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Osteoporosis (OP) is a prevalent age-related bone metabolic disease. Aging and mitochondrial 
dysfunction are involved in the onset and progression of OP, but the specific mechanisms have not 
been elucidated. The aim of this study was to identify novel potential biomarkers associated with 
aging and mitochondria in OP. In this study, based on GEO database, aging-related and mitochondria-
related differentially expressed genes (AR&MRDEGs) were screened. The AR&MRDEGs were enriched 
in mitochondrial structure and function. Then, 6 key genes were identified by WGCNA and multiple 
machine learning, and a novel diagnostic model was constructed. The efficacy of diagnostic model was 
validated using external datasets. The results showed that diagnostic model had favorable diagnostic 
prediction ability. Next, key gene regulatory networks were constructed and single-gene GSEA analysis 
was performed. In addition, based on a single-cell dataset from OP, single-cell differentially expressed 
genes (scDEGs) were identified. The results revealed that aging-related and mitochondria-related 
genes (AR&MRGs) were enriched in the ERK pathway in tissue stem cells (TSCs), and in mitochondrial 
membrane potential depolarization in monocytes. Cellular communication analysis showed that 
TSCs were active, with numerous signaling interactions with monocytes, macrophages and immune 
cells. Finally, the expression of key gene was verified by quantitative real-time PCR (qRT-PCR). This 
study is expected to provide strategies for the diagnosis and treatment of OP targeting aging and 
mitochondria.
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Osteoporosis (OP) is a bone metabolic disease characterized by bone microstructural destruction, leading to 
increased bone fragility and susceptibility to fracture1. Osteoporotic fracture is extremely harmful and is one of 
the major causes of disability and death in elderly patients2. With the aging population, the prevalence of OP 
is rapidly escalating and has become an essential public health challenge3. Dualenergy X-ray absorptiometry 
(DXA) is a well-recognized standard for OP diagnosis4. However, DXA is insensitive to early bone loss, fails to 
accurately assess the severity of OP, and fails to predict fracture risk. Based on gene microarrays, identification 
of key genes by transcriptome analysis is a valuable approach. Multi-level, multi-dimensional bioinformatics 
analysis and validation of multiple datasets contribute to the identification of more reliable genetic biomarkers.

Studies have shown that bone homeostasis, maintained by a complex balance between bone formation and 
bone resorption, suffers disruption with aging5. Genetic mouse models have demonstrated that elimination of 
aging cells in vivo significantly attenuates the aging-related OP process6. Meanwhile, mitochondrial dysfunction 
is one of critical pathogenic mechanisms of OP7. Mitochondrial DNA alterations, oxidative phosphorylation 
damage, phagocytosis dysfunction, and defects in mitochondrial biogenesis and dynamics have all been 
associated with OP8. Moreover, mitochondrial dysfunction contribute in cellular aging and aging-related stem 
cell viability decline9. Aging and mitochondria are potential targets for OP. However, genetic biomarkers of aging 
and mitochondria-related genes for OP are still lacked.

In this study, aging-related and mitochondria-related differentially expressed genes (AR&MRDEGs) 
were captured by differential expression analysis. Potential biological functions and associated pathways of 
AR&MRDEGs were defined by GO, KEGG enrichment analysis, GSEA and GSVA. Through WGCNA and 
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multiple machine learning algorithms, key genes were screened and a novel diagnostic model was constructed. 
Single-cell bioinformatics analysis was performed to explore the biological processes involved in aging-related 
and mitochondria-related genes (AR&MRGs) in specific cell type and intercellular communication in OP.

Materials and methods
Data collection
The GSE3595910, GSE5681511and GSE715812 datasets were downloaded from GEO database ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​n​c​b​
i​.​n​l​m​.​n​i​h​.​g​o​v​/​g​e​o​/​​​​​)​​​1​3​​​b​y “GEOquery” package (Version 2.70.0)14 (Table S1). GSE35959 acts as training dataset, 
and GSE56815 and GSE7158 serve as validation dataset in this study. The GSE35959, GSE56815, GSE7158 
datasets were normalized and annotated by the “limma” package (Version 3.58.1). Aging-related genes (ARGs) 
and mitochondria-related genes (MRGs) were collected through GeneCards (https://www.genecards.org/)15 
and MSigDB database (https://www.gsea-msigdb.org/gsea/msigdb)16. The 485 AR&MRGs were acquired by 
intersecting ARGs with MRGs.

Identification of aging-related and mitochondria-related differentially expressed genes
The DEGs between OP and control were identified by “limma” package (Version 3.58.1)17. The threshold of 
DEGs was |log FC| > 1 and adjusted P< 0.05. The AR&MRDEGs were obtained by venne diagram of DEGs 
and AR&MRGs. Heatmaps of AR&MRDEGs were demonstrated by “pheatmap” package (Version 1.0.12) and 
chromosomal localization maps were created using “RCircos” package (Version 1.2.2)18.

GO and KEGG enrichment analysis
Enrichment analysis of AR&MRDEGs for GO19and KEGG20was performed using the “clusterProfiler” package 
(version 4.10.0)21. Entries were selected by adj. P < 0.05 and FDR (q value) < 0.25. The value of P correction 
method was Benjamini-Hochberg.

Gene set enrichment analysis and gene set variation analysis
Genes were ranked according to logFC, and then subjected to GSEA by “clusterProfiler” package22. Meanwhile, 
GSE35959 were analyzed for GSVA using “GSVA” package (Version 1.50.0)23. The filtering criterion of entries 
was P < 0.05 and FDR < 0.25.

Expression difference analysis and correlation analysis of AR&MRDEGs
The group comparison plots were drawn based on AR&MRDEGs expression. Meanwhile, the correlation of 
AR&MRDEGs was analyzed by spearman algorithm. Correlation heatmaps were plotted via “pheatmap” package 
(Version 1.0.12) and correlation scatterplots were drawn by “ggplot2” package (Version 3.4.4).

Weighted gene co-expression network analysis
WGCNA24was run by the “WGCNA” package25. The variance of genes was calculated and the top 8000 genes 
were screened. The minimum genes number of module was 100; the ideal soft threshold was 16; the module 
shear height was 0.4. The correlation of modules with OP was measured. Modules with |r value| > 0.5 and 
P < 0.05 were picked to subsequent analysis.

Machine learning and construction of diagnostic model
Firstly, candidate genes were screened using “randomForest” (RF) package26. After cross-validation, the number 
of variables with smaller errors was selected, and then vital variables were selected based on MeanDecreaseGini 
for subsequent analysis.

Then, least absolute shrinkage and selection operator (LASSO) regression27was run through “glmnet” 
package28 to calculate risk score and construct risk model. The LASSO riskscore was calculated as 
follows: RiskScore =

∑
iCoefficient (genei) ∗ mRNA Expression (genei)

The LASSO regression analysis was visualized by LASSO coefficient path and cross verification curve.

Validation of diagnostic model
The receiver operating characteristic curves (ROC) of risk score and key genes were plotted by “pROC” 
package (Version 1.18.5) and area under the curve (AUC) was calculated to evaluate diagnosis efficiency. The 
interrelationships of key genes were demonstrated by nomogram based on logistic regression analysis through 
“rms” package (Version 6.7-1)29. Calibration curve was plotted to assess effectiveness and discrimination of 
diagnostic model. The net benefits of genetic information decisions were assessed by Decision Curve Analysis 
(DCA) with “ggDCA”package30.

Protein-protein interaction networks
The GeneMANIA database (https://genemania.org/)31 allows discovering genes with similar functions through 
massive genomics and proteomics data, as well as locating genes sharing functions, predicting gene functions, and 
prioritizing genes. Protein-protein interaction (PPI) network of key genes was mapped based on GeneMINIA.

Regulatory network of key genes
The miRNAs related to key genes were available from StarBase v3.0 database (https://starbase.sysu.edu.cn/)32. 
In addition, drugs targeting key genes were predicted by comparative toxicogenomics database (CTD) ​(​​​h​t​t​p​s​:​/​
/​c​t​d​b​a​s​e​.​o​r​g​/​​​​​)​​​3​3​​​. Finally, transcription factors (TFs) regulating key genes were analyzed by ChIPBase database 
(http://rna.sysu.edu.cn/chipbase/)34. Based on StarBase v3.0 database, RNA-binding proteins (RBPs) targeting 
key genes were selected35. The regulatory networks of key genes were visualized by Cytoscape software36.
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GSEA for correlated genes of key genes
First, the correlation coefficients between the key genes and the remaining genes were calculated and ranked. 
This process covered all relevant genes in OP and Control groups in dataset GSE35959. Subsequently, we 
selected the top five genes with the highest correlation with each key gene and performed GSEA on these genes 
to demonstrate the normalized enrichment scores corresponding to the biological functions or pathways in 
which they are involved.

protein structure domain prediction
The protein structures of key genes were predicted and visualized by AlphaFoldDB database ​(​​​h​t​t​p​s​:​/​/​a​l​p​h​a​f​o​l​d​.​c​o​
m​​​​​)​​​3​7​​​. AlphaFoldDB calculated predicted local distance difference test (pLDDT) for each residue of key proteins. 
The pLDDT < 50, the predicted structure with low confidence; 50 < pLDDT < 70, the predicted structure with 
medium confidence; 70 < pLDDT < 90, the predicted structure with high confidence; pLDDT > 90, the predicted 
structure with extremely high confidence.

Immune infiltration analysis
Firstly, immune cell were labeled and infiltration abundance of immune cells was calculated using ssGSEA to 
derive the immune cell infiltration matrix38. Group comparison plots were drawn to demonstrate differences 
between OP and control groups in immune cell infiltration. Subsequently, the correlation among immune cells 
was calculated based on Spearman algorithm. Finally, correlation bubble plots were drawn to display correlation 
between immune cells and key genes.

Quality control of single-cell dataset
The GSM4423510 from GSE147287 (scRNA-seq)39 was acquired by “Seurat v4.0” package. The samples source 
derived from homo sapiens bone marrow. The GSE147287 dataset was normalized by the “NormalizeData” 
function. The top2000 highly variable genes were truncated using “vst” method via “FindVariableFeatures” 
function. Cell subtypes were captured by “FindNeighbors” and “FindClusters” functions, and cell clusters were 
identified by “clustree” function at 0.6 resolution. Finally, dimension reduction was performed by “RunUMAP” 
function to visualization.

ScDEGs and single-cell enrichment analysis
Firstly, cell annotation was performed based on ImmGenData database and “SingleR” package (Version 2.4.1)40. 
Subsequently, the “DotPlot” and “FeaturePlot” functions were utilized to exhibit key genes expression in different 
cell. Finally, DEGs were identified by “FindAllMarkers” function. The top10 DEGs of each cell were selected as 
single cell differentially expressed genes (scDEGs). Common genes of scDEGs and AR&MRGs were subjected 
to GO and KEGG enrichment analyses.

Cell communication analysis
The intercellular communication was inferred and quantified by “CellChat” package (Version 2.1.1)41 and the 
CellPhoneDB.human database. Significantly ligand-receptor pairs were identified by ligand-receptor interaction 
probability and perturbation tests. Then, cell communication network was integrated by summing the number 
or intensity of ligand-receptor pairs. The essential receptor-ligand pairs during immune cells signaling and 
receive signals were shown through bubble plots.

pseudotime analysis
Differentiation start and end were identified based on trace of cell types and expression of characterized 
genes. Pseudotime analysis was run by “monocle” package (Version 2.30.1)42–44 to predict differentiation and 
developmental trace and to analyze key genes variations during pseudotime process.

Bone loss model mice
The research was approved by the Ethics Committee of the First Affiliated Hospital of Harbin Medical University. 
All experimental methods followed the relevant guidelines and regulations, as well as the ARRIVE guidelines. 
Female 8-week-old C57BL/6J mice were bought from Liaoning Changsheng Biotechnology Co. Following 1 
week acclimatization, mice were anesthetized by intraperitoneal injection of chloral hydrate (10%), and then 
mice were subjected to OVX or sham surgery. Mice were housed under identical pathogen-free conditions and 
provided with sufficient food and water. After 8 weeks of rearing, mice were euthanized by cervical dislocation 
and femurs were collected.

RT-qPCR
Total RNA was extracted from mouse bone tissue using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). 
NANODrop2000 (Thermo Scientific, Carlsbad, USA) was utilized to verify the quality of RNA. Total RNA was 
reverse transcribed into cDNA in a total reaction volume of 10 µL by cDNA Reverse Transcription Kit (Thermo 
Fisher Scientific, Waltham, Massachusetts, United States) following manufacturer’s instructions. The ABI 7500 
fast Real-Time PCR system (Applied Biosystems, Foster City, USA) was used to measure the expression levels 
of mRNAs by using SYBR Green (Applied Biosystems, USA). 18s was served as control. The primer sequences 
are as follows:
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Genes Forward Primer (5’−3’) Reverse Primer (5’−3’)

ABAC4 ​C​C​A​G​C​C​T​T​T​T​C​C​G​A​G​A​G ​C​T​G​A​G​C​G​C​C​A​C​C​T​A​C​A​A

MAOA ​G​C​T​T​T​A​T​C​T​C​C​C​G​T​C​C​A​T​T ​C​G​A​A​T​C​A​C​C​C​T​T​C​C​A​T​A​C​A

KIF5A ​A​A​A​G​A​A​G​C​C​G​T​G​C​G​G​T​A ​G​G​T​T​G​G​T​G​G​G​T​G​A​G​G​A​G

NFKB2 ​A​T​C​T​G​G​G​T​G​T​C​C​T​G​C​A​T​G​T ​C​C​T​T​G​G​C​C​T​C​C​T​G​C​T​C​T

BAX ​G​C​C​T​C​G​C​T​C​A​C​C​A​T​C​T​G ​C​C​C​A​C​C​C​C​T​C​C​C​A​A​T​A​A

YWHAE ​G​C​A​T​T​G​A​A​G​G​T​G​G​T​A​T​G​G​A ​A​A​C​A​A​A​A​G​A​G​G​T​T​G​A​G​C​G​A
 

statistical analysis
All data processing and analysis were based on R software (Version 4.3.3). For comparisons of continuous 
variables in two groups, Student’s independent t-test was applied to statistical significance for normally 
distributed variables, and Wilcoxon rank sum test was applied to non-normally distributed variables. Kruskal-
Wallis test was utilized for comparison of three and more groups. Correlation coefficients between variables were 
calculated by Spearman correlation analysis. The P < 0.05 was identified as statistically significant.

Results
The flowchart of this study is shown in Fig. 1.

Identification of AR&MRDEGs in OP and enrichment analysis
Firstly, the GSE35959, GSE56815 and GSE7158 datasets were normalized. The box plots demonstrated differences 
before and after normalization (Fig. S1). Based on GSE35959 dataset, DEGs between OP and control groups 
were identified. According to |logFC| > 1 and adjusted P < 0.05, 2908 DEGs were displayed in volcano plot, 
including 2523 up-regulated genes and 385 down-regulated genes (Fig. 2A). And then 47 AR&MRDEGs were 
available by venn diagram (Fig. 2B and Table S2) of DEGs and AR&MRGs. Heatmap presented the expression 

Fig. 1.  Flow chart for the comprehensive analysis of AR&MRDEGs.
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Fig. 2.  Identification of AR&MRDEGs in OP and enrichment analysis. (A) Volcano plot of DEGs between 
OP and control in GSE35959. (B) Venn diagram of DEGs and AR&MRGs. (C) Heatmap of top20 of 
AR&MRDEGs. Purple represents OP and yellow represents control. Red means high expression and blue 
means low expression. (D) Chromosome localization map of AR&MRDEGs. (E) Histogram of GO and KEGG 
enrichment analysis of AR&MRDEGs. BP, Biological Process; CC, Cellular Component; MF, Molecular 
Function. (F) Network map of GO and KEGG enrichment analysis of AR&MRDEGs. Orange nodes 
represent entries, green nodes represent molecules, and lines represent the relationship between entries and 
molecules. (G) Bubble diagram of GSEA. The bubble indicates gene set size, and color represents P value. 
(H-K) Details of GSEA in Nfkb Targets (H), Targets of Hif1a and Foxa2 (I), Acetylate Histones (J) and Tp53 
Targets Phosphorylated (K). (L) Heatmap of GSVA. Blue represents low enrichment and red represents high 
enrichment. (M) Group comparison plots of GSVA. The ns represents P ≥ 0.05 and no statistical significance; * 
represents P < 0.05 and statistically significant.
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of top20 of AR&MRDEGs (Fig.  2C). Finally, the chromosome localization of AR&MRDEGs was mapped. 
Several AR&MRDEGs including DMD, MAOA, HDAC6, AGTR2, ABCD1 and G6PD were located on the X 
chromosome (Fig. 2D).

To explore action of AR&MRDEGs in OP, GO and KEGG enrichment analysis were performed. AR&MRDEGs 
were primarily enriched in biological processes (BP) such as mitochondrion organization regulation, response to 
oxidative stress and reactive oxygen species metabolic process; cellular components (CC) such as mitochondrial 
outer membrane, mitochondrial matrix and tricarboxylic acid cycle enzyme complex; molecular functions 
(MF) such as chaperone binding, ubiquitin protein ligase binding and death domain binding. Simultaneously, 
AR&MRDEGs enriched in pathways such as apoptosis, lipid and atherosclerosis and age-race signaling pathway 
in diabetic complications (Fig. 2E). Meanwhile, the number of AR&MRDEGs contained in entries and links 
among entries were visualized by network diagram (Fig. 2F). The results showed that AR&MRDEGs were closely 
related to mitochondrial structure and function.

To research total genes variation in OP, GSEA was run (Fig. 2G). The all genes primarily enriched in Nfkb 
targets (Fig. 2H), targets of Hif1a and Foxa2 (Fig. 2I), acetylate histones (Fig. 2J), and tp53 targets phosphorylated 
(Fig. 2K). To explore differences of gene set, GSVA was performed. The top20 entries were displayed in heatmap 
(Fig. 2L). Subsequently, difference validation was performed by Mann-Whitney U test. The group comparison 
graph indicated that krebs cycle disorders, glucuronidation and nfkb pathway were significant between OP and 
control (Fig. 2M).

Differential expression analysis and correlation analysis of AR&MRDEGs
To explore differential expression of AR&MRGs, group comparison plots demonstrated 41 AR&MRGs were 
statistically expressed between OP and control group (Fig. S2A). Next, correlations among 47 AR&MRGs were 
calculated and correlation heatmaps were drawn (Fig. S2B). The correlation heatmap showed that positive 
correlations among most AR&MRDEGs, with significant positive correlations between HDAC6 and CAV3, 
VAT1 and OGDH (r = 0.983, P < 0.001). Finally, 4 pairs genes with strongest correlation were demonstrated by 
correlation scatterplots (Fig. S2C-F).

Weighted gene co-expression network analysis
To filter key module genes, WGCNA was performed. When the scale-free fitting index is 0.85, the optimal 
soft threshold is 16 (Fig. 3A). When the screening criterion was 0.4, the genes were clustered in 6 modules, 
including: darkgreen, orange, grey, brown, darkorange and green (Fig.  3B). Then, the relationships between 
genes and merged modules were visualized (Fig. 3C). The correlations of 6 modules with OP were acquired 
(Fig. 3D). Finally, darkgreen module served as the key module for subsequent analysis. The 22 candidate genes 
were obtained by venn diagram of darkgreen module genes and AR&MRDEG (Fig. 3E).

Fig. 3.  WGCNA and machine learning. (A) Scale-free networks of soft threshold power and mean 
connectivity. (B) Module aggregation of top 8000 genes in variance. (C) Gene clustering dendrogram by 
hierarchical clustering. (D) Correlation analysis between modules and OP. (E) Venn diagram of AR&MRDEGs 
and darkgreen module genes. (F) Training error plot of RF. (G) MeanDecreaseGini scatterplot of candidate 
genes. (H) Error plots of cross-validation. (I) LASSO coefficient path. (J) Cross verification curve in LASSO. 
(K) Forest map of key genes in LASSO.
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Machine learning and construction of diagnostic model
To investigate clinical value of 22 candidate genes, the RF was applied. The error plot of decision trees displayed 
that the error leveled off when the number of decision trees was 50 (Fig. 3F). Meanwhile, meandecreasegini 
scatter plots of 22 candidate genes were plotted (Fig. 3G). The cross-validation error plot demonstrated that the 
model error is smaller when the number of genes is 7 (Fig. 3H).

Then, based on RF, LASSO regression analysis was constructed. LASSO coefficient path (Fig. 3I) and cross 
verification curve (Fig. 3J) were plotted. The LASSO derived 6 key genes, including ABCA4, MAOA, KIF5A, 
NFKB2, BAX and YWHAE. The forest maps of key genes were drawn (Fig.  3K). The diagnostic model was 
constructed according to key genes and their risk coefficients. The LASSO riskscore was calculated as follows:

	
RiskScore =

∑
iCoefficient (genei) ∗ mRNA Expression (genei)

Validation of diagnostic model
To validate the diagnostic model, the ROC curve of risk score was plotted. The risk score presented high 
accuracy (AUC > 0.9) in GSE35959 (Fig. S3A). The ROC curves of key genes indicated that ABCA4, MAOA, 
KIF5A, NFKB2, BAX, and YWHAE all provided high diagnosis accuracy (AUC > 0.9) (Fig. S3B-D). Then, the 
nomogram plot assessed potency of key genes for diagnostic model, with higher potency of NFKB2 expression 
and lower potency of BAX expression (Fig. S3E). In addition, calibration curve was plotted to determine 
precision and discrimination of diagnostic model. The calibration curve plot demonstrated that dashed line of 
calibration line substantially coincided with diagonal line of ideal model (Fig. S3F). Finally, the clinical utility 
of diagnostic model was assessed by DCA. The net benefit of diagnostic model was consistently higher than all 
positive and all negative within most risk thresholds (Fig. S3G).

Meanwhile, external validation of diagnostic model was conducted based on GSE56815 and GSE7158 
datasets. The ROC curves displayed both risk scores and key genes with high accuracy (0.5 < AUC < 0.7) 
(Fig. 4A, D, H and K). The nomogram indicated that the expression of key genes had high utility for diagnostic 
model (Fig. 4E and L). The calibration curve demonstrated that calibration line is close to diagonal line, and 
the model has better discrimination ability (Fig. 4F and M). The DCA showed that strategies based on genetic 
information bring higher net benefits over a wide range of risk thresholds (Fig. 4G and N).

Construction of PPI networks and regulatory networks
The PPI networks were constructed through GeneMANIA database, containing 6 key genes and 20 functionally 
similar genes (Fig. S4). Firstly, miRNAs related to key genes were extracted from StarBase database, and the 
mRNA-miRNA regulatory network was constructed, containing BAX, KIF5A, YWHAE3 and 46 miRNAs 
(Fig. 5A). Potential drugs for key genes were then identified through CTD database, and mRNA-drug network 
was constructed, containing MAOA, BAX2 and 38 drugs or molecular compounds (Fig.  5B). Finally, TFs 
combining with key genes were available through ChIPBase database and RBPs associated with key genes were 
predicted through StarBase database. The TF-mRNA-RBP network was constructed, containing 6 key genes, 66 
TFs and 67 RBPs (Fig. 5C).

GSEA for correlated genes of key genes
To explore pathways associated with key genes, GSEA was run. GSEA was performed on remaining genes and 
the biological functions or pathways with top5 normalized enrichment score (NES) were demonstrated (Fig. 
S5). The smarca2-targets showed association with ABCA4, BAX, KIF5A, MAOA, NFKB2 and YWHAE; MIR21-
targets was association with BAX, NFKB2 and YWHAE; Myc-targets by serum had negative association with 
KIF5A and MAOA.

Prediction of protein structural domains
The protein structures of 6 key genes were available by AlphaFoldDB (Fig. S6). The major structural domains 
of 3 key genes had extremely high confidence (pLDDT > 90), including: BAX, MAOA, YWHAE. The major 
structural domains of 3 key genes had high confidence (70 < pLDDT < 90), including: ABCA4, KIF5A, NFKB2.

Immune infiltration analysis
Studies have confirmed that immune disorders were involved in the development of OP45. Hence, immune 
infiltration analysis was carried out in this study. Firstly, group comparison plots demonstrated significant 
differences in immune cells infiltration abundance, including: activated dendritic cell, natural killer T cell and 
CD56dim natural killer cell (Fig. S7A). Next, correlation heatmaps revealed strong correlations among most 
immune cells, with central memory CD8 T cell and activated CD4 T cell exhibiting the strongest negative 
correlation (r = −0.95, P < 0.05) (Fig. S7B). Finally, correlation bubble plots indicated that strong correlations 
were presented between key genes and immune cells, with BAX and activated dendritic cell having strongest 
negative correlation (r = −0.9, P < 0.05) (Fig. S7C).

cell annotation and key genes expression
Single-cell counts matrix of GSM4423510 in GSE147287 from OP was investigated. The violin plot presented the 
number of gene features, the count of genes, and the percent of mitochondria genes per cell (Fig. 6A). UMAP 
was applied for dimension reduction and visualization. When the resolution was 0.6, 7335 cells were categorized 
into 17 separate clusters (Fig. 6B). The cell clusters were then defined into 11 cell types, including tissue stem 
cells (TSCs), myelocytes, hematopoietic stem cells (HSC), neutrophils, CD8+ T cells, macrophages, monocytes, 
adipocytes, erythrocytes, erythrocytes, B cells and chondrocytes (Fig. 6C). The bar graph showed the percentage 
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of 11 cell types, with TSCs occupying highest percentage (Fig. 6D). Bubble plots demonstrated the expression 
levels and percentages of 4 key genes (BAX, MAOA, NFKB2 and YWHAE) in different cell (Fig. 6E). UMAP plots 
separately presented the expression of 4 key genes in GSM4423510 (Fig. 6F).

Single-cell DEGs and enrichment analysis
The scDEGs among cells were identified by |log FC| > 2 and adj. P < 0.05 (Fig. 6G). The expression of top10 
scDEGs was visualized (Fig.  6H). The heatmap displayed that COL14A1, CHRDDL1, etc. were primarily 
expressed in TSCs; FABP4, C1QB, etc. were mainly expressed in macrophages; KLF4, ASGR1, etc. were mainly 
expressed in monocytes.

Next, GO and KEGG enrichment was carried out for common genes of scDEGs with AR&MRGs. The 
common genes of scDEGs and AR&MRGs in TSCs were primarily enriched in myeloid leukocyte differentiation, 
regulation of ERK1 and ERK2 cascade and other BP; vesicle lumen, endocytic vesicle and other CC; ephrin 
receptor binding, lamin binding and other MF; ErbB signaling pathway, cholesterol metabolism and other 
pathways (Fig.  6I). The common genes of scDEGs and AR&MRGs in monocyte were primarily enriched in 

Fig. 4.  The validation of diagnostic model in GSE56815 and GSE7158. (A) ROC curves of risk scores in 
GSE56815. (B) ROC curves of ABCA4 and MAOA. (C) ROC curves KIF5A and NFKB2. (D) ROC curves 
of BAX and YWHAE. (E) Nomogram of key genes in diagnostic model. (F) Calibration curve of diagnostic 
model. (G) Decision curve analysis of diagnostic model. (H) ROC curves of risk scores in GSE7158. (I) ROC 
curves of ABCA4 and MAOA. (J) ROC curves KIF5A and NFKB2. (K) ROC curves of BAX and YWHAE. (L) 
Nomogram of key genes in diagnostic model. (M) Calibration curve of diagnostic model. (N) Decision curve 
analysis of diagnostic model.
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regulation of mitochondrial depolarization, regulation of membrane depolarization and other BP; endocytic 
vesicle lumen, lysosomal lumen and other CC; proteoglycan binding, glycosaminoglycan binding and other MF 
(Fig. 6J).

Sell communication analysis
Communication among 11 cell types was inferred and quantified. Heatmaps and circle plots demonstrated 
the number (Fig. 7A) and intensity (Fig. 7B) of cell communication. TSCs was active in cell communication 
networks. There was plentiful signal transduction among TSCs, macrophages and monocytes in OP (Fig. 7C-
E). Cell communication among TSCs, macrophages, monocytes and immune cells revealed the presence of 

Fig. 5.  Regulatory network of key genes. (A) The mRNA-miRNA network. (B) The mRNA-Drug network. 
(C) TF-mRNA-RBP network. Red represents mRNA, blue represents miRNA, purple represents drug, yellow 
represents TF, and pink represents RBP.
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Fig. 6.  Key genes expression, single-cell DEGs and enrichment analysis. (A) Violin map of gene expression. 
(B) The 7335 cells were clustered into 17 cell clusters by UMAP. (C) Cells were annotated into 11 cell types. 
(D) Histogram of cell proportions. (E) Bubble diagram of expression levels of 4 key genes. (F) The expression 
levels of key genes MAOA, NFKB2, BAX, YWHAE in GSE147287. (G) Volcano plot of scDEGs. (H) Heatmap 
of scDEGs expression. (I) Enrichment analyses of common genes of AR&MRGs and scDEGs in TSCs. (J) 
Enrichment analyses of common genes of AR&MRGs and scDEGs in monocyte.
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significant receptor-ligand pairs (Fig. 7F and K). In TSCs-B cells, the APP-CD74 receptor-ligand pair had a high 
intensity of action.

pseudotime analysis
The development trace of 11 cell was demonstrated by differentiation developmental chronograms (Fig. 8A) and 
trace diagrams (Fig. 8B). The development starting point was state 1, and the developmental end points were 
state 2 and state 3. The distribution of 11 cell in cell track skeleton map was plotted (Fig. 8C). The bar graphs 
demonstrated 4 key genes expression at different development nodes (Fig. 8D). The BAX was expressed highest 
in state 2 and lowest in state 1; MAOA was expressed low in all developmental stages; NFKB2 was expressed high 
in state 3 and low in state 1; and YWHAE was expressed highest in state 2 and low in state 1. Finally, heatmap 
exhibited expression of key genes in pseudotime (Fig. 8E).

qRT-PCR
The expression of key genes was verified by qRT-PCR (Fig. 9). The expression of ABCA4, MAOA, KIF5A and 
NFKB2 in OP were higher than in control, and the expression of BAX showed the opposite trend. The expression 
of YWHAE showed no difference between OP and control groups.

Discussion
OP is a bone disease characteristically associated with reduced bone strength and elevated risk of fracture, and 
occurs primarily in postmenopausal women and older men46. OP is prevalent and extremely dangerous, but 
diagnosis and treatment rates remain low47. Currently, the OP diagnosis relies on imaging and BMD testing by 
DXA, but all have limitations48. OP imaging is highly subjective and difficult to detect early bone loss. DXA is 
unsensitive to early bone loss, fails to assess the severity of OP and predict fracture risk49. Early diagnosis of bone 
loss is critical for the management of OP patients.

Aging has recognized as an essential mechanism independently of estrogen deficiency leading to OP50. 
Meanwhile, mitochondrial dysfunction is one of key hallmarks of cell aging51. Studies have demonstrated 
that bone marrow mesenchymal stem cells (BMSCs) aging affects viability, differentiation, and thus decrease 
osteogenesis, leading to OP52. Aging and mitochondria are potential targets for OP. However, identified genetic 

Fig. 7.  Intercellular communication analysis. (A) Heat map of interactions number. among 11 cells types. (B) 
Network diagram of interactions strength among 11 cell types. The nodes represent different cell types, the 
arrows indicate signaling direction, and. thicker lines mean higher strength of interactions. (C-E) Intercellular 
communication. between TSCs (C), macrophages(D), monocytes (E) and other cells, respectively. (F-H) Cell 
communication ligand-receptor pairs for signals sent to immune cells by TSCs, macrophages, and monocytes. 
(I-K) Cell communication ligand-receptor pairs in TSCs, macrophages, and monocytes receiving immune cell 
signals.
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biomarkers of AR&MRGs in OP have not been reported. Multi-level, multi-dimensional bioinformatics analysis 
might contribute to identify more accurate genetic biomarkers. Therefore, this study utilized public data to 
screen key AR&MRGs and construct a diagnostic model that might contribute to the diagnosis of OP in future.

Due to difficulty in obtaining human BMSCs, GSE35959 is available as the largest sample size dataset. In 
this study, 47 AR&MRDEGs were available from differential expression analysis and WGCNA. AR&MRDEGs 
were enriched in mitochondrial structure and function such as mitochondrial tissue, mitochondrial outer 
membrane, mitochondrial matrix, regulation of mitochondrial membrane potential, response to oxidative 
stress, metabolism of reactive oxygen species and tricarboxylic acid cycle enzyme complex. When organisms 
exposed to oxidative stress stimuli, excessive reactive oxygen species were released, mitochondrial membrane 
potential depolarized, mitochondrial membrane permeability increased, and mitochondrial dysfunction 

Fig. 8.  Pseudotime analysis. (A) Cell track skeleton in pseudotime. The color from dark to light represents 
pseudotime order. (B) Stage of cell track skeleton. (C) Distribution of 11 cells types in cell track skeleton. (D) 
Histogram of key genes expression at different developmental stages. (E) Heatmap of pseudotime expression of 
key genes.
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including oxidative phosphorylation, tricarboxylic acid cycle and ATP generation even mitochondria-derived 
apoptosis and mitochondrial cleavage were observed53. The present study revealed key biological processes and 
signaling pathways associated with aging and mitochondria in OP, providing new insights for understanding OP. 
Modulation of mitochondria to reverse aging to ameliorate bone loss needs more experiments and more animal 
models to explore. Meanwhile, mitochondria supplements might be one of potential strategies for OP patients54.

In this study, the diagnostic model was constructed based on 6 key genes (YWHAE, MAOA, NFKB2, KIF5A, 
ABCA4 and BAX). The calibration curves revealed that model had certain discrimination and no systematic 
bias. Decision curves indicated that net benefits from genetic information strategy were favorable in most risk 
threshold ranges. The diagnostic model had moderate external prediction ability, but it also laid foundation 
for more accurate diagnosis tools in future. The present diagnostic model focused on aging and mitochondria 
in BMSCs. However, OP was a systemic, multi-organ, multi-phenotype disease. The pathogenesis of OP was 
complex and involved genetic and environmental factors. Adding key genes of osteoclasts, key genes of estrogen 
pathway, and even clinical features such as age and basal disease to diagnostic model might greatly improve 
generalizability and comprehensive prediction ability.

The PPI network was built by GeneMANIA database, including 6 key genes and 20 functionally similar 
proteins. YWHAE, BAX and MAOA were located in core nodes of the network, interacting with functionally 
similar proteins, and could serve as targets to regulate aging and mitochondrial of BMSCs. BAX, a proapoptotic 
protein, initiates osteoblasts apoptosis by increasing mitochondrial membrane permeability and releasing 
cytochrome c55. MAOAis associated with BMD, especially in postmenopausal women, and is critical locus for 
bone mass in Japanese women56. It is reported that NFKB2may be one of potential pathogenic genes and has 
diagnosis value for OP, which is consistent with this study conclusion57. Studies have identified YWHAE, a hub 
gene for differentially expressed iron metabolism-related genes in OP58. There are few reports about KIF5A, 
ABCA4 associated with OP.

The mRNA-miRNA network showed that KIF5A, YWHAE, BAXwere regulated by multiple miRNAs. The 
post-transcriptional regulatory mechanisms were complicated. MiRNAs could regulate BMSCs osteogenesis 
differentiation through key proteins. MiR-124-3p inhibits osteogenic differentiation of BMSCs by suppressing 
PI3K/Akt/mTOR59. MiR-128-3p targets directly nuclear factor 5 of activated T cells (NFAT5), a protein that 
binds to osteoprotegerin and modulates osteoclastogenesis in the presence of nuclear factor κB receptor activator 
ligand60. The TF-mRNA-RBP network indicated that NFKB2 shares TF with ABCA4, BAX, while YWHAE shares 
RBP with KIF5A, BAX. Collaborative mechanisms exist among key genes at transcriptional level. Both EP300 and 
ERG were potential TFs for ABCA4, BAX and NFKB2, but no studies have been reported in OP, and more basic 

Fig. 9.  The qRT-PCR validation of key genes. (A)ABCA4(B)MAOA(C)KIF5A(D)NFKB2(E)BAX(F)YWHAE. 
The ns represents P ≥ 0.05, *P < 0.05, **P < 0.01, ***P < 0.001.
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experiments were needed to confirm their roles. The mRNA-Drug network revealed that MAOA, BAX interacted 
with various drugs. MAOA and BAXwere potential targets for drug screening of OP. Studies have found that 
targeted delivery of curcumin to bone marrow of diabetic OP patients promoted osteogenic differentiation of 
BMSCs and increased bone mass by enhancing mitochondrial function and inhibiting ferroptosis61. Dasatinib 
and quercetin, which improved aging BMSCs function and promoted bone regeneration by targeting aging cells 
and senescence-associated secretory phenotypes (SASPs), was recently explored as a novel therapy for a variety 
of age-related diseases62.

Heatmap of scDEGs showed that APOD and CHRDL1 were highly expressed in TSCs. Studies confirmed that 
APOD influences OP progression by regulating BMSCs osteogenic differentiation through the PI3K/Aktpathway63. 
Meanwhile, CHRDL1 promotes BMSCs osteogenic differentiation by activating BMP4-SMAD1/5/9pathway64. 
TSCs enrichment showed AR&MRGs enriched in ERK pathway. Studies have demonstrated that ERKpathway 
activation promotes BMSCs differentiation to osteoblasts, facilitates osteogenesis, and prevents bone loss65. 
Monocyte enrichment revealed AR&MRGs enrichment in mitochondrial membrane potential depolarization. 
Studies have demonstrated that estrogen promotes mitochondrial apoptotic death of early osteoclast progenitors 
via Bak/Bax, reducing osteoclast numbers and reducing bone loss66. Meanwhile, cell communication 
analysis revealed substantial cell communication among TSCs, monocytes, and macrophages. In OP, M1-like 
macrophages have increased mitochondrial transfer to BMSCs, and abnormal metabolism in BMSCs regulates 
bone homeostasis54. This study provided insights for aging and mitochondria at the single-cell level in OP.

There are some limitations to this study. First, we performed the batch effect removal independently for the 
three datasets (GSE35959, GSE56815, and GSE7158).

This choice is intended to minimize the interference of potential batch effects in the results, but it may also 
lead to the loss of some information, which may weaken the comprehensiveness of the results. Differential 
analysis was based only on the test set GSE35959 and further screened for 47 AR&MRDEGs. Nevertheless, 
the presence of dataset bias needs to be interpreted with caution to avoid overstating the generalizability of the 
findings. However, we recognize that computational analyses have limitations of their own. For example, we 
used t-tests and Wilcoxon rank sum tests in differential expression analysis. These methods may not fully capture 
all aspects of biological complexity when dealing with small sample sizes, especially if the data are unevenly 
distributed or highly noisy.

Although our study has made some progress in identifying key genes associated with OP and constructing 
a diagnostic model, there are still some limitations. First, the construction of the model is mainly based on the 
training set GSE35959, which has a relatively small number of samples, which may lead to overfitting of the 
model during the training process, thus affecting its generalization ability on external validation sets (GSE56815 
and GSE7158). Meanwhile, despite our efforts to improve the robustness of the model through cross-validation 
of multiple algorithms on the test set, it is still difficult to rule out potential biases and the influence of external 
variables on the results. More diverse datasets and more sophisticated algorithms are needed in the future to 
further validate and enhance the reliability and applicability of the models.

Conclusion
In this study, 6 key genes (ABCA4, MAOA, KIF5A, NFKB2, BAX and YWHAE) were identified. A novel 
diagnostic model was constructed and preliminarily validated. Meanwhile, this study enriched insights of aging 
and mitochondria in OP, and laid foundation for the subsequent deep mechanism research to drive OP research 
advances.

Data availability
The datasets analyzed during the current study are available in public databases such as GEO ​(​h​t​t​p​s​:​/​/​w​w​w​.​n​c​b​i​.​
n​l​m​.​n​i​h​.​g​o​v​/​g​e​o​/​)​, MSigDB database (https://www.gsea-msigdb.org/gsea/msigdb) and GeneCards.

Received: 5 October 2024; Accepted: 30 December 2024

References
	 1.	 Snyder, S. Postmenopausal osteoporosis. N. Engl. J. Med. 390 (7), 675–676 (2024).
	 2.	 Ensrud, K. E. & Crandall, C. J. Osteoporos. Annals Intern. Med., 177(1). (2024).
	 3.	 Huang, J. et al. β-Receptor blocker enhances the anabolic effect of PTH after osteoporotic fracture. Bone Res. 12 (1), 18 (2024).
	 4.	 Zhang, K. et al. DeepmdQCT: a multitask network with domain invariant features and comprehensive attention mechanism for 

quantitative computer tomography diagnosis of osteoporosis. Comput. Biol. Med. 170, 107916 (2024).
	 5.	 Zheng, J., He, J. & Li, H. FAM19A5 in vascular aging and osteoporosis: Mechanisms and the calcification paradox. Ageing Research 

Reviews, 99: p. 102361. (2024).
	 6.	 Yılmaz, D. et al. Mouse models of accelerated aging in musculoskeletal research for assessing frailty, Sarcopenia, and osteoporosis 

- A review. Ageing Res. Rev. 93, 102118 (2024).
	 7.	 Zheng, C. X. et al. Mitochondrial regulation of stem cells in bone homeostasis. Trends Mol. Med., 26(1). (2020).
	 8.	 Wang, F. S. et al. Biophysical Modulation of the Mitochondrial Metabolism and Redox in Bone Homeostasis and Osteoporosis: How 

Biophysics Converts into Bioenergetics. Antioxidants (Basel, Switzerland), 10(9). (2021).
	 9.	 Amorim, J. A. et al. Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat. Rev. Endocrinol. 18 (4), 

243–258 (2022).
	10.	 Benisch, P. et al. The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows 

overexpression of osteogenic inhibitors. PloS One. 7 (9), e45142 (2012).
	11.	 Zhou, Y. et al. A novel approach for correction of crosstalk effects in pathway analysis and its application in osteoporosis research. 

Sci. Rep. 8 (1), 668 (2018).
	12.	 Lei, S. F. et al. An in vivo genome wide gene expression study of circulating monocytes suggested GBP1, STAT1 and CXCL10 as 

novel risk genes for the differentiation of peak bone mass. Bone 44 (5), 1010–1014 (2009).

Scientific Reports |          (2025) 15:934 14| https://doi.org/10.1038/s41598-024-84926-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	13.	 Barrett, T. et al. NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res. 41 (Database issue), D991–D995 
(2013).

	14.	 Davis, S. & Meltzer, P. S. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 
(Oxford, England), 23(14): pp. 1846–1847. (2007).

	15.	 Stelzer, G. et al. The GeneCards suite: from Gene Data Mining to Disease Genome sequence analyses. Curr. Protocols Bioinf., 54. 
(2016).

	16.	 Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinf. (Oxford England). 27 (12), 1739–1740 (2011).
	17.	 Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 

43 (7), e47 (2015).
	18.	 Zhang, H., Meltzer, P. & Davis, S. RCircos: an R package for Circos 2D track plots. BMC Bioinform. 14, 244 (2013).
	19.	 Mi, H. et al. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. 

Nucleic Acids Res. 47 (D1), D419–D426 (2019).
	20.	 Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28 (1), 27–30 (2000).
	21.	 Yu, G. et al. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics: J. Integr. Biology. 16 (5), 

284–287 (2012).
	22.	 Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression 

profiles. Proc. Natl. Acad. Sci. U.S.A. 102 (43), 15545–15550 (2005).
	23.	 Hänzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 14, 

7 (2013).
	24.	 Liu, W. et al. [Weighted gene co-expression network analysis in biomedicine research]. Sheng Wu Gong. Cheng Xue Bao = Chin. J. 

Biotechnol. 33 (11), 1791–1801 (2017).
	25.	 Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008).
	26.	 Liu, Y. & Zhao, H. Variable importance-weighted Random Forests. Quantitative Biology (Beijing, China), 5(4): pp. 338–351. (2017).
	27.	 Cai, W. & van der Laan, M. Nonparametric Bootstrap Inference for the Targeted Highly Adaptive Least Absolute Shrinkage and 

Selection Operator (LASSO) Estimator (The International Journal of Biostatistics, 2020).
	28.	 Engebretsen, S. & Bohlin, J. Statistical predictions with glmnet. Clin. Epigenetics. 11 (1), 123 (2019).
	29.	 Wu, J. et al. A nomogram for predicting overall survival in patients with low-grade endometrial stromal sarcoma: a population-

based analysis. Cancer Commun. (London England). 40 (7), 301–312 (2020).
	30.	 Van Calster, B. et al. Reporting and interpreting decision curve analysis: a guide for investigators. Eur. Urol. 74 (6), 796–804 (2018).
	31.	 Franz, M. et al. GeneMANIA update 2018. Nucleic Acids Res. 46 (W1), W60–W64 (2018).
	32.	 Li, J. H. et al. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale 

CLIP-Seq data. Nucleic Acids Res. 42 (Database issue), D92–D97 (2014).
	33.	 Grondin, C. J. et al. Predicting molecular mechanisms, pathways, and health outcomes induced by Juul e-cigarette aerosol 

chemicals using the comparative Toxicogenomics database. Curr. Res. Toxicol. 2, 272–281 (2021).
	34.	 Zhou, K. R. et al. ChIPBase v2.0: decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes 

from ChIP-seq data. Nucleic Acids Res. 45 (D1), D43–D50 (2017).
	35.	 Singh, A. RNA-binding protein kinetics. Nat. Methods. 18 (4), 335 (2021).
	36.	 Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13 

(11), 2498–2504 (2003).
	37.	 Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596 (7873), 583–589 (2021).
	38.	 Xiao, B. et al. Identification and Verification of Immune-related gene prognostic signature based on ssGSEA for Osteosarcoma. 

Front. Oncol. 10, 607622 (2020).
	39.	 Wang, Z. et al. Single-cell RNA sequencing deconvolutes the in vivo heterogeneity of human bone marrow-derived mesenchymal 

stem cells. Int. J. Biol. Sci. 17 (15), 4192–4206 (2021).
	40.	 Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 

20 (2), 163–172 (2019).
	41.	 Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12 (1), 1088 (2021).
	42.	 Qiu, X. et al. Single-cell mRNA quantification and differential analysis with Census. Nat. Methods. 14 (3), 309–315 (2017).
	43.	 Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods. 14 (10), 979–982 (2017).
	44.	 Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. 

Biotechnol. 32 (4), 381–386 (2014).
	45.	 Fischer, V. & Haffner-Luntzer, M. Interaction between bone and immune cells: implications for postmenopausal osteoporosis. 

Semin. Cell Dev. Biol. 123, 14–21 (2022).
	46.	 Walker, M. D. & Shane, E. Postmenopausal osteoporosis. N. Engl. J. Med. 389 (21), 1979–1991 (2023).
	47.	 Bellido, T. Bisphosphonates for osteoporosis: from bench to clinic. J. Clin. Investig., 134(6). (2024).
	48.	 Reid, I. R. & Billington, E. O. Drug therapy for osteoporosis in older adults. Lancet (London England). 399 (10329), 1080–1092 

(2022).
	49.	 Zeng, R. et al. Identification of a potential diagnostic signature for postmenopausal osteoporosis via transcriptome analysis. Front. 

Pharmacol. 13, 944735 (2022).
	50.	 Li, J. et al. TGFβ1 + CCR5 + neutrophil subset increases in bone marrow and causes age-related osteoporosis in male mice. Nat. 

Commun. 14 (1), 159 (2023).
	51.	 López-Otín, C. et al. Hallmarks of aging: an expanding universe. Cell 186 (2), 243–278 (2023).
	52.	 Zhang, H. et al. LncRNA NEAT1 controls the lineage fates of BMSCs during skeletal aging by impairing mitochondrial function 

and pluripotency maintenance. Cell Death Differ. 29 (2), 351–365 (2022).
	53.	 Guo, Y. et al. Mitochondrial dysfunction in aging. Ageing Res. Rev. 88, 101955 (2023).
	54.	 Cai, W. et al. Mitochondrial transfer regulates cell fate through metabolic remodeling in osteoporosis. Adv. Sci. (Weinheim Baden-

Wurttemberg Germany). 10 (4), e2204871 (2023).
	55.	 Jia, B. et al. Baicalin attenuates dexamethasone-induced apoptosis of bone marrow mesenchymal stem cells by activating the 

hedgehog signaling pathway. Chin. Med. J. 136 (15), 1839–1847 (2023).
	56.	 Yamada, Y., Ando, F. & Shimokata, H. Association of genetic variants of MAOA and SH2B1 with bone mineral density in 

community-dwelling Japanese women. Mol. Med. Rep. 1 (2), 269–274 (2008).
	57.	 Xia, B. et al. Identification of potential pathogenic genes associated with osteoporosis. Bone Joint Res. 6 (12), 640–648 (2017).
	58.	 Li, Z. et al. Identification and validation of iron metabolism genes in osteoporosis. BMC Med. Genom. 17 (1), 5 (2024).
	59.	 Gan, L. et al. Kaempferol promotes the osteogenesis in rBMSCs via mediation of SOX2/miR-124-3p/PI3K/Akt/mTOR axis. Eur. J. 

Pharmacol. 927, p174954 (2022).
	60.	 Zhang, H. et al. Long noncoding RNA KCNQ1OT1 inhibits osteoclast differentiation by regulating the miR-128-3p/NFAT5 axis. 

Aging 14 (10), 4486–4499 (2022).
	61.	 Li, Y. et al. A DNA tetrahedron-based ferroptosis-suppressing nanoparticle: superior delivery of curcumin and alleviation of 

diabetic osteoporosis. Bone Res. 12 (1), 14 (2024).
	62.	 Wang, Y. et al. Repurpose dasatinib and quercetin: targeting senescent cells ameliorates postmenopausal osteoporosis and 

rejuvenates bone regeneration. Bioactive Mater. 25, 13–28 (2023).

Scientific Reports |          (2025) 15:934 15| https://doi.org/10.1038/s41598-024-84926-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	63.	 Yu, R. H. et al. Apolipoprotein D alleviates glucocorticoid-induced osteogenesis suppression in bone marrow mesenchymal stem 
cells via the PI3K/Akt pathway. J. Orthop. Surg, Res. 15 (1), 307 (2020).

	64.	 Liu, T. et al. Chordin-Like 1 improves osteogenesis of bone marrow mesenchymal stem cells through enhancing BMP4-SMAD 
pathway. Front. Endocrinol. 10, 360 (2019).

	65.	 Chen, M. et al. Fgf9 regulates bone marrow mesenchymal stem cell fate and bone-fat balance in osteoporosis by PI3K/AKT/Hippo 
and MEK/ERK signaling. Int. J. Biol. Sci. 20 (9), 3461–3479 (2024).

	66.	 Kim, H. N. et al. Estrogens decrease osteoclast number by attenuating mitochondria oxidative phosphorylation and ATP 
production in early osteoclast precursors. Sci. Rep. 10 (1), 11933 (2020).

Acknowledgements
no.

Author contributions
L.Y. conducted the bioinformatic analyses and wrote the manuscript. L.Y., K.B. and Y.C. designed and revised the 
manuscript. Y.H. and S.L. did statistical analysis. W.L. and Z.Y gave useful suggestions and polished the manu-
script. All authors read and approved the final manuscript.

Funding
This research was supported by the postdoctoral program of heilongjiang province [No. LBH-Z22230] and the 
doctoral foundation program of the first affiliated hospital of harbin medical university [No. 2023B14].

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​4​-​8​4​9​2​6​-​8​​​​​.​​

Correspondence and requests for materials should be addressed to L.Y.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |          (2025) 15:934 16| https://doi.org/10.1038/s41598-024-84926-8

www.nature.com/scientificreports/

https://doi.org/10.1038/s41598-024-84926-8
https://doi.org/10.1038/s41598-024-84926-8
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Comprehensive bioinformatics analysis reveals novel potential biomarkers associated with aging and mitochondria in osteoporosis
	﻿Materials and methods
	﻿Data collection
	﻿Identification of aging-related and mitochondria-related differentially expressed genes
	﻿GO and KEGG enrichment analysis
	﻿Gene set enrichment analysis and gene set variation analysis
	﻿Expression difference analysis and correlation analysis of AR&MRDEGs
	﻿Weighted gene co-expression network analysis
	﻿Machine learning and construction of diagnostic model
	﻿Validation of diagnostic model
	﻿Protein-protein interaction networks
	﻿Regulatory network of key genes
	﻿GSEA for correlated genes of key genes
	﻿protein structure domain prediction
	﻿Immune infiltration analysis
	﻿Quality control of single-cell dataset
	﻿ScDEGs and single-cell enrichment analysis
	﻿Cell communication analysis
	﻿pseudotime analysis
	﻿Bone loss model mice
	﻿RT-qPCR
	﻿statistical analysis

	﻿Results
	﻿Identification of AR&MRDEGs in OP and enrichment analysis
	﻿Differential expression analysis and correlation analysis of AR&MRDEGs



