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Abstract: Anticancer therapy by anthracyclines often leads to the development of multidrug resis-
tance (MDR), with subsequent treatment failure. Thiosemicarbazones have been previously suggested
as suitable anthracycline partners due to their ability to overcome drug resistance through dual Pgp-
dependent cytotoxicity-inducing effects. Here, we focused on combining anthracyclines (doxorubicin,
daunorubicin, and mitoxantrone) and two thiosemicarbazones (DpC and Dp44mT) for treating
cell types derived from the most frequent pediatric solid tumors. Our results showed synergistic
effects for all combinations of treatments in all tested cell types. Nevertheless, further experiments
revealed that this synergism was independent of Pgp expression but rather resulted from impaired
DNA repair control leading to cell death via mitotic catastrophe. The downregulation of checkpoint
kinase 1 (CHEK1) expression by thiosemicarbazones and the ability of both types of agents to induce
double-strand breaks in DNA may explain the Pgp-independent synergism between anthracyclines
and thiosemicarbazones. Moreover, the concomitant application of these agents was found to be
the most efficient approach, achieving the strongest synergistic effect with lower concentrations of
these drugs. Overall, our study identified a new mechanism that offers an avenue for combining
thiosemicarbazones with anthracyclines to treat tumors regardless the Pgp status.

Keywords: thiosemicarbazones; anthracyclines; anthracenedione; pediatric solid tumors; combined
anticancer treatment; checkpoint kinase 1; double strand breaks in DNA

1. Introduction

Anthracyclines belong to a class of natural cytotoxic antibiotics and represent highly
potent antineoplastic agents widely used to treat a variety of tumor types [1]. Since
the early 1970s, when the first compounds from the anthracycline class—doxorubicin
(DOX) and daunorubicin (DAU)—were approved for clinical use, anthracyclines have been
therapeutically used as potent anticancer drugs [1–3]. Their cytotoxic and cytostatic effects
result from the combination of different mechanisms, i.e., intercalation into DNA, induction
of oxidative stress, and poisoning of the topoisomerase II enzyme (TOP2) [4,5]. In general,
DOX is usually indicated for treating lymphomas, sarcomas, and other solid tumors (bone
tumors, lung carcinoma, bladder carcinoma, breast carcinoma, and cervical carcinoma),
whereas DAU is more active on lymphoblastic and acute myeloblastic leukemia [1].

Despite its efficacy, anthracycline therapy is associated with cumulative dose-dependent
cardiotoxic side effects, such as ventricular contractility and cardiomyopathy, leading to
heart failure [6]. The other common side effects include acute nausea and vomiting,
stomatitis, gastrointestinal disturbances, baldness, alopecia, neurologic disturbances (dizzi-
ness, hallucinations, and vertigo), and bone marrow aplasia [7]. Because of this toxicity,
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anthracyclines are often used in lower concentrations as a component in combination thera-
pies [3]. To improve the therapeutic profile of anthracyclines, a synthetic anthracenedione—
mitoxantrone (MIT)—was developed. This drug is routinely used in the treatment of
lymphomas, leukemias, breast carcinoma, and prostate carcinoma [8].

In addition to the cardiotoxicity of anthracyclines, chemoresistance is a major reason
for the failure of anthracycline therapy [9]. In general, the emergence of resistance to an-
thracyclines in malignant cells is a multifactorial process [9]. One of the main mechanisms
is often associated with the acquisition of multidrug resistance (MDR) conferred by overex-
pression of permeability glycoprotein-1 (Pgp) [10–12]. Pgp is an efflux pump induced by
drugs, heat shock, some natural products, environmental stress, and other nonspecific stress
factors [9]. To date, several approaches have been explored to overcome MDR induced
by Pgp [9], e.g., formulation of nanodelivery systems for anthracyclines [13–15], anthracy-
cline derivatives with improved properties [16–21], and gene-targeted downregulation or
pharmacological inhibition of Pgp [22–26].

Another promising strategy for overcoming Pgp-mediated drug resistance is based
on combining DOX with thiosemicarbazones—di-2-pyridylketone 4-cyclohexyl-4-methyl-
3-thiosemicarbazone (DpC) and di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone
(Dp44mT)—to directly leverage lysosomal Pgp transport activity [27,28]. Previously, Pgp
was shown to be topologically inverted during the endocytic process, thus facing into
lysosomes, leading to lysosomal loading of Pgp substrates [29–31]. Therefore, in cells with
high Pgp expression, Pgp mediates not only drug efflux through the plasma membrane [32],
but also increased drug trapping within lysosomes, creating drug “safe houses”, which
can be observed [29]. DOX, DAU, and MIT were defined as lysosomotropic drugs on the
basis of their pKa values, i.e., at acidic pH, these compounds are protonated and trapped
in lysosomes, preventing their distribution to major targets in the nucleus [29]. DpC and
Dp44mT are also Pgp substrates, and, in cells with MDR, they are transported via Pgp into
lysosomes, where they are trapped due to protonation in a manner identical to anthracy-
cline trapping [30,33–35]. However, positively charged thiosemicarbazones can bind copper
and enter redox cycles to generate reactive oxygen species (ROS) that induce lysosomal
membrane permeabilization (LMP) and subsequent proapoptotic signaling [27,30,33–35].
Moreover, LMP enables the release of stored anthracyclines from lysosomes, leading to
restoration of their cytotoxic activity [27]. According to this mechanism, synergistic in-
teractions between anthracyclines and thiosemicarbazones are expected to be beneficial
predominantly in MDR malignant cells with typically high Pgp expression.

In this study, we focused for the first time on the combination of anthracyclines with
thiosemicarbazones in pediatric solid tumors. Due to the improvement of therapeutic
strategies, from aggressive surgical approaches to multimodal approaches with neoad-
juvant chemotherapeutic treatments, almost 83% of children with a diagnosis of cancer
become long-term survivors [36,37]. However, the use of new drugs has led to malignant
acquisition of MDR, which is currently the leading cause of treatment failure in pediatric
oncology [37]. Here, we aimed to address this problem and we present results that revealed
a previously unrecognized mode of synergistic interaction between anthracyclines and
thiosemicarbazones in model cell lines derived from pediatric solid tumors.

2. Results
2.1. SH-SY5Y Cells: The Only Tested Cell Line with High Pgp Expression

The first step in our study was to determine Pgp expression in untreated cell lines.
For correct evaluation, two cervical carcinoma cell lines were used: KB-V1 cells with typ-
ical high Pgp expression were used as positive controls and KB-3-1 cells with minimal
Pgp expression were used as negative controls. Analysis by qPCR revealed high ABCB1
(the gene encoding Pgp) expression only in the SH-SY5Y neuroblastoma cells (Figure 1A).
ABCB1 mRNA level in the SK-N-BE(2) neuroblastoma, Saos-2 osteosarcoma, and Daoy
medulloblastoma cells was lower than it was in the SH-SY5Y cells, whereas ABCB1 ex-
pression in the RD rhabdomyosarcoma cell line was comparable with that in the negative
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control cells (Figure 1A). The results obtained using immunoblotting proved that the Pgp
level was high only in the SH-SY5Y cells (Figure 1B, Supplementary Figure S1). Moreover,
to verify the obtained results, Pgp immunofluorescence staining was performed, and the
results confirmed that Pgp signals were high only in the positive control and SH-SY5Y cells
(Figure 2).

Figure 1. Measuring Pgp in the selected cell lines. KB-V1 cells were used as positive controls for
ABCB1 (gene encoding Pgp) expression, whereas KB-3-1 cells were used as negative controls. All
experiments were performed in biological triplicates. (A) The graph shows the mRNA expression
of ABCB1 (the gene encoding Pgp) in untreated cell lines. The data were obtained using RT-qPCR.
The levels of ABCB1 expression are presented as a log2-fold change based on mRNA expression
relative to that of the negative control (y = 0). GAPDH served as the reference control. The data were
analyzed by one sample t-test: * p < 0.05 indicates significant differences compared to the respective
control group. (B) Immunoblot analysis of the endogenous Pgp level in untreated cell lines. GAPDH
served as the loading control. The data are presented as the means ± SD and they were analyzed by
unpaired t-test with Welch’s correction: * p < 0.05 indicates significant differences compared to the
respective control group.

2.2. Thiosemicarbazones Acted Mainly Synergistically with Anthracyclines

The investigation continued with the quantification of the synergy between the
thiosemicarbazones (DpC and Dp44mT) and anthracyclines (DOX, DAU, and MIT) using
MTT assays with a subsequent analysis performed using Calcusyn software (Figure 3).
The hypothesis on the synergy between these compounds was based on previously pub-
lished findings [27,28] that described the synergistic effect of thiosemicarbazones and
anthracyclines in overcoming Pgp-mediated multidrug resistance.
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Figure 2. Pgp expression in the untreated cell lines. The expression of Pgp analyzed in the untreated
cell lines was visualized by indirect immunofluorescence using an anti-Pgp primary antibody and an
Alexa-488-conjugated secondary antibody (green signal). Nuclei were labeled by DAPI (blue signal).
KB-V1 cells served as positive controls for Pgp expression, whereas KB-3-1 cells served as negative
controls. The scale bars represent 50 µm.

First, the treatment was applied in the consecutive design treatment (Figure 3A).
IC50 dose of DpC and Dp44mT (for 24 h) was determined according to the micromolar
concentration (Table 1), whereas the IC50 dose of all the anthracyclines (used for 72 h)
varied according to the nanomolar concentrations (Table 1).

Table 1. IC50 values used for subsequent experiments.

Cell Line DOX [nM]
3D

DAU [nM]
3D

MIT [nM]
3D

DpC [nM]
3D

Dp44m [nM]
3D DpC [µM] 1D Dp44mT [µM] 1D

SH-SY5Y 29.7 ± 4.9 40.2 ± 13.9 20.1 ± 3.6 3.8 ± 0.3 1.9 ± 0.8 11.1 ± 2.2 30.1 ± 1.5

SK-N-BE(2) 40.8 ± 8.1 31.9 ± 8.7 27.0 ± 1.7 7.2 ± 1.2 4.2 ± 1.1 14.8 ± 2.3 31.1 ± 5.2

Saos-2 23.9 ± 2.8 20.8 ± 0.9 6.1 ± 0.6 4.4 ± 0.9 6.6 ± 0.9 20.0 ± 4.2 61.6 ± 14.9

Daoy 9.8 ± 2.0 17.6 ± 3.3 7.5 ± 0.2 17.0 ± 3.4 7.9 ± 1.9 3.9 ± 0.6 0.9 ± 0.1

RD 18.2 ± 3.8 15.7 ± 1.0 26.3 ± 4.4 13.8 ± 2.4 9.4 ± 0.8 11.5 ± 1.5 55.8 ± 7.7

3D indicates cultivation with the respective compound for 3 days (72 h), 1D indicates cultivation for 1 day (24 h).
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Figure 3. The three different combination treatment designs used in this study. (A) The de-
sign of consecutive treatment included the pretreatment of cells for 48 h with an anthracy-
cline/anthracenedione (either DOX, DAU, or MIT), and then either DpC or Dp44mT was added to
the cells undergoing anthracycline/anthracenedione treatment for a period of 24 h. (B) To examine
whether the mechanism of synergy was based on Pgp transport activity, Valspodar, a selective in-
hibitor of Pgp, was added to the design of consecutive treatment. (C) In the design of concomitant
treatment, both anthracycline/anthracenedione (either DOX, DAU, or MIT) and thiosemicarbazones
(either DpC or Dp44mT) were added in combination to the cells and proliferation was evaluated
after 72 h. (D) Structure of di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) and
di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT).

The computational analyses of synergy showed that the combination of a thiosemi-
carbazone and anthracycline acted synergistically in four cell lines: SH-SY5Y, SK-N-BE(2),
Daoy, and RD cells (Table 2). In the Saos-2 cell line, the analysis revealed moderate antago-
nism for each compound combination (Table 2).
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Table 2. Quantitative assessment of the interactions between drugs.

Cell Line Drug Combination

Treatment Design

Consecutive Consecutive +
Valspodar Concomitant

CI SD CI SD CI SD

SH-SY5Y

DOX
Dp44mT 0.739 0.064 0.795 0.062 0.779 0.079
DpC 0.793 0.127 0.492 0.068 0.684 0.062

DAU
Dp44mT 0.655 0.174 0.828 0.066 0.842 0.124
DpC 0.599 0.077 0.588 0.051 0.647 0.161

MIT
Dp44mT 0.507 0.099 0.758 0.121 0.921 0.091
DpC 0.527 0.081 0.898 0.054 0.620 0.222

SK-N-BE(2)

DOX
Dp44mT 0.722 0.053 0.567 0.117 0.712 0175
DpC 0.974 0.050 0.635 0.062 0.795 0,161

DAU
Dp44mT 0.562 0.118 0.534 0.117 0.732 0.202
DpC 0.640 0.140 0.409 0.074 0.638 0.154

MIT
Dp44mT 0.304 0.107 0.524 0.049 0.458 0.157
DpC 0.590 0.137 0.531 0.133 0.569 0.177

Saos-2

DOX
Dp44mT 1.105 0.102 0.710 0.125 0.657 0.051
DpC 1.205 0.066 0.596 0.057 0.831 0.101

DAU
Dp44mT 1.244 0.289 0.712 0.149 0.813 0.135
DpC 1.422 0.085 0.611 0.172 0.672 0.177

MIT
Dp44mT 1.108 0.182 0.610 0.056 0.828 0.112
DpC 1.439 0.255 0.723 0.160 0.527 0.108

Daoy

DOX
Dp44mT 0.720 0.210 0.591 0.078 1.055 0.081
DpC 0.578 0.138 0.611 0.015 0.637 0.113

DAU
Dp44mT 0.474 0.033 0.602 0.118 1.275 0.280
DpC 0.789 0.167 0.788 0.157 0.854 0.103

MIT
Dp44mT 0.663 0.277 0.564 0.137 0.501 0.238
DpC 0.439 0.029 0.746 0.035 0.700 0.175

RD

DOX
Dp44mT 0.807 0.126 0.472 0.108 0.648 0.043
DpC 0.770 0.008 0.830 0.057 0.712 0.312

DAU
Dp44mT 0.458 0.143 0.383 0.059 0.773 0.211
DpC 0.609 0.097 0.671 0.173 0.764 0.118

MIT
Dp44mT 0.501 0.099 0.366 0.031 0.493 0.108
DpC 0.641 0.081 0.541 0.134 0.638 0.127

Categories of Interactions
0.31–0.70 synergism 0.91–1.10 nearly additive
0.71–0.85 moderate synergism 1.11–1.20 slight antagonism
0.86–0.90 slight synergism 1.21–1.45 moderate

antagonism
Computational analysis of the interaction of doxorubicin (DOX), daunorubicin (DAU), or mitoxantrone (MIT)
with thiosemicarbazones (DpC or Dp44mT) was performed using Calcusyn software. The combination index (CI)
was calculated from the growth inhibition curves of the compounds alone or their combinations. A ratio of 1:1
was maintained between the drugs added in combination. The method of Chou and Talalay was employed to
define synergism, additive effects, or antagonism. The experiments were performed in biological triplicates.

In the next step, 200 nM Valspodar (VAL), a selective inhibitor of Pgp, was added to
the consecutive design treatment to verify whether the mechanism of synergy was based
on lysosomal sequestration of the compounds via Pgp (Figure 3B). We expected to observe
a change in the compound interactions because of a synergistic, an additive, or even an
antagonistic effect. The results did not confirm this expectation—synergistic effects were
observed even after Pgp inhibition (Table 2). Moreover, treatment with VAL changed the
moderate antagonistic effect of all compound groups in Saos-2 cells to a synergistic effect
(Table 2).

As an additional analysis of anthracycline sequestration into lysosomes, fluorescence
microscopy was performed. DOX is an autofluorescent compound, which allowed us to
observe its effect on cells 2 h after its addition to the culture medium. For this purpose, the
DOX concentration was increased to 10 µM. The lysosomes were visualized by indirect
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staining using an anti-LAMP-2 antibody. KB-V1 cells served as positive controls for the
expected lysosomal sequestration of DOX (Figure 4A, Supplementary Figure S2A), whereas
KB-3-1 cells served as negative controls (Figure 4B, Supplementary Figure S2B).

Figure 4. DOX localization in cells. All cell lines were treated with 10 µM doxorubicin (DOX).
The localization of DOX (red fluorescence) within cells after 2 h of treatment was observed using
fluorescence microscopy. Additionally, the target organelles, lysosomes, and nuclei were stained.
The lysosomes were visualized by indirect immunofluorescence using an anti-LAMP-2 primary
antibody and an Alexa-488-conjugated secondary antibody (green fluorescence). The nuclei were
labeled with DAPI (blue fluorescence). The KB-V1 cell line (A) served as a positive control for the
lysosomal sequestration of DOX (indicated by arrows: yellow fluorescence—overlap of green and red
fluorescence emissions). In contrast, the KB-3-1 cells served as a negative control (B). The analyses
were performed with all five selected cell lines: SH-SY5Y (C), SK-N-BE(2) (D), Saos-2 (E), Daoy (F),
and RD (G) cells. The scale bars represent 50 µm.
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In general, this analysis showed that DOX did not colocalize with LAMP-2 but was
primarily localized to the nucleus in all five tested cell types (Figure 4C–G, Supplementary
Figure S2C–G). Therefore, we rejected the hypothesis that lysosomal sequestration of
anthracyclines via Pgp played a major role in the synergistic effect of thiosemicarbazones
and anthracyclines in the tested cell types derived from pediatric solid tumors.

Because the initial hypothesis explaining the mechanism of synergy was rejected, we
changed the design to the concomitant treatment (Figure 3C), which allowed us to use
markedly lower concentrations of thiosemicarbazones necessary to achieve the same effects
as those achieved with micromolar concentrations in the consecutive design. The IC50 dose
(for 72 h) for both DpC and Dp44mT varied in the nanomolar range (Table 1). Moreover,
synergistic interactions between thiosemicarbazones and anthracyclines after concomitant
treatment were observed in all five tested cell types (Table 2). Overall, the obtained data
suggested that the concomitant design of treatment was more effective, enabling usage of
lower drug doses than the consecutive design of treatment. Given the serious side effects
associated with anthracycline therapy, approaches that would minimize concentrations of
anthracyclines while maintaining their anticancer activity are needed. Therefore, in the
subsequent analyses, we focused solely on the effects of the concomitant drug application
given its apparent potential to reduce nonselective toxicity of the drugs.

2.3. Thiosemicarbazones Downregulated CHEK1 Expression, Leading to Mitotic Catastrophe after
These Drugs Were Combined with Anthracyclines

As synergy between both thiosemicarbazones (DpC and Dp44mT) and all three an-
thracyclines (DOX, DAU, and MIT) was observed in all evaluated cell lines (SH-SY5Y,
SK-N-BE(2), Saos-2, Daoy, and RD cells) after both combined treatments (consecutive and
concomitant designs), the possible mechanism of synergistic interaction between these
compounds seemed to be universal. Therefore, we predominantly focused on the common
mechanisms of action of both types of compounds used.

The first of the main effects of anthracyclines is the production of double-strand breaks
(DSBs) in DNA molecules, which are associated with cell cycle arrest in the G2/M phase. To
confirm this effect in our tested cell lines, propidium iodide staining with subsequent flow
cytometry analysis was performed to identify the changes in the cell cycle after 3 days of
treatment with IC50 doses of DOX, DAU, and MIT. Cell cycle arrest in the G2/M phase was
detected in four of the tested cell lines: SK-N-BE(2), Saos-2, Daoy, and RD cells (Figure 5,
Supplementary Table S1). For the SH-SY5Y cells, only an increased proportion of cells in
the sub-G1 phase, which is associated with formation of apoptotic bodies, was detected
(Figure 5, Supplementary Table S1). Arrest in the G2/M phase would likely have been
observed in an earlier phase of treatment, i.e., after 24 or 48 h.

For apoptosis induction based on the production of DSBs in DNA, it is essential to
force cells with damaged DNA to bypass cell cycle arrest in the S/G2 phase and enter
mitosis, which can lead to mitotic catastrophe [38,39]. Therefore, we investigated the ability
of thiosemicarbazones, DOX, or their combinations to downregulate the expression of
checkpoint kinase 1 and 2 (CHEK1 and CHEK2) at IC50 doses after 3 days. Immunoblotting
revealed that both thiosemicarbazones effectively decreased CHEK1 levels in the SH-SY5Y,
Saos-2, and Daoy cell lines, and a slight decrease in CHEK1 levels was also observed in the
SK-N-BE(2) and RD cells (Figure 6A–E, Supplementary Figure S3A–E). DOX reduced the
levels of CHEK1 less effectively than the thiosemicarbazones in all of the tested cell lines,
and combined treatment caused a greater decrease in CHEK1 levels compared with single-
compound treatments only in the SH-SY5Y cells (Figure 6A, Supplementary Figure S3A).
In contrast, CHEK2 levels were almost completely abrogated in all the tested cell lines
after treatment with DOX (Figure 6A–E, Supplementary Figure S3A–E). DpC and Dp44mT
also decreased the CHEK2 levels in SH-SY5Y, SK-N-BE(2), Saos-2, and Daoy cells but
less effectively than DOX (Figure 6A–D, Supplementary Figure S3A–D). The combined
treatment did not achieve any enhanced effects considering the very strong inhibitory effect
of DOX (Figure 6A–E, Supplementary Figure S3A–E). Regarding the obtained results, we
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can assume that downregulation of both checkpoint kinases by combined treatment with
thiosemicarbazones and DOX can lead to the effective abrogation of the cell cycle checkpoint
and the subsequent induction of mitotic catastrophe in cancer cells with damaged DNA.

Figure 5. Analysis of the cell cycle using propidium iodide staining. Cell cycle analysis of selected
cell lines (SH-SY5Y, SK-N-BE(2), Saos-2, Daoy, and RD cells) was performed by quantification
of the DNA content with propidium iodide staining and subsequent flow cytometry detection.
Changes in the cell cycle were obtained after 72 h of treatment with IC50 doses of doxorubicin (DOX),
daunorubicin (DAU), or mitoxantrone (MIT). The graphs show the mean proportion of cells (%) in
the cell cycle phases: sub G1, G0/G1, S, and G2/M. The detailed table showing the means ± SD is
provided in Supplementary Table S1. All experiments were performed in biological triplicates.

2.4. Thiosemicarbazones Can Induce DSBs in DNA

In addition, the ability of thiosemicarbazones to produce DSBs in DNA (similar to
anthracyclines) was investigated as a possible mechanism contributing to combination treat-
ment synergy. The generation of DSBs after the selected treatment was verified by indirect
immunofluorescence staining of the phosphorylated γ-H2AX protein, which is considered
a biomarker of DSBs [40]. Staining was performed after 2 days of treatment with DpC,
Dp44mT, or DOX alone and with their combinations (DpC + DOX or Dp44mT + DOX).
The results obtained after 2 days showed that the IC50 doses of thiosemicarbazones caused
γ-H2AX activation in all tested cell lines (Figure 7A–E, Supplementary Figure S4A–E). In
general, the rate of DNA damage was apparently more intense after DOX treatment than
after thiosemicarbazone treatment (Figure 7A–E, Supplementary Figure S4A–E). Enhanced
DNA damage after administration of the DpC + DOX and Dp44mT + DOX combinations,
compared to that after each compound was administered alone, was observed only in the
Saos-2 cells (Figure 7C, Supplementary Figure S4C). Nevertheless, this method demon-
strated that even nanomolar concentrations of DpC and Dp44mT induce DSBs in DNA.
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Figure 6. Immunoblotting to determine CHEK1 and CHEK2 levels in selected cell lines. CHEK1
and CHEK2 expression was evaluated in the SH-SY5Y (A), SK-N-BE(2) (B), Saos-2 (C), Daoy (D),
and RD (E) cell lines after 3 days of incubation with IC50 doses of DOX, DpC, Dp44mT, or their
combinations. GAPDH served as the loading control. The experiments were performed in biological
triplicates. The obtained data were analyzed by unpaired Welch’s t-test followed by Games–Howell
post hoc test. * p < 0.05 indicates significant differences compared to the respective control group.
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Figure 7. Detection of double-strand breaks (DSBs) in DNA using immunofluorescence staining of
phosphorylated γ-H2AX protein. Detection of DSBs in SH-SY5Y (A), SK-N-BE(2) (B), Saos-2 (C),
Daoy (D), and RD (E) cells after 48 h of treatment with IC50 doses of DpC, Dp44mT, DOX, or their
combination was performed by fluorescence microscopy. Phosphorylated γ-H2AX protein (a DSB
marker) was visualized by indirect immunofluorescence using an anti-γ-H2AX primary antibody
and Alexa-488-conjugated secondary antibody (green fluorescence). The nuclei were labeled by DAPI
(blue fluorescence). The scale bars represent 50 µm.
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3. Discussion

The obtained results proved the synergism of the combined thiosemicarbazone and
anthracycline treatments in all chosen cell lines derived from pediatric solid tumors but
also demonstrated that overcoming drug resistance mediated by Pgp is not the main
mechanism of the observed synergism, as initially hypothesized. Accordingly, another
synergistic mechanism based on enhanced DNA damage and the inhibition of checkpoint
kinases was suggested.

Considering previous studies that demonstrated a positive correlation between Pgp expres-
sion and the synergistic action of thiosemicarbazones in combination with DOX [27,30,33,41],
we started the investigation with Pgp screening in the chosen cell lines derived from child-
hood tumors. High Pgp expression at the mRNA and protein levels was found only in the
SH-SY5Y cells. In the other cell lines, Pgp expression was very similar to that in the negative
control cells. Therefore, the synergy of anthracycline and thiosemicarbazone treatments
was expected only in SH-SY5Y cells.

To evaluate interactions between compound combinations, we first used a consecutive
design of treatment, which was reported as effective in the literature [27]. Contrary to the
predictions, synergistic action of thiosemicarbazones and anthracyclines in combination
was found for four of the five cell lines. Therefore, to verify the main role of Pgp in the
synergistic mechanism, VAL, a selective inhibitor of Pgp, was added to the consecutive
design of treatment. In this regimen for compound application, we expected to see a
change from synergistic action to an additive effect or even antagonism. Interestingly, the
synergy between the thiosemicarbazones and anthracyclines was found in all five cell lines.
Moreover, the analysis using fluorescence microscopy demonstrating primary localization
of DOX to the nucleus in all cell lines contributed to the definitive rejection of the initial
hypothesis stating that the main synergistic mechanism in chosen cell lines is based on
lysosomal sequestration of Pgp.

To explore the least toxic regimen of treatment, we decided to change the combined
treatment design from a consecutive to concomitant application of the drugs. With this
change, we were not only able to reduce the thiosemicarbazone IC50 doses from the
micromolar to nanomolar level, but were also able to observe synergistic action of the
compound treatments in all five cell lines. Therefore, it can be concluded that concomitant
application is the most convenient administration regimen for the combined treatment of
anthracyclines and thiosemicarbazones in the tested cell lines.

Since the suitable application of the selected compounds was determined, the next
objective was to describe the possible mechanism of the observed synergy. The mechanism
seemed to be universal because all the combinations of DpC or Dp44mT with DOX, DAU,
or MIT acted synergistically in four different cell types (neuroblastoma, medulloblastoma,
osteosarcoma, and rhabdomyosarcoma cells). Therefore, we focused on the common
features of thiosemicarbazone and anthracycline mechanisms of action.

The cytotoxic activity of anthracyclines is exerted through several mechanisms. In ad-
dition to their ability to intercalate between base pairs of DNA and induce ROS generation,
anthracyclines can inhibit TOP2 activity by covalently binding to the DNA–TOP2 com-
plex [5]. The potential lethality of stabilized DNA–TOP2 complexes is markedly increased
during DNA replication, when the replication fork attempts to traverse this structure
and convert transient single- or double-strand breaks into permanent double-stranded
fractures [42]. Stalled DNA replication activates ataxia telangiectasia, Rad3-related (ATR)
kinase, and, subsequently, CHEK1, which leads to cell cycle arrest mediated by cyclin
A-Cdk2 inhibition [43,44].

In addition, ROS generated by anthracyclines cause DSBs in DNA and activate ATM-
dependent pathways [45]. ATM kinase phosphorylates CHEK2, resulting in the inhibition
of cyclin E-Cdk2 complexes and subsequent cell cycle arrest [46].

There is evidence of cross-talk and functional redundancy between ATR-CHEK1 and
ATM-CHEK2 after anthracycline treatment. It was proven that DNA damage caused by
DOX elicits both check kinase pathways [47].
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The stabilization of the DNA–TOP2 complex, manifesting as DNA breaks, was ob-
served after treatment with Dp44mT in a breast cancer cell type [48]. According to the
observed expression of γH2A.X—a specific reporter of DSBs [49–51], our results indicate
that both DpC and Dp44mT caused DNA damage in the neuroblastoma, medulloblas-
toma, osteosarcoma, and rhabdomyosarcoma cell types. This analysis revealed that both
thiosemicarbazones can induce DSBs but with much less efficiency than DOX.

One promising strategy for enhancing the effect of anthracyclines is based on their
combined application with drugs targeting cell cycle checkpoints (CHEK1 and CHEK2).
In general, cell cycle arrest is a major mechanism of cellular resistance to drugs that cause
DNA damage [52,53]. Therefore, TOP2 inhibitors can be combined with drugs inhibiting
the checkpoint kinase pathways and administered to force cancer cells to bypass cell cycle
arrest and enter mitosis with DNA damage, which leads to mitotic catastrophe [38,39]. For
drug combinations with DOX, it was previously demonstrated that the double inhibition of
CHEK1 and CHEK2 did not achieve better efficacy than inhibition of CHEK1 alone. Thus,
only inhibition of CHEK1 abolishes DOX-induced cell cycle arrest followed by mitotic
catastrophe [54]. Our investigations proved that both DpC and Dp44mT can downregulate
CHEK1 in all tested cell lines derived from the most frequent pediatric solid tumors.

Regarding the obtained results, we can assume that the observed synergy between
the selected thiosemicarbazones and anthracyclines is based on the following mechanism.
Both types of compounds, thiosemicarbazones and anthracyclines, cause DNA damage
by inducing replication fork stalling and ROS production. Therefore, their combined
treatment leads to an increase in DSB induction. Moreover, thiosemicarbazones decrease
CHEK1 expression and, thus, help cells with damaged bypass arrest, increasing the rate of
cells undergoing mitotic catastrophe. Together, our results suggest a new mechanism of
synergism between thiosemicarbazones and anthracyclines that is effective in tumor cells
regardless of the Pgp expression.

4. Materials and Methods
4.1. Chemicals

The selected thiosemicarbazones Dp44mT (Cat. No. SML0186) and DpC (Cat. No.
SML0483), the DOX (Cat. No. D2975000), DAU (Cat. No. D0125000), and MIT (Cat. No.
M2305000), and Pgp inhibitor VAL (Cat. No. SML0572) were obtained from Sigma-Aldrich
(St. Louis, MO, USA). All chemicals were prepared as stock solutions in DMSO (Cat.
No. D8418, Sigma-Aldrich) and then diluted in cell culture medium to achieve a DMSO
concentration < 0.5% (v/v), which has been shown to have no effect on cell proliferation
relative to the control medium [55]. To prepare the stock solution, DpC, Dp44mT, MIT,
and VAL were dissolved to reach a concentration of 100 mM; similarly, the DOX and DAU
concentrations were each 10 mM.

4.2. Cell Culture

RD rhabdomyosarcoma cell line (Cat. No. 85111502), SH-SY5Y (Cat. No. 94030304),
and the SK-N-BE(2) (Cat. No. 95011815) neuroblastoma cell lines were purchased from the
European Collection of Authenticated Cell Cultures (Salisbury, UK). The Daoy medulloblas-
toma cell line (Cat. No. HTB-186) and Saos-2 osteosarcoma cell line (Cat. No. HTB-85)
were purchased from the American Type Culture Collection (Manassas, VA, USA). The
KB-3-1 and KB-V1 cervical carcinoma cell lines were gifts from Prof. Nóra Kucsma (Szakács
Gergely’s Laboratory, Budapest, Hungary). The selected cell lines were cultured in various
culture media, as shown in Table 3, and maintained under standard cell culture conditions:
37 ◦C in an atmosphere of 95% air and 5% CO2. All reagents for cell culture were purchased
from Biosera (Nuaille, France).
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Table 3. Composition of culture media used for culturing the selected cell lines.

Cell Line Type of Medium Glucose FCS Atb Glu NEAA

Daoy DMEM Low 10% + + +

KB-3-1 DMEM High 10% + + -

KB-V1 DMEM + VBL High 10% + + +

RD DMEM High 10% + + +

Saos-2 DMEM Low 10% + + -

SH-SY5Y DMEM:F12 (1:1) High 20% + + +

SK-N-BE(2) DMEM:F12 (1:1) High 20% + + +
DMEM—Dulbecco’s modified Eagle’s medium; low glucose—1000 mg/L; high glucose—4500 mg/L; HVBL—
vinblastine 1 µg/mL; FCS—fetal calf serum; Atb—streptomycin (100 µg/mL) and penicillin (100 IU/mL); Glu—
2 mM L-glutamine; NEAA—1% nonessential amino acids.

4.3. Treatment Protocol

MTT proliferation assays were used to determine the IC50 values for the anthracyclines
and thiosemicarbazones in the SH-SY5Y, SK-N-BE(2), Saos-2, Daoy, and RD cell lines. The
cells were seeded in 96-well plates at a density of 5 × 103 cells/well (SH-SY5Y, SK-N-BE(2),
Saos-2, and RD cells) or 2 × 103 cells/well (Daoy cells) in 100 µL of complete DMEM, and
then allowed to adhere overnight. Different seeding densities for the cell lines were chosen
to ensure that the cells remained in the log phase of growth during all 3 days of treatment.
The IC50 values for the individual compounds were calculated from the growth inhibition
curves obtained after treatment with increasing compound concentrations based on the
initial estimated IC50 values (1/8 -, 1/4 -, 1/2 -, 1-, 2-, 4-, and 8-fold of the estimated initial
IC50). The IC50 values for both anthracyclines and thiosemicarbazones were obtained after
3 days of treatment. For thiosemicarbazones only, the IC50 values were also obtained after
1 day of treatment.

To determine the combination index (CI) value, three different experimental designs
of compound application were chosen (Figure 3). The “consecutive design” (Figure 3A) in-
cluded the pretreatment of cells with an anthracycline (DOX, DAU, or MIT) only. After 48 h,
DpC or Dp44mT was added to the cells undergoing anthracycline treatment. Proliferation
was evaluated after 24 h using MTT assay. The second experimental design, labeled “+ Val-
spodar” (Figure 3B), was the same as the “consecutive design” with the addition of 200 nM
VAL along with the anthracycline in the first treatment step. In the “concomitant design”
(Figure 3C), both anthracyclines and thiosemicarbazones were added in combination to the
cells. Proliferation was evaluated using MTT assay after 72 h of culture. Growth inhibition
curves for compound combinations were constructed for increasing drug concentrations
based on previously determined IC50 values (1/8-, 1/4-, 1/2-, 1-, 2-, 4-, and 8-fold of the
previously determined IC50).

For direct observation of DOX administration in cells, the cells were seeded onto
coverslips in Petri dishes (35 mm in diameter) and allowed to grow to 80% confluence
at 37 ◦C. All the cell lines were then treated with 10 µM DOX and observed after 2 h of
incubation at 37 ◦C.

An indirect immunofluorescence assay was employed to reveal DSBs in DNA by
staining for phosphorylated histone γH2AX. The cells were seeded onto coverslips and
allowed to grow to 80% confluence as described above. The cell lines were then treated with
the respective IC50 doses of DOX, DpC, Dp44mT, or with their combinations (DOX + DpC
or DOX + Dp44mT) and incubated at 37 ◦C for 2 days.

To analyze the cell cycle using propidium iodide staining, all the tested cell lines were
seeded in Petri dishes (90 mm in diameter) at a density of 1 × 105/dish. The cells were
then treated with the respective IC50 doses of DOX, DAU, and MIT and incubated at 37 ◦C
for 3 days.
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Immunoblotting was performed to determine the levels of CHEK1 and CHEK2. The
cells were seeded in the same manner as in the cell cycle analysis described above. The
cells were then treated with the respective IC50 doses of DOX, DpC, Dp44mT, or with their
combinations DOX + DpC or DOX + Dp44mT and incubated at 37 ◦C for 3 days.

4.4. Cell Proliferation

A colorimetric MTT assay was performed to evaluate the cell proliferation rate as
previously described [56]. Briefly, the treated cells were incubated with MTT (0.5 mg/mL;
Sigma-Aldrich) at 37 ◦C for 3 h. The formed formazan crystals were dissolved in 200 µL of
DMSO. The absorbance was read at 570 nm with a reference absorbance of 620 nm using a
Sunrise Absorbance Reader (Tecan, Männedorf, Switzerland).

4.5. Calculation of the CI

The CI values for the compound combinations were calculated to quantitatively
compare the dose–effect relationship of each compound individually and in combination
to determine whether a selected combination acts synergistically. CI values were obtained
from growth inhibition curves using the constant ratio of the compounds in combination
(1:1) as previously described [57]. The CI values were calculated using CalcuSyn software
(version 2.0, Biosoft, Cambridge, UK). The Chou Talalay method was adopted to identify
antagonism (CI > 1.1), additive effects (CI = 0.9–1.1), or synergism (CI < 0.9) [58].

4.6. RT-qPCR

The relative expression of selected genes was determined using RT-qPCR. Total RNA
was isolated using a GenElute Mammalian Total RNA Miniprep Kit (Sigma-Aldrich) and
reverse transcribed into cDNA as described previously [56]. qPCR was performed in a
10-µL volume using a Kapa Biosystems Quantitative Real-Time PCR kit (Kapa Biosystems,
Wilmington, MA, USA) and analyzed using a 7500 Fast Real-Time PCR System and 7500
Software v. 2.0.6 (both obtained from Life Technologies, Carlsbad, CA, USA). To detect
differences in the transcript levels among the cell types or after the treatment, Cq values
normalized to the endogenous reference control (the GAPDH gene) were compared. The
primer sequences used for the ABCB1 and GAPDH genes are provided in Table 4.

Table 4. Sequences of the primers used for RT-qPCR.

Gene Primer Sequence Product Length (bp)

ABCB1 F: 5′-CTTTAGTGGAAAGACCACAGATGA-3′

R: 5′-CTTTAGTGGAAAGACCACAGATGA-3′ 228

GAPDH F: 5′-AGC CAC ATC GCT CAG ACA CC-3′

R: 5′-GTA CTC AGC GCC AGC ATC G-3′ 302

F—forward; R—reverse.

4.7. Immunoblotting

Protein extracts were obtained using LB1 lysis buffer (50 mM HEPES-KOH, pH 7.5;
140 mM NaCl; 1 mM EDTA; 10% glycerol; 0.5% NP-40; and 0.25% Triton X-100). Total
proteins (25 µg/well) were loaded onto 8% (for Pgp analysis) or 10% (for CHEK1 and
CHEK2 analysis) polyacrylamide gels and electrophoresed. The separated proteins were
then blotted onto PVDF membranes (Bio-Rad Laboratories, Munich, Germany). The
membranes were blocked with 5% nonfat dry milk in PBS with 0.1% Tween-20 at RT for 1 h.
Subsequently, the blocked membranes were incubated overnight with primary monoclonal
antibodies. The following day, the membranes were washed in TBS-Tween and incubated
with secondary antibodies at RT for 1 h. The primary and secondary antibodies are listed
in Table 5. ECL-Plus detection was performed according to the manufacturer’s instructions
(GE Healthcare, Little Chalfont, UK). The obtained protein bands were analyzed using
ImageJ software (NIH, MD, USA).
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Table 5. Primary and secondary antibodies used for immunoblotting.

Primary antibodies

Antigen Type/Host Clone Catalog No. Manufacturer Dilution

GAPDH Mono/Rb 14C10 2118S CST 1:10,000
CHEK1 Mono/Mo 2G1D5 2360S CST 1:1000
CHEK2 Mono/Rb D9C6 6334S CST 1:1000

Pgp Mono/Mo F4 P7965 Sigma-Aldrich 1:5000

Secondary antibodies

Host Specificity Conjugate Catalog No. Manufacturer Dilution

Goat Anti-Rb IgG HRP 7074 CST 1:5000
Horse Anti-Mo IgG HRP 7076 CST 1:5000

Mono—monoclonal; Rb—rabbit; Mo—mouse; CST—Cell Signaling Technology Inc.; Bioss—Bioss Antibodies, Inc.

4.8. Indirect Immunofluorescence

Indirect fluorescence analysis was performed as described previously [59]. The cells
on coverslips were fixed with 3% paraformaldehyde (Sigma-Aldrich) at RT for 20 min.
The samples were then permeabilized with 0.2% Triton X-100 (Sigma-Aldrich) in PBS
at RT for 1 min. For the DOX and LAMP-2 colocalization analysis, 0.2% Triton was
replaced with 100 µM digitonin (Sigma-Aldrich), and the cells were permeabilized at RT
for 10 min. The primary and secondary antibodies used for indirect fluorescence staining
are listed in Table 6. Coverslips used as negative controls were prepared by omitting the
primary antibody. The cell nuclei were counterstained with 0.05% Hoechst 33342 (Life
Technologies, Carlsbad, CA, USA). The coverslips with stained cells were mounted using
ProLong Diamond Antifade Mountant (Thermo Fisher Scientific, Waltham, MA, USA).
For fluorescence evaluation, an Olympus BX-51 microscope was used; the micrographs
were captured using an Olympus DP72 CCD camera and analyzed using a CellˆP imaging
system (Olympus, Tokyo, Japan).

Table 6. Primary and secondary antibodies used for indirect immunofluorescence staining.

Primary antibodies

Antigen Type/Host Clone Catalog No. Manufacturer Dilution

Pgp Mono/Mo F4 P7965 Sigma-Aldrich 1:100
LAMP-2 Mono/Mo H4B4 ab25631 Abcam 1:100

Phospho-γH2A.X Mono/Mo 3F2 MA1-2022 Invitrogen 1:100

Secondary antibodies

Host Specificity Conjugate Catalog No. Manufacturer Dilution

Donkey Anti-Mo IgG AF-488 A21202 Invitrogen 1:200

Mono—monoclonal; Mo—mouse.

4.9. Cell Cycle Analysis Using Propidium Iodide Staining

The treated cells were harvested from Petri dishes using Accutase (Biosera, Nuaille,
France) and fixed in cold 70% ethanol (Sigma-Aldrich) at 4 ◦C for 30 min. The fixed
cells were washed with PBS, and the pellets were carefully resuspended in 100 µL of
Vindelov’s staining solution (1 M Tris pH 8 (Sigma-Aldrich); 10 mM NaCl (Sigma-Aldrich);
5 µM ribonuclease A (Sigma-Aldrich); and 75 µM PI) [60]. After 30 min of incubation in
Vindelov’s solution at 37 ◦C, the stained cells were analyzed in a FACSCanto TMII flow
cytometer using BD FACS DIVA Software (Beckton Dickinson, CA, USA). The fluorescence
of 10,000 cells in each sample was evaluated.
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4.10. Statistical Analyses

All experiments were performed in biological triplicates (unless otherwise specified).
Numerical data are presented as the means ± standard deviation (SD). The data obtained
by qPCR or immunoblotting were analyzed using SPSS Statistics software (version 25.0,
IBM, New York, NY, USA) by unpaired Welch’s t-test followed by the Games–Howell
post hoc test. * p < 0.05 indicates significant differences compared with the respective
control group.
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