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Abstract

Background: Hand, foot, and mouth disease (HFMD) has been recognized as one of the leading infectious diseases
among children in China, which causes hundreds of annual deaths since 2008. In China, the reports of monthly HFMD
cases usually have a delay of 1–2 months due to the time needed for collecting and processing clinical information.
This time lag is far from optimal for policymakers making decisions. To alleviate this information gap, this study uses a
meta learning framework and combines publicly Internet-based information (Baidu search queries) for real-time
estimation of HFMD cases.

Methods: We incorporate Baidu index into modeling to nowcast the monthly HFMD incidences in Guangxi,
Zhejiang, Henan provinces and the whole China. We develop a meta learning framework to select appropriate
predictive model based on the statistical and time series meta features. Our proposed approach is assessed for the
HFMD cases within the time period from July 2015 to June 2016 using multiple evaluation metrics including root
mean squared error (RMSE) and correlation coefficient (Corr).

Results: For the four areas: whole China, Guangxi, Zhejiang, and Henan, our approach is superior to the best
competing models, reducing the RMSE by 37, 20, 20, and 30% respectively. Compared with all the alternative
predictive methods, our estimates show the strongest correlation with the observations.

Conclusions: In this study, the proposed meta learning method significantly improves the HFMD prediction
accuracy, demonstrating that: (1) the Internet-based information offers the possibility for effective HFMD nowcasts;
(2) the meta learning approach is capable of adapting to a wide variety of data, and enables selecting appropriate
method for improving the nowcasting accuracy.
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Background
Hand, foot and mouth disease (HFMD), usually caused
by enterovirus 71 (EV71) and coxsackievirus A16 (Cox
a16), is a type of infectious disease that occurs most com-
monly among children under 5 years old [1–4]. The typical
symptoms of HFMD patients include fever, skin erup-
tions on hands and feet, and vesicles in the mouth. HFMD
can cause mild to severe illness. Some patients, especially
those infected by EV71, would rapidly deteriorate
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with life-threatening neurological and systemic com-
plications, including neurological, cardiovascular and
respiratory problems. Several large outbreaks of HFMD
have been witnessed in Asia-Pacific region in recent
decades, such as the 1997 pandemic in Malaysia, 1998
pandemic in Taiwan, 2000 pandemic in Japan, 2008 pan-
demic in Singapore, Vietnam, Mongolia and Brunei, 2008
to 2012 pandemics in China, 2011 pandemic in Japan,
2012 pandemic in Cambodia and 2015 pandemic in Syria
[5–11], posing a heavy burden to public health and socioe-
conomic system in the affected areas [12]. HFMD has
been recognized as one of the leading infectious dis-
eases among children in China, which causes hundreds
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of annual deaths since 2008 [4, 13]. Real-time epidemi-
ological surveillance and early warning of HFMD could
enable the timely interventions to prevent and control
HFMD outbreaks, thus effectively minimizing morbidity,
mortality, and reducing the cost of public health system.
China has built its surveillance system to report the

monthly HFMD cases andmortality, but the report always
has a 1–2 months delay which could be a major chal-
lenge for policymakers to accurately estimate epidemics
in an efficient real-time manner. Therefore, an effective
system that enables forecasting current HFMD (i.e. now-
casting) is in urgent need. An up-to-date detection of
acute disease outbreak means more days gained, more
lives and more resources saved. In the previous stud-
ies, various time series models have been employed for
HFMD prediction based on historical reports, including
autoregressive integrated moving average (ARIMA) and
season ARIMA (SARIMA) [14–18]. However, ARIMA
based models have a disadvantage in common that they
are essentially ’backward-looking’, which results in poor
prediction at turning points unless the turning point rep-
resents a return to a long-run equilibrium [19]. Several
studies discovered the correlation between the trend of
HFMD and some external variables, where the prediction
models are constructed by incorporating external vari-
ables such as meteorological data and calendar variables
[20–27]. However, one limitation of those models is that
they can only be used in a relatively small area, such as
a town, and may not be applicable in larger areas due
to geographical variety of those external variables among
sub-areas. Thus, how to predict HFMD epidemics effec-
tively in larger scales, such as in a province or entire China,
remains an open question for researchers.
With the arrival of big data era, we are encounter-

ing large streaming data in our lives more frequently
than ever before. The availability of big data from
multiple sources provides new opportunities and tools
for evident-supported decision making, such as infec-
tious diseases prediction. In 2008, Google developed an
influenza surveillance web-service, namely GFT (Google
Flu Trends) [28], which used the Google search query as
external variables to predict weekly influenza-likeliness
(ILI) rate. The success of GFT motivated several studies
aiming to assess current flu activity based on secondary
data such as Internet search queries and electronic health
records [29–35]. Several studies have been conducted on
HFMD prediction using Baidu search queries [36–38].
In these research works, Baidu search queries are incor-
porated into forecasting methods, and the HFMD pre-
diction is either at provincial or national level. In fact,
both data-driven and knowledge-driven forecastingmeth-
ods usually work well in specific conditions, which is due
to the inherent diversities among data sets. The forecast-
ing accuracy can be completely varied when there exists

some difference in data structure, data size, time scale, etc.
[39, 40]. Therefore, how to develop a robust method or
framework with effective model selection for epidemics
prediction is a major concern for many applications of
public health surveillance.
Our contribution in this paper is two folds: (1) We com-

prehensively investigate the predictive utility of search
queries from Baidu, a dominating search engine in China,
for predicting the number of HFMD cases in China, and
(2) We develop a novel meta learning (ML) framework
that incorporates Internet big data and various parametric
predictive models for improving the nowcasting accu-
racy of HFMD. We evaluate the prediction performance
of our estimates in terms of root mean squared error
(RMSE) and correlation coefficients (Corr). The results
show that: the prediction performance of the predic-
tive models and methods can be significantly improved
by utilizing Internet-based search data; the developed
meta learning approach can automatically select befitting
model based on the historical information, and is more
efficient than using single model in terms of prediction
power.

Methods
Data source and process
In this study, we focus on the problem of nowcasting
monthly HFMD cases in areas with geographical variety
including Guangxi province, Zhejiang province, Henan
province, and China. The reason that we choose these
provinces is that most HFMD cases occur in central
and southern China [13]. The surveillance data in China,
Guangxi, and Zhejiang cover four years from July 2012
to June 2016, and the data in Henan are from January
2013 to June 2016. We collect the monthly reported clin-
ical cases of HFMD from Chinese Centers for Disease
Control and Prevention (CDC) and CDCs in the specific
provinces accordingly. In medical informatics, an HFMD
case is defined as having clinical confirmation of popular
vesicular rashes on hands, feet, mouth or buttocks, with
or without fever [4].
Baidu is the most prevailing Web search engine in

China with over 80 percent of market share [41]. Among
the various online services provided by Baidu, Baidu
Index (https://index.baidu.com) is an online search tool
that allows users to view how frequent the specific key-
words, subjects and phrases have been queried over a
time period. In this study, we use the HFMD related
search frequency of keywords obtained from Baidu Index
as external variables to predict HFMD epidemics. We
select search terms or keywords which are closely corre-
lated with HFMD epidemics from a keyword tool ’Chinaz’
(http://tool.chinaz.com) [12]. The keywords are obtained
through calculating their pairwise correlation with HFMD
time series data, using semantic correlation analysis on the

https://index.baidu.com
http://tool.chinaz.com
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relevant queries in Baidu from any available portal web-
sites, blogs, and online reports. Finally, 46 top keywords
are selected as the most correlated to the China HFMD
cases (the selected Chinese keywords are displayed in the
Additional file 1: Table S1). We collect daily search query
of these keywords via Baidu Index, and then aggregate the
data to a monthly basis for consistency. Figure 1 illustrates
the HFMD associated queries, where the monthly HMFD
cases in China and search frequency of Chinese keyword
‘hand-foot-mouth’ are plotted for comparison. As can be
seen in Fig. 1, the two time series are highly correlated.

Study design
In our case, the response variable is the monthly HFMD
incidences and the covariates are the Baidu index of the
selected search keywords. The correlation coefficients
are calculated, and only those search terms whose cor-
relation coefficients are higher than 0.5 are used in the
subsequent predictive models. The keywords used thus
might be different for predicting the HFMD cases in each
month. Our proposed approach also employs autoregres-
sive terms because of the intrinsic time series structure in
HFMD observations. Let yi denote the number of HFMD
cases in month i, we calculate the correlation coefficients
between the HFMD observations at lag 0 (yi) and observa-
tions at lag 1, 2, 3, 4, 5, and 6 (yi−1, . . . , yi−6), respectively.
As can be seen in Table 1, the HFMD cases at lag 1 is sig-
nificantly associated with the current HFMD incidence in
terms of correlation coefficients. The autoregressive term
yi−1 together with the Baidu index of search keywords
comprise the covariates in our proposed approach.
It is observed that the number of covariates exceeds the

number of cases in our data sets, least squares estimation
may be ill-posed when using linear regression [42]. Three
methods, including principal component analysis (PCA),
least absolute shrinkage and selection operator (LASSO),

and ridge regression (RR), are employed in our model to
tackle this problem. In addition, we use autoregressive
integrated moving average (ARIMA) to predict the inci-
dence of HFMD in four regions, because of the underlying
time series structure of HFMD observations.
Since the relationship between HFMD cases and Baidu

index is intrinsically dynamic we adopt an adaptive form
of out-of-sample forecasting in this study [43]. For PCA,
LASSO, RR, and ARIMA, we use a 24 months window
(i.e. two full years) to train statistical models and then the
upcoming months to perform out-of-sample prediction
validation. As the available data is limited, the selected
24 months window length can also capture the yearly
trend as well as seasonal pattern. The model parameters
are recomputed before predicting each point by using the
training data from the previous 24 months.

Evaluation metrics
Three metrics are employed to measure the prediction
accuracy: root mean square error (RMSE), mean absolute
percent error (MAPE) and correlation coefficient (Corr).
For a series of predicted values Ŷ = (ŷ1, ŷ2, . . . , ŷn) and
their corresponding real values Y = (y1, y2, . . . , yn), these
metrics are

RMSE =
√∑n

i=1
(
ŷi − yi

)2
n

,

MAPE =
∑n

i=1

(∣∣∣ ŷi−yi
yi

∣∣∣)
n

Corr =
cov

(
Ŷ ,Y

)
σŶσY

.

Smaller RMSE and MAPE indicates the better predic-
tion performance, while the higher the correlation the
better.

Fig. 1Monthly HFMD cases in China and search frequency of ‘hand-foot-mouth’. Blue: the variation trend of monthly HFMD incidences in China;
Orange: Baidu search volume of ‘hand-footmouth’
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Table 1 Correlation coefficients of HFMD cases at lag 0 with
cases at lag 1, 2, 3, 4, 5, and 6

Region Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6

China 0.744 0.236 -0.194 -0.398 -0.387 -0.368

Guangxi 0.667 0.089 -0.241 -0.281 -0.206 -0.125

Henan 0.714 0.198 -0.152 -0.298 -0.324 -0.33

Zhejiang 0.675 0.197 -0.106 -0.211 -0.083 -0.039

Statistical methods
Ameta learning approach for HFMD nowcasting
As discussed earlier, one major challenge of health fore-
casting is that there is no single algorithm performs best
for all health conditions. Although four individual mod-
els are examined in this study, there is no guarantee that
one of them can always outperform the others. To achieve
more accurate forecasting result, an important question
is how to choose the best model for each time point in
each location. Meta-learning approach, in this scenario,
is a potential approach to automatically acquire empirical
knowledge for supporting non-expert users in algorithm
selection task [44]. Meta-learning has proven to be effec-
tive inmany forecasting applications [45–48], but its effec-
tiveness in forecasting infectious diseases has been rarely
investigated.
Meta-learning is defined as an automatic process of gen-

erating knowledge associating the performance of algo-
rithms to the characteristics of problem [49]. The meta
learner can simply be a single machine learning algorithm
[50]. In this case, we employ support vector machine
(SVM) as the meta learner to build the recommendation
system in meta learning. SVM is a specific class of algo-
rithms, characterized by the usage of kernels, absence of
local minima, sparseness of the solution and number of
support vectors, etc [51]. SVM can be applied for both
classification and regression purpose. In SVM classifica-
tion, the goal is to find a maximal margin hyper-plane that
separates data points from different classes as wide as pos-
sible in feature space. Besides linear classification, SVMs
also works efficiently in cases of nonlinear separation via
kernel transformation, which can automatically map their
inputs into the transformed feature spaces.
Figure 2 shows the overall procedure of our meta

learning framework. We take the HFMD forecast-
ing in China as an example to illustrate the frame-
work. Let Y = (y1 . . . y48)� represent the outputs, where
yi(i= 1, . . . , 48) denotes the monthly HFMD incidences in
China from July 2012 to June 2016. Let X = (x1 . . . x48)�
represent the covariates set, where xi = (1, yi−1, bi)
denotes the ith input, and bi = (bi1, . . . , bik) denotes the
Baidu index (search frequency) of k (k = 46) search key-
words related to HFMD activity in the ith month. The
procedure of meta learning method mainly consists of the
following steps:

Step 1: The dataset is divided into training set T (0)

and testing set T (1). For training set T (0), t(0)j = (
yj, xj

)
(j = 1, . . . , 26) is the jth point of training set, where xj =(
yj−1, bj

)
. For testing setT (1), t(1)s = (ys, xs) (s = 1, . . . , 22)

is the sth point of testing set, where xs = (ys−1, bs).
Step 2: A set of predictive method candidates{
f (1), . . . , f (L)

}
for fitting the relationship between Y and

X is constructed. For each method, we have the fitted
model yi = f (l)

(
xi; θ (l)

)
, where f (l) ∈ {

f (1), . . . , f (L)
}
and

θ (l) is the parameter set of this method. For each data
point in testing set, all the predictive methods are applied
for HFMD prediction and an adaptive approach (models
are dynamically trained with a 2-year time window) is
adopted.
Step 3: The MAPE of each predictive method at the

first n − 1 testing data points is calculated, and the opti-
mal method is selected by minimizing MAPE value, i.e.
l∗s = arg min

l∈{1,...,L}
MAPEs = arg min

l∈{1,...,L}

∣∣∣ŷ(l)
s − y(l)

s

∣∣∣ /y(l)
s ;

Step 4: For each case in the first n−1 testing data points,
11 statistical, time series and physical features charac-
terizing its training set are extracted based on previous
study [46–48, 50]. Let F s = (

F1
s , . . . , Fm

s
)
denote the set

of features. The description of the features is shown in
Table 2.
Step 5: SVM is employed as the meta leaner to train the

data set
(
l∗s ,F s

)
(s = 1, . . . , n−1), where l∗s is the response

variable, which is the optimal method index for the sth
point, and the 11 features F s extracted from the corre-
sponding training set are the covariates. Leave-One-Out
Cross Validation is applied for model parameter tuning.
The fitted model will be sent to the recommendation
system for selecting optimal method on a given data set.
Step 6: To predict new HFMD cases in the nth month,

the 11 features associated with its training set will be input
to the recommendation system, then the meta learner will
return an appropriate method for forecasting HFMD inci-
dences in the nth month. The new HFMD cases will be
predicted via the recommended model.

Linear regression (LR) with principle component analysis
(PCA)
Linear regression (LR) was the first type of regression
method with complete theoretical system, and to be
applied widely in practical applications. In this study, the
linear regression model is formulated as:

yi = α + β0yi−1 +
46∑
k=1

βkbik + εi, εi
iid∼ N

(
0, σ 2)

Letting β̂ =
(
β̂0 . . . β̂46

)
, where bi are the exogenous

variables.
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Fig. 2Meta learning framework

However, as mentioned earlier, LR might be ill-posed
when the number of covariates exceeds the number of
cases due to the limitation of least squares estimation. To
tackle this problem, we introduce Principal Component
Analysis (PCA) to reduce the dimensionality of covari-
ates. PCA works by first computing linear combinations
of variables that contribute to variation in the sample, and
then ranking the combinations of variables according to
the amount of variations they account for. The most con-
tributed combinations of variables are then used as the
new covariates for regression. More details of application
of PCA can be referred to [52–56]. In this study, we apply
PCA on the observed Baidu index matrix of training set
to obtain the principal components, and select a subset

Table 2 Meta features description

Feature Explanation

Min Minimum of the HFMD cases over the time
period.

Max Maximum of the HFMD cases over the time
period.

Mean Mean of the HFMD cases over the time period.

SD Standard deviation of the HFMD cases over the
time period.

SKEW Skewness of the HFMD cases over the time
period.

KURT Kurtosis of the HFMD cases over the time period.

Q1 First quartile of the HFMD cases over the time
period.

Q2 Second quartile of the HFMD cases over the time
period.

Q3 Third quartile of the HFMD cases over the time
period.

Month Calendar month of the forecast point.

Ratio of turning points Percentage of turning points in the series.

of the top principal components that explain at least 95%
variance.

Least absolute shrinkage and selection operator (LASSO)
LASSO, which is referred to as L1 regularization method,
is able to achieve both covariates selection and regression.
It works by setting a constraint on the sum of the absolute
value of the regression coefficients, forcing certain coef-
ficients to be zeros. In this way, LASSO enables efficient
selection of a simpler model without the insignificant fea-
tures, which could enhance predication accuracy. More
technical details of LASSO and its some generalizations
and variants can be found in [57, 58]. In this study, the
LASSO estimate (α̂, β̂)lasso can be obtained by solving

(
α̂, β̂

)
lasso

= argmin
∑
i

⎛
⎝yi − α − β0yi−1 −

46∑
j=1

βkbik

⎞
⎠

2

subject to
46∑
k=0

|βk| ≤ g,

where g ≥ 0 is a tuning parameter.

Ridge regression (RR)
Ridge regression, which is referred to as L2 regulariza-
tion method, is also applied for HFMD nowcasting in this
study. Ridge regression conducts the least squares estima-
tion by adding a small constant value λ to the diagonal
entries of the matrix XTX before taking its inverse. The
ridge regression estimate

(
α̂, β̂

)
ridge

can be obtained by
solving

(
α̂, β̂

)
ridge

= argmin
∑
i

⎛
⎝yi − α − β0yi−1 −

46∑
j=1

βkbik

⎞
⎠
2

+ λ

n∑
k=0

β2
k
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The analytical solution of the ridge regression estimator is
given by (

α̂, β̂
)
ridge

=
(
XTX + λI

)−1
XTy,

where I is an identity matrix.
Different from LASSO, ridge regression is more com-

monly used to deal with the collinearity among variables.
More details of ridge regression and its applications can
be found in [59–61].

Autoregressive integratedmoving average (ARIMA)
Besides regression-based approaches, we also consider
autoregressive integrated moving average ARIMA(p, d, q)
model, where p is the number of autoregressive (AR)
terms, q is the order of the non-seasonal moving aver-
age (MA) lags, and d is the number of non-seasonal
differences [62–64]. ARIMA model can be formulated as:

yt = ϑ0 +
p∑

i=1
ϕiyt−i +

q∑
j=1

ϑjε
arima
t−j + εarima

t+h ,

where yt is the number of HFMD cases at time t and
εarima
t is white noise random error; ϕi (i= 1, 2, . . . , p)
and ϑj (j= 0, 1, 2, . . . , q) are parameters to be esti-
mated via least squares or maximum likelihood esti-
mation. The parameters p, q, and d are selected from
a search over all the possible model candidates by
minimizing the corrected Akaike Information Criterion
(AIC) [65].
Time series models can provide satisfactory forecasting

performance when the time series data have clear trend
and seasonality. However, the strong assumption of the

statistical properties of time series data might limit the
reliability of forecast performance.
All of the experiments are implemented in R v3.4.1(64

bit) platform using the “MASS”, “penalized”, “hydroGOF”,
“forecast”, “glmnet”, “moments”, “e1071”, and “kernalb”
packages [66].

Results
We evaluate and compare the forecasting performance of
each method. For the time period from July 2015 to June
2016, the meta learning approach reduces the RMSE of
the compared method which has the minimum RMSE by
37%, 20%, 20%, and 30% for the four regions, i.e. China,
Guangxi, Zhejiang, and Henan, respectively. Comparing
the correlation between the nowcasting results and obser-
vations, the prediction of the meta learning approach
has the maximum correlation coefficient with the ground
truth.
Figures 3 and 4 show the RMSE and correlation coef-

ficient of the compared predictive methods in different
regions, respectively. As can be seen from the figures, the
result verifies the fact that no single model outperforms
other models in the four regions. PCA shows inconsistent
forecasting performance as it performsworst in China and
is comparable with RR and LASSO in the three provinces.
The two regularization methods, i.e. LASSO and RR, are
competitive in most of the cases except in Henan, where
PCA outperforms LASSO. ARIMA does not perform well
in all the four regions compared with the models with
Baidu index, especially in the three provinces where it
is always the worst among the four individual models,
validating the predictive utility of Baidu search queries.

Fig. 3 Evaluation metric: RMSE. Dark blue: the RMSE of PCA; Red: the RMSE of LASSO; Green: the RMSE of RR; Purple: the RMSE of ARIMA; Light blue:
the RMSE of ML
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Fig. 4 Evaluation metric: correlation coefficient. Dark blue: the correlation coefficient of PCA; Red: the correlation coefficient of LASSO; Green: the
correlation coefficient of RR; Purple: the correlation coefficient of ARIMA; Light blue: the correlation coefficient of ML

Comparing the proposed meta learning approach with
each individual model, it performs best in China, Guangxi,
and Zhejiang, while it is as good as RR in Henan, indi-
cating the effectiveness of meta learning in selecting the
befitting models.

The comparison of the prediction results over the
entire forecasting period of all the methods is displayed in
Fig. 5 (The numerical results can be found in Additional
file 2: Table S2). Clearly, ARIMA model shows delayed
(or “off”) prediction performances in all the regions, as

Fig. 5 Forecasting results. Black: the true value; Orangered: the nowcasting results of ARIMA; Gray: the nowcasting results of PCA; Orange: the
nowcasting results of RR; Dark blue: the nowcasting results of LASSO; Green: the nowcasting results of Meta learning
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ARIMA only relies on the historical time series data and
it is not able to capture the irregular turning point which
contributes to the delayed prediction of those points.
PCA, LASSO, and RR can capture the seasonal pattern
of HFMD epidemics more accurately, but PCA greatly
overestimates the HFMD cases at some time points. At
most of the forecasting points, meta learning can match
the best or one of the best two models, and there is few
significant overestimation or underestimation throughout
the forecasting period.
Furthermore, in order to further demonstrate the pre-

dictive utility of models incorporating Baidu search
queries, we compare regression based models with and
without Baidu index data. Formodels without Baidu index
data, the three models including PCA+LR, LASSO, and
RR degrade into classical linear regression (LR), as only
the HFMD cases at lag 1 (yt−1) is left as covariate. Tables 3
and 4 show the RMSE and Corr of the four compared fore-
casting models (LR, PCA+LR, LASSO, RR) in different
regions. As can be seen from the results, PCA.LR, LASSO
and RR (models with Baidu data) shows better predic-
tive performance than LR (model without Baidu data),
indicating the utility of Baidu search queries.

Discussion
In this paper, we evaluated the predictive utility of Baidu
search data in nowcasting HFMD cases in China. The
conventional linear regression is not appropriate for this
problem due to the relatively large number of covari-
ates in the model. Therefore, we employ four parametric
models, including PCA, RR, LASSO, andARIMA, to now-
cast monthly HFMD cases in China, Guangxi province,
Zhejiang province, and Henan province.
The result suggests that the time series model, ARIMA,

underperforms due to its delayed prediction performance.
PCA, LASSO, and RR have the competitive performances
in most of the regions and produce more accurate predic-
tion than ARIMA. Among the compared methods, PCA
overestimates or underestimates the HFMD epidemics
at some forecasting points, and performs slightly worse
than LASSO and RR. The performance of LASSO and RR
are similar.
In general, PCA, LASSO, and RR can be feasible sin-

gle model to nowcast HFMD cases in province or country
scales by using Baidu search data when there are limited

Table 3 RMSE of different forecasting methods

Model without Baidu data Model with Baidu data

Region LR PCA.LR LASSO RR

China 150860 108510 57573 54326

Guangxi 13062 11453 10123 10778

Zhejiang 7682 4210 3445 4214

Henan 7028 3210 4561 2165

Table 4 Corr of different forecasting methods

Model without Baidu data Model with Baidu data

Region LR PCA.LR LASSO RR

China 0.74 0.92 0.95 0.97

Guangxi 0.65 0.91 0.88 0.90

Zhejiang 0.64 0.93 0.97 0.96

Henan 0.65 0.96 0.89 0.97

observations and a relatively large number of search
terms. However, they could not produce consistently
accurate HFMD nowcasting results because of the rela-
tively weak robustness of each model. No single predictive
method proves to be universally best in the four cases.
This result motivates us to develop a novel model selec-

tion approach in order to choose appropriate model in
different situations. The meta learning approach is then
developed to fulfill the requirement. Specifically, the meta
learning framework consists of a two-stage learning pro-
cess: In Stage 1, the features characterizing the prob-
lem are extracted based on historical data; In Stage 2,
a meta learner module is built to learn the interrelation
between the features and model performances from the
known facts, and deduce new knowledge and rules. This
meta learning approach with automatic model recom-
mendation system is superior to the compared individual
methods in the problem of HFMD nowcasting.
In this paper, we focus on HFMD nowcasting with

1-month lag data. It should be noted that the prediction
power of forecasting method may degrade as time lag
increases. In the following, we take the HFMD nowcasting
in the whole China as an example for further illustration.
Similar to the 1-month nowcasting, the metric RMSE is
used to evaluate the prediction performance of the now-
casting with varied time lag. Figure 6 shows the evaluation
results in terms of RMSE of the five compared forecast-
ing methods including meta learning, ARIMA, PCA+LR,
LASSO and RR. As can be seen from Fig. 6, the prediction
accuracy of various methods declines with the increase
of time lag (i.e. from 1 month to 4 months), which is
consistent with our findings in the preliminary analysis
that the more recent HFMD activities are more associ-
ated with the current HFMD incidence in terms of Corr.
In spite of the varied time lag, the proposed ML frame-
work still outperforms the other methods, indicating its
robustness and effectiveness; as the time lag increases,
the difference between the various predictive models’ per-
formance become smaller. It is worth noting that the
proposed meta learning approach is not restricted by data
resolution, although monthly data is used to illustrate its
effectiveness.
The proposedmeta learning framework provides practical

guidelines in the design, development, implementation,



Zhao et al. BMC Infectious Diseases  (2018) 18:398 Page 9 of 11

Fig. 6 Evaluation metric of different lag time: RMSE. Blue: the RMSE of ARIMA; Orange: the RMSE of PCA+LR; Yellow: the RMSE of LASSO; Orangered:
the RMSE of RR; Brown: the RMSE of ML

and testing of a forecasting recommendation system
for health forecasting problems. Specifically, it can help
non-experts with predictive methods selection. One is
to further examine the features for meta learner. The
meta learning framework can incorporate various predic-
tive methods and machine learning algorithms. In fact,
there could be some other effective features than those
used in our model, and there are also more choices of
machine learning methods for training meta learner, such
as deep learning. These will be further investigated in our
future work.

Conclusions
The result of this study demonstrates that the accuracy
of HFMD nowcasting can be significantly improved by
incorporating Baidu Index data in predictive model. In
addition, the developedmeta learning approach for model
selection together with Baidu Index data enables credible
forecasts and provide helpful information for predicting
HFMD incidence. Compared with the four individual pre-
dictive methods used in this study, the performance of
meta learning is more robust for different forecasting
scales. Of course, there is still some room for our approach
to improve. For example, we will refine the meta learner
by examining various learning algorithms in our future
work. Besides, we will evaluate the utility of the developed
approach in some other forecasting applications.
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