
exacerbation;

Kaplan-Meier curves
were produced and the
log-rank test was used

for comparison.

Need of antibiotics or
systemic

glucocorticoids or
admission to hospital

rs1042713
rs1042714

rs1042713:
Arg16Arg genotype was

associated with reduced risk of
exacerbation compared to
Gly16Gly and Arg16Gly

genotypes
rs1042714: no association

Bleeker et al.
(2012) [8]

Two
randomized

controlled trials

Study 1, 1456 Study2,
1383 COPD patients

with a history of
smoking

Multi-center
(US, Europe and

Mexico)

Formoterol only
or in combination
with budesonide

Number of COPD
exacerbations per

patient-treatment year

Need of oral
corticosteroid treatment

or hospitalization
rs1042713

No association between
rs1042713 genotypes and

number of COPD
exacerbations per

patient-treatment year

Yelensky et al.
(2012) [5]

Retrospective
analysis of

phase III clinical
trials

565 COPD patients with
a history of smoking USA

Patients treated
with Indacaterol

for 26 weeks

Number of COPD
exacerbations during

the 26-week of
treatment; using

Poisson regression

Need of systemic
glucocorticoid therapy,

antibiotics, oxygen
treatment and/or
hospitalization or

emergency room visit.

rs1042711
rs1042713
rs1042714
rs1800888

No association between the
SNPs and number of COPD

exacerbations.

Not all participants were on β2-agonists treatment

Ingebrigtsen et al.
(2019) [20]

Prospective
cohort

5219 COPD patients
and 85.3% of them had

a history of smoking
(Copenhagen General

Population Study)

Denmark
9.8 % of COPD

patients were on
LABA treatment

Time to first
exacerbation;

by using univariable
competing risks

regression analyses

As acute admissions
with a discharge

diagnosis of COPD

rs1042713
rs1042714

The Arg allele at rs1042713 and
the Gln allele at rs1042714
were associated with an
increased risk of COPD

exacerbations

Hussein et al.
(2017) [21]

Case-control
study

61 COPD patients with
a history of smoking,
(recruited from three

hospitals)

Egypt

88% of patients
were on

β2-agonists
treatment

Number of
exacerbations

No definition for COPD
exacerbation

rs1042713
rs1042714

rs1042713: Arg16 genotypes
and haplotypes were

associated with more frequent
exacerbations.

Emeryk-Mksymiuk
et al.

(2017) [6]

Retrospective
study

92 COPD patients with
a history of smoking,

(recruited from
outpatient clinic)

Poland

83% of patients
were on

β2-agonists
treatment

Self-reported
exacerbations

Need of antibiotic
therapy, systemic

glucocorticoid therapy
or hospitalization

rs1042713
rs1042714

rs1042713: patients with
Arg/Arg genotype required

more frequent treatment with
antibiotics, as well as systemic

corticosteroid therapy.
rs1042714: no association

Vacca et al.
(2009) [22]

Case-control
study

190 COPD patients
with a history of

smoking (recruited
from two centers)

Germany
No information
on β2-agonist

treatment

≥3 exacerbations within
the last 3 year vs no

exacerbation within the
last 2 years

Need of hospitalization rs1042713
rs1042714

rs1042713: no association
reported

rs1042714: no association
reported
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4. Discussion

In this population-based cohort study, we observed that ADRB2 polymorphisms: rs1042713 and
rs1042714 were associated with a reduced risk of COPD exacerbation in current users of inhaled
β2-agonists. Also, among current users of β2-agonist, carriers of the Arg16/Gln27 haplotype had a
significantly lower risk of COPD exacerbation compared to those with the Gly16/Glu27 haplotype.

To the best of our knowledge, this is the first population-based study assessing the association
between ADRB2 polymorphisms and COPD exacerbations in patients with COPD treated with
inhaled β2-agonists. In a substudy of the POET-COPD trial [7] a one year randomized, double-blind,
and double-dummy trial found that amongst patients treated with salmeterol, those with the Arg/Arg
genotype of rs1042713 had a reduced risk of COPD exacerbations compared to patients with the
Arg/Gly and Gly/Gly genotypes which is in line with our findings [7]. However, the findings of
other clinical trials [5,8] showed no significant associations between ADRB2 polymorphisms and the
number of COPD exacerbations in LABA users [5,8]. The clinical trials which were included in our
systematic review [5,7,8] (Table 5) investigated the effect of ADRB2 polymorphism and the risk of COPD
exacerbations in patients exposed to LABA whereas we assessed the effect of ADRB2 polymorphisms
among inhaled β2-agonists users irrespective whether this was a SABA or a LABA. In a sensitivity
analysis, we investigated this association in LABA users only and similar findings as for the main
analysis were observed, although these results were no longer statistically significant; this, in turn, can
be explained by the small sample size in this particular treatment category. A recent observational study,
in spirometry-confirmed COPD patients, examined the associations between ADRB2 polymorphisms
(Arg16Gly and Gln27Glu) and risk of severe COPD exacerbations. [20]. The results of the study showed
an increased risk of COPD exacerbations in carriers of Arg16 and Gln27 [20]. However, the proportion
of COPD patients treated with LABA from the Copenhagen General Population Study was low
(9.8%) [20] particularly in comparison to our finding that revealed a protective effect in the category
of current users of inhaled β2-agonists. So far, a few studies have examined the association between
ADRB2 haplotypes and response to β2-agonist [9,21,23]. A study in Egypt [21] of patients with COPD
(n = 61), assessed the association between ADRB2 haplotypes and COPD exacerbations. In contrast to
our findings, they showed that the Arg16 genotypes and haplotype were associated with frequent
COPD exacerbations. However, not all of COPD patients in this study were on regular β2-agonist
treatment (88% exposed), and the definition used for COPD exacerbations was not provided [21].

To summarize, a number of studies have assessed the effect of ADRB2 polymorphisms on treatment
response to β2-agonists with inconsistent results [5–9,20–25]. Variation in the results might be related
to differences in the study populations, study designs, ethnicity, outcome definitions, treatment
classifications, concomitant drugs, as well as power-related issues due to different sample sizes.

The mechanism by which ADRB2 polymorphisms confer risk for COPD exacerbations in patients
treated with inhaled β2-agonists is still unknown. Green et al. conducted in-vitro experiments in
human airway smooth muscle cells and showed that cells expressing Arg allele at rs1042713 in ADRB2
underwent less downregulation in response to long-term β2-agonist exposure compared to cells
expressing Gly allele at this position in ADRB2 [26]. This is in line with our findings showing a reduced
risk of COPD exacerbations in carriers of the Arg allele treated with β2-agonist.

In contrast to COPD, previous studies in asthmatic patients suggested that the Arg allele (A)
of rs1042713 was associated with an increased risk of asthma exacerbations in children and young
adults [27,28]. Indeed, COPD and asthma have been defined as two distinct diseases. COPD is
characterized by persistent respiratory symptoms while in asthma, respiratory symptoms vary over
time and also in intensity [1,29]. Furthermore, exacerbations are typically triggered by allergens and
infections in patients with asthma and COPD, respectively. [1,29] However, it is still unclear how
the SNP would be differently associated with exacerbations in patients with COPD compared to
asthmatic patients.

The strengths of the Rotterdam Study are the prospective, population-based cohort design with an
extended follow-up. Data were prospectively collected through consistent procedures for all subjects,
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independent of research questions or upcoming diseases, which made it less prone to selection and
information bias.

A potential limitation of our study is the fact that spirometry data were only available from 2002
onwards. Therefore, it could result in an underestimation of asymptomatic COPD in the Rotterdam
Study before January 2002. In addition, reversibility tests were not performed which might lead to an
overestimation of the prevalence of COPD [30,31]. To overcome this limitation, patients with asthma
diagnosis were identified and excluded [12]. Furthermore, smoking status was assessed at the time of
visiting the center and not at the index date, implying potential misclassification of smoking status;
however, smoking status was categorized into ever and never-smokers. Misclassification would only
occur if non-smokers start to smoke during follow-up, which is unlikely in COPD patients. Also, we
might have overestimated the use of β2-agonists as the exposure was based on dispensing data and
not on actual intake. We obtained haplotype frequency estimates using the expectation-maximization
(E-M) algorithm. Despite some concerns regarding the accuracy of the methods using phase-unknown
data, previous studies have confirmed the usefulness of the haplotype approach [32] and the validity
of the statistical technique [33] based on phase-unknown data of unrelated individuals. Moreover,
as gene expression and eQTL are tissue-specific, in an optimal setting, they should be examined in
lung tissue of COPD patients treated with inhaled β2-agonists.

In conclusion, we demonstrated that the Arg16/Gln27 haplotype in ADRB2 was associated with a
reduced risk of exacerbation in COPD patients treated with inhaled β2-agonists. However, further
research is needed to confirm these findings.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/8/11/1835/s1.
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