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Abstract
Testing at a mass scale has been widely accepted as an effective way to contain the spread 
of the SARS-CoV-2 Virus. In the initial stages, the shortage of test kits severely restricted 
mass-scale testing. Pooled testing was offered as a partial solution to this problem. How-
ever, it is a relatively lesser-known fact that pooled testing can also result in significant 
gains, both in terms of cost savings as well as measurement accuracy, in prevalence estima-
tion surveys. We review here the statistical theory of pooled testing for screening as well 
as for prevalence estimation. We study the impact of the diagnostic errors, and misspeci-
fication of the sensitivity and the specificity on the performances of the pooled as well as 
individual testing procedures. Our investigation clarifies some of the issues hotly debated 
in the context of COVID-19 and shows the potential gains for the Indian Council for Medi-
cal Research (ICMR) in using a pooled sampling for their upcoming COVID-19 prevalence 
surveys.

Keywords  Pooled testing · Prevalence estimation · Imperfect test · COVID-19 · 
Sensitivity · Specificity

1  Introduction

The COVID-19 pandemic, caused by the virus SARS-CoV-2, has been devastating the 
world now for more than a year. It has created catastrophic social, economic, and health 
consequences for countries around the world. For an emerging economy like India, it 
has posed a formidable challenge to the policymakers to contain its spread at a level so 
that the health care infrastructure is not overwhelmed. While the first COVID-19 case 
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in India was detected on January 30th, 2020, as of 15th December 2020, the number 
infected has swelled to nearly 10 million, and more than 140,000 deaths have occurred 
due to COVID-19. India is right now placed second in the world in terms of the total 
number of cases, right behind the United States, and is battling the rapid rise in the 
number of cases and resultant unprecedented economic and social consequences. While 
the government is desperately looking for an exit route to bring the economy back to 
normalcy, it is facing considerable challenges in the implementation of social distanc-
ing, mass testing, contact tracing, and quarantining which are essential to contain the 
spread of the virus. Given that a large percentage of COVID-19 cases are asympto-
matic and are responsible for spreading the virus (Aguilar et al. 2020; Medical Xpress 
2020; Yu et  al. 2020), it has been advised by the World Health Organization (WHO) 
that the most effective way to control the spread of the disease is to test as many people 
as possible. For example, their guidance document on implementing and adjusting pub-
lic health and social measures suggests testing at least one person per 1000 population 
per week (WHO 2020a). This was found to be effective in containing the spread of the 
virus in the initial phases in countries like South Korea, Singapore, and China. How-
ever, the high cost and the short supply of testing kits (Alluri and Pathi 2020) are the 
main impediments for a country like India in conducting mass testing. In order to ramp 
up the testing efforts, some experts (Bilder et al. 2020; Hanel et al. 2020; Lakdawalla 
et  al. 2020; Pouwels et  al. 2020) recommended the use of pooled testing technique, a 
technique originally proposed by Dorfman (1943) to increase the speed, and reduce the 
cost, of screening the US army recruits for syphilis during the Second World War. In 
April 2020, the Indian Council for Medical Research (ICMR) gave its approval (SNS 
2020) and issued detailed guidelines (ICMR 2020) for carrying out pooled testing for 
screening purposes, which was subsequently followed by the Indian states.

In addition to the attempts made towards the containment of the disease, it is also of 
vital importance to understand the true spread of the disease. To understand the spread of 
Covid-19 in India, ICMR has conducted two serosurveys (till December 2020), the first 
during May–June 2020 (Murhekar et al. 2020), and a second one during September–Octo-
ber 2020. A third survey is being planned for the early part of 2021 (Mudur 2020). Such 
surveys are extremely important to plan for the future requirement of resources to fight the 
disease effectively. Moreover, as observed by many (Bendavid et al. 2021; Li et al. 2020), 
the estimation of the prevalence of the SARS-CoV-2 virus is crucial for an accurate estima-
tion of the fatality rate. The initial estimate of the fatality rate given by WHO (2020b) was 
scandalously high because it was based only on deaths among symptomatic patients. Later, 
it was revised downward after taking into consideration the fact that a significant percent-
age of the infected population is asymptomatic, and hence remains undetected. If 80% of 
the cases are asymptomatic, then the fatality rate computed only from the symptomatic 
cases would be five times higher than the true fatality rate. Such misinformation may cre-
ate unnecessary panic in the minds of policymakers, which may lead to wrong decisions. 
Several serology surveys have been carried out for the estimation of the prevalence of the 
SARS-CoV-2 virus (Sempos and Tian 2020), and the results suggest that the overestima-
tion of the fatality rate in the population may be between fifty to eighty-five times the origi-
nal fatality rate. The first serosurvey by ICMR in April–May 2020 in India estimated the 
true spread of the disease to be 6,468,388 (95% CI: 3,829,029–11,199,423). When com-
pared with the fact that the laboratory-confirmed cumulative number of cases was only 
around 395,000 even on June 20th, 2020 (Murhekar et al. 2020), it may be said that the 
findings of the Indian serosurvey were largely in the lines of the findings of Sempos and 
Tian (2020).
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The challenges to be faced by the ICMR in conducting a major survey like this are many. A 
good estimate requires a large sample size, lack of which may result in a very wide confidence 
interval, as reported above. Further testing for coronavirus is expensive. As per a recent report 
(Ghosh and Dasgupta 2020), the cost of the gold standard test for coronavirus, the reverse-
transcription polymerase chain reaction test (RT-PCR test), costs the government around Rs. 
1 Crore for 10,000 tests, which comes to around Rs. 1000 per test. The ICMR serosurveys 
used multiple tests to increase their efficacy: the samples were pre-processed using centrifuga-
tion, then subjected to commercial ELISA tests, and followed by Euroimmun SARS-CoV-2 
ELISA tests for reconfirmation of positive cases (Murhekar et al. 2020). While the cost of the 
procedure was never reported, a study of the cost for these tests in commercial establishments 
in India suggests that the per-sample cost would have been close to that of the RT-PCR tests. 
Hence, controlling the cost, while increasing the sample size, will be vital for the subsequent 
surveys.

Secondly, as widely reported, although the RT-PCR tests themselves are highly accurate, 
the sample collection and preservation procedures for the coronavirus tests are not very sim-
ple, and introduce significant errors, both false positives, and false negatives, in the RT-PCR 
test results (Lakdawalla et al. 2020). The sensitivity and specificity of the ELISA assays in 
laboratory conditions were 92.4 and 97.9 percent, respectively. When we consider that serum 
was separation was done in local health facilities and transported to the laboratories in the 
designated ICMR institutes under cold chains, as reported by Murhekar et al. (2020), it is clear 
that the ELISA tests would also suffer the preservation issues. This also can pose significant 
challenges in estimating the correct prevalence rates.

It is interesting to observe that most experts recommend the use of pooled testing only 
for screening purpose. However, the data collected by pooled testing can also be effectively 
utilized for the estimation of the prevalence of the virus, which is a later development in 
pooled testing research (Roy and Banerjee 2019). This fact is not as widely known as the use 
of pooled testing for screening purposes in the general scientific community. We will revisit 
these results in Sect. 4, and show that pooled testing can be very effective in controlling cost, 
as well as controlling for estimation errors arising from false positives.

This article mainly serves two purposes. First, we revisit the statistical theory of the pooled 
testing procedure for screening, and also for the estimation of prevalence using basic prob-
ability theory (Feller 1968). Next, we discuss some practical issues arising out of the fact that 
these tests are imperfect. In other words, the tests may yield false positive and/or false nega-
tive results. Naturally, it raises an important practical question: what is the impact of these 
diagnostic errors on screening as well as on prevalence estimation? What can we do if we 
do not have an accurate idea about the rate of diagnostic errors? We study these effects using 
some hypothetical scenarios and discuss their implications in the context of the COVID-19 
pandemic.

The rest of the article is divided as follows. In Sect. 2 we present Dorfman’s methodology 
of pooled testing. In Sect. 3 we discuss the consequences when the test is imperfect. In Sect. 4, 
we discuss the estimation of prevalence using pooled data and compare it with the estimation 
procedure with individual data. Finally, we conclude with some remarks in Sect. 5.
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2 � Dorfman pooled testing technique

Pooled testing was originally introduced by Dorfman (1943) in infectious disease studies to 
reduce the cost and increase the speed of data collection. Typically, for an infectious dis-
ease, a sample of blood or urine is tested for the presence or absence of the disease. Rarer 
the disease, the more effective is the pooled testing technique. Dorfman’s technique runs as 
follows. Suppose n samples of blood are to be tested for the presence or absence of a dis-
ease. A sample is either positive (disease present) or negative (disease absent). We attach a 
dichotomous variable Y to each sample: we assume Y = 1 if the sample is positive, and 
Y = 0 if it is negative. Instead of testing the samples individually, the samples are pooled 
into J groups of sizesn1,… , nJ . Let Yij denote the Y -value for the ith sample in the jth 
group. The samples in each group are pooled and tested. Instead of observingYij , in the 
pooled testing set-up, we observe Y∗

j
=maxi=1,…,nj

Yij , the maximum of Y1j, Y2j,… , Ynjj. 
Notice that this value is 0 if allYij ’s in the group equal to 0, and is 1 if even one of them is 
equal to 1. In other words, Y∗

j
 = 0 if and only if all samples in the jth group are negative, i.e., 

Yij = 0, i = 1, … , nj and Y∗
j
 = 1, if and only if at least one sample in the jth group is positive, 

i.e., Yij = 1 for at least one i = 1,… , nj . If for a group, the test outcome is positive, then the 
samples in the group are individually tested to detect the positive samples, and hence the 
diseased individuals. If the result is negative for a group, then no further testing is required. 
Thus, for a positive test outcome, the number of tests required is one more than the group 
size, and for a negative test outcome, a single test is enough. If the chance of a positive test 
outcome for a group is small, in other words, the prevalence of the disease is low, then the 
average number of tests required would be much smaller in a group testing set-up than 
individual testing. Thus, it leads to considerable savings in the cost and time of testing. The 
process diagram is presented in Fig. 1 for a group of size k.

Now, suppose that the prevalence of a disease is p, and assume without loss of any gen-
erality nj = k, i.e., all groups are of equal size, and consequently n = Jk. Notice that, 
P
(
Y∗
j
= 0

)
= (1 − p)k and P

(
Y∗
j
= 1

)
 = 1 − (1 − p)k. Further, suppose Nj denotes the num-

ber of tests for the jth group. Clearly, it is equal to k + 1 if Y∗
j
 = 1, and 1 if Y∗

j
 = 0. Thus, the 

expected number of tests for the jth group, which we henceforth write as E(Nj), is given by 

If the value of p is small then E(Nj) is close to 1 even for a sufficiently large group 
size k, and thus leading to a substantial saving in time and cost than individual testing. 

(1)E(Nj) = (k + 1) − k(1 − p)k.

Test a group of k 

items

Declare all items negative 

and stop testing

Test each item individually

Negative

Positive

Fig. 1   Process diagram of Dorfman’s algorithm for pooled testing
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Notice that the technique is mainly useful when the prevalence is low. In particular, by 
rearranging (1), we can see that we require p < 1 −

1

k1∕k
 for a group size k to be benefi-

cial. A little bit of trial and error shows that no benefit can be achieved if 
p ≥ 1 −

1

3
1
3

= 0.3066, a fact first noted by Finucan (1964). Note, however, that this limit 
is valid only for perfect tests. Interesting situations emerge when the tests are less than 
perfect, which we discuss in the next section.

The simplicity of the idea, and its easy implementation, have led to its wide appli-
cability in different fields, see Roy and Banerjee (2019) and the references therein. Its 
use in the screening of sexually transmitted diseases like chlamydia, gonorrhea (Lewis 
et al. 2012), and HIV (Litvak et al. 1994; Wein and Zenios 1996) is worth mentioning. 
American Red Cross and the European Blood Alliance routinely use it to screen donated 
blood for infectious diseases, see Aprahamian, Bish, and Bish (2019) and Bilder (2019). 
Given the huge shortage of test kits around the world, researchers worldwide are recom-
mending the use of pooled testing for COVID-19 (Bilder et al. 2020; Abdalhamid et al. 
2020; Lohse et al. 2020; Yelin et al. 2020).

3 � Pooled testing for screening when the test is imperfect

Dorfman (1943) proposed the pooled testing technique assuming the test to be perfect, 
i.e., the chance of a false positive or a false negative test result to be zero. However, in 
reality, tests are far from perfect. In testing for the SARS-CoV-2 virus, two types of tests 
are mainly in use. As per Ferran (2020), “the first is a reverse-transcription polymerase 
chain reaction test or RT-PCR. This is the most common diagnostic test used to identify 
people currently infected with SARS-CoV-2. It works by detecting viral RNA in a per-
son’s cells – most often collected from their nose. The second test being used is called 
a serological or antibody test. This test looks at a person’s blood to see if they have 
produced antibodies for the SARS-CoV-2 virus. If a test finds these antibodies, it means 
a person was infected and made antibodies in response”. How accurate are these tests? 
The accuracy of a test is measured by two numbers: sensitivity and specificity attached 
to it. If a test has a 5% chance of a false negative (positive) outcome, its sensitivity 
(specificity) is 95%. Although in a laboratory setting it is observed that the RT-PCR test 
has high sensitivity and specificity, in the real world testing condition the sensitivity 
and the specificity are usually much lower because of the testing conditions, the method 
of sample collection and the sample preservation technique are far from perfect. For 
example, in the real-world testing condition, the sensitivity of the RT-PCR test ranges 
between 66 and 80% (Ferran 2020). Thus, out of three infected people on average one 
may test negative. The sensitivity and specificity of the antibody tests are also found to 
be very high in a laboratory setting, but, then again, in real-world conditions, the accu-
racy is bound to suffer.

Using the same notations as above, we now find E(Nj) assuming that the sensitivity and 
specificity of the test are Se and Sp , respectively. Notice that due to the possible errors in 
testing, for the jth group, we now observe Ŷ∗

j
 instead of Y∗

j
 , a surrogate (or proxy) for Y∗

j
 , 

where Se is the conditional probability of the test outcome coming positive for group j 
when it should, i.e., P

(
Ŷ∗
j
= 1|Y∗

j
= 1

)
= Se and P(Ŷ∗

j
 = 0|Y∗

j
= 0) = Sp . A simple probabil-

ity calculation then yields P(Ŷ∗
j
 = 1) = P(Y∗

j
 = 1)Se + P(Y∗

j
 = 0)(1 − Sp) = Se + (1 − p)k(1 − 

Sp  − Se), and hence,
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The expected number of tests for n people would then be J × E(Nj), and hence compared 
to the individual testing, the reduction in the number of tests achieved by using group test-
ing is J × (k − E(Nj)). This reduction is a measure of the efficiency of the pooled testing pro-
cedure. Also, notice that for Sp = Se = 1, i.e., when the test is perfect, Eq. (2) reduces to (1).

In the previous section, we saw that for a perfect test, i.e., when Sp  = Se = 1, we need 
p < 0.3066. However, when the test is less than perfect, this limit can vary drastically. We 
now provide an illustration. First, we note that, from (2), the maximum value of p for which 
group testing can be beneficial, satisfies

Now, this means that when Se < 1, and Sp + Se > 1, the left-hand side of the above ine-
quality can be made negative by choosing a suitably large value of k, and hence for any 
value of p, there can be a benefit in performing a group test. For illustration, if Sp = Se = 
0.9, and p = 0.9, we require 0.9k > 1.25

k
− 0.125. The right-hand side of this inequality is 

clearly less or equal to zero for k ≥ 10, and hence this inequality is achieved for all k ≥ 10. 
(In fact, by trial and error, we can see that this inequality is valid for all positive integers 
k ≥ 2 .) Hence, for an imperfect test, it may be possible to see a benefit in group testing 
even when the disease is widely prevalent. It is, of course, true that more significant ben-
efits are achieved when the values of p are relatively lower.

For a perfect test, there is no chance of misclassification of an infected as non-infected 
or vice versa, and hence the efficiency of the pooled testing procedure is measured only by 
E(Nj). However, for an imperfect test, E(Nj) is not enough to judge the efficiency of the 
pooled testing procedure. One also needs to measure the sensitivity and specificity of the 
pooled testing procedure, and most importantly, the probabilities of the diagnostic errors.

Let T+ and T− respectively denote the events (situations) that an individual is tested 
positive and negative, respectively, by the pooled testing procedure. Further, let I ( IC ) 
denote the events that an individual is infected (uninfected). Then one can easily check that 
the sensitivity, say, SD

e
, and specificity, say, SD

p
 , of the Dorfman’s pooled testing procedure, 

are given by

and

respectively. The proofs of (3)–(4) are given in the Appendix.
Notice that SD

e
 depends only on Se while SD

p
 depends on all three parameters Se , Sp and 

p. As stated above, SD
e
 and SD

p
 provide useful information about the performance of the 

pooled testing procedure. However, the posterior or inverse probabilities P
(
Ic|T+

)
 and 

P(I|T−) , called the False Positive Predictive Value (FPPV) and the False Negative Predic-
tive Value (FNPV) respectively, are often critical for assessing the performance of the test 
in a real-life situation. These are measures of diagnostic errors. The FPPV and the FNPV 
represent the proportion of misclassified individuals among those who are tested positive, 
and among those who are tested negative, respectively. In the context of testing for sera 

(2)E
(
Nj

)
= 1 + k[Se + (1 − p)k(1 − Sp − Se)].

(1 − p)k >

1

k
+ Se − 1

Sp + Se − 1
.

(3)SD
e
= P

(
T+|I) = S2

e
,

(4)SD
p
= P(T−|Ic) = 1 − (1 − Sp)[Se +

(
1 − Sp − Se

)
(1 − p)k−1
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samples of HIV virus, Litvak et al. (1994) proposed that the five key elements to be used 
to capture the overall performance of a pooled testing procedure should be: E(Nj), SDe , S

D
p
 , 

FPPV and FNPV.
Now, using Bayes’ theorem (Feller 1968), one can easily show that

Notice that for individual testing FPPV and FNPV, denoted henceforth FPPVI and 
FNPVI respectively, are obtained by substituting SD

e
 and SD

p
 by Se and Sp respectively in 

(5). In Tables 1 and 2, we furnish the values of efficiency, SD
e
, SD

p
, FPPV, FNPV, FPPVI, 

and FNPVI for some appropriately chosen values of the sensitivity (Se), the specificity ( Sp ) 
and the prevalence (p). The “Eff” (efficiency) column gives the percentage reduction in the 
expected number of tests achieved by using the pooled testing than the individual testing. 
For a visual comparison of these factors, we also have plotted efficiency, SD

e
, SD

p
, FPPV, 

FNPV for different values of p in Fig. 2.
Evidently, with an increase in p, and decrease in Se and Se , the efficiency reduces, as is 

evident from Fig. 2a. The value of SD
e
(= S2

e
) is always less than, or equal to, Se , as can also 

be observed in Fig. 2b. However, for a given set of values of p, Se and Sp , the value of SD
p
 is 

always more than Sp and for smaller values of Sp , this effect is substantial. Thus, the pooled 
testing procedure may lead to a significant improvement of the specificity, especially when 
the specificity of the individual test is low, see Fig. 2c. From Fig. 2d, we can observe that 
even a slight decrease in Sp leads to a substantial increase in the value of FPPV for any 
given values of p and Se. On the other hand, a change in the value of Se has a negligible 
effect on the value of FPPV for any given values of p and Sp. Also, with an increase in 
p, FPPV decreases for any given values of Se and Sp. Most importantly, compared to the 
individual testing, the pooled testing leads to a substantial reduction in the value of FPPV, 
which is extremely important from the point of view of its application in practice. Still, 
FPPV can take very high values even for pooled testing for a low prevalence disease with 
low Sp . While this is undesirable, this compares favorably to individual testing. In contrast, 
for the range of values considered in Tables 1, 2 and Fig. 2 for p, Se and Sp , the impact of 
changes in the values of these parameters has little effect on FNPV, as is obvious from 
Fig. 2e.

Notice that in case both the sensitivity and the specificity of the test are low, say, for 
example, Se = 0.8 and Sp = 0.7, even with 10% prevalence, 68% (77%) of the pooled (indi-
vidual) testing results would be falsely positive, which is extremely high. A recent meta-
study by Kucirka et al. (2020), a group of medical professionals from the Johns Hopkins 
University, demonstrated that over different varieties of RT-PCR tests, which are the most 
commonly used tests for SARS-CoV-2, a best-case scenario is a Se ≈ 0.8. Another meta-
study, by Cohen and Kessel (2020), has looked at thirty-seven different external quality 
assessment studies of different medical assays and found that in some cases, the specificity 
was as low as 0.83.

For testing for the SARS-CoV-2 virus, the above observations suggest that at places still 
at the initial phase of the pandemic, where the prevalence is low, (less than 10%,) pooled 
testing may lead to a substantially lower rate of false positive cases than individual testing, 
especially if a low specificity test is used. Admittedly, pooled testing leads to a slightly 
higher rate of false negative cases compared to individual testing, but as observed from 
Table 1, that effect is usually negligible.

(5)FPPV =
(1 − p)(1 − SD

p
)

(1 − p)
(
1 − SD

p

)
+ pSD

e

;FNPV =
p(1 − SD

e
)

p
(
1 − SD

e

)
+ (1 − p)SD

p

.



170	 Health Services and Outcomes Research Methodology (2022) 22:163–191

1 3

Table 1   Optimal group size (k*), efficiency in terms of reduction in test numbers as percentage of number 
of individuals tested (Eff), pooled testing sensitivity ( SD

e
 ) and specificity ( SD

p
 ) false positive predictive value 

(FPPV) and false negative predictive value (FNPV) corresponding to different prevalence rates (p), sensi-
tivities (Se) and specificities ( Sp ) for Dorfman’s algorithm. False positive predictive value (FPPVI) and false 
negative predictive value (FNPVI) for individual tests are given within parentheses to facilitate comparison

Test quality p k* Eff (%) SD
e

SD
p

FPPV (FPPVI) FNPV (FNPVI)

Se = 1, Sp = 1 0.01 11 80.44 1 1 0 (0) 0 (0)
Se = 1, Sp = 1 0.02 8 72.58 1 1 0 (0) 0 (0)
Se = 1, Sp = 1 0.05 5 57.38 1 1 0 (0) 0 (0)
Se = 1, Sp = 1 0.10 4 40.61 1 1 0 (0) 0 (0)
Se = 0.99, 

Sp = 0.99
0.01 11 79.65 0.98 0.999 0.09 (0.50) 0.0002 (0.0001)

Se = 0.99, 
Sp = 0.99

0.02 8 71.87 0.98 0.999 0.07 (0.33) 0.0004 (0.0002)

Se = 0.99, 
Sp = 0.99

0.05 5 56.83 0.98 0.998 0.04 (0.16) 0.0010 (0.0005)

Se = 0.99, 
Sp = 0.99

0.10 4 40.30 0.98 0.997 0.02 (0.08) 0.0022 (0.0011)

Se = 0.99, 
Sp = 0.95

0.01 11 76.07 0.98 0.993 0.41 (0.83) 0.0002 (0.0001)

Se = 0.99, 
Sp = 0.95

0.02 8 68.47 0.98 0.991 0.30 (0.71) 0.0004 (0.0002)

Se = 0.99, 
Sp = 0.95

0.05 5 53.74 0.98 0.989 0.18 (0.49) 0.0011 (0.0006)

Se = 0.99, 
Sp = 0.95

0.10 4 37.67 0.98 0.985 0.12 (0.31) 0.0022 (0.0012)

Se = 0.99, 
Sp = 0.90

0.01 11 71.59 0.98 0.981 0.65 (0.91) 0.0002 (0.0001)

Se = 0.99, 
Sp = 0.90

0.02 8 64.22 0.98 0.978 0.52 (0.83) 0.0004 (0.0002)

Se = 0.99, 
Sp = 0.90

0.05 5 49.87 0.98 0.973 0.34 (0.66) 0.0011 (0.0006)

Se = 0.99, 
Sp = 0.90

0.10 4 34.39 0.98 0.966 0.24 (0.48) 0.0023 (0.0012)

Se = 0.99, 
Sp = 0.80

0.01 12 62.69 0.98 0.943 0.85 (0.95) 0.0002 (0.0001)

Se = 0.99, 
Sp = 0.80

0.02 9 55.75 0.98 0.936 0.76 (0.91) 0.0004 (0.0003)

Se = 0.99, 
Sp = 0.80

0.05 6 42.41 0.98 0.924 0.59 (0.79) 0.0011 (0.0007)

Se = 0.99, 
Sp = 0.80

0.10 4 27.83 0.98 0.917 0.43 (0.65) 0.0024 (0.0014)

Se = 0.99, 
Sp = 0.70

0.01 13 53.86 0.98 0.886 0.92 (0.97) 0.0002 (0.0001)

Se = 0.99, 
Sp = 0.70

0.02 9 47.42 0.98 0.879 0.86 (0.94) 0.0005 (0.0003)

Se = 0.99, 
Sp = 0.70

0.05 6 35.05 0.98 0.863 0.73 (0.85) 0.0012 (0.0008)

Se = 0.99, 
Sp = 0.70

0.10 5 21.74 0.98 0.839 0.60 (0.73) 0.0026 (0.0016)

Se = 0.95, 
Sp = 0.99

0.01 11 80.07 0.90 0.999 0.10 (0.51) 0.0010 (0.0005)
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Table 1   (continued)

Test quality p k* Eff (%) SD
e

SD
p

FPPV (FPPVI) FNPV (FNPVI)

Se = 0.95, 
Sp = 0.99

0.02 8 72.47 0.90 0.999 0.07 (0.34) 0.0020 (0.0010)

Se = 0.95, 
Sp = 0.99

0.05 5 57.74 0.90 0.998 0.04 (0.17) 0.0051 (0.0027)

Se = 0.95, 
Sp = 0.99

0.10 4 41.67 0.90 0.997 0.03 (0.09) 0.0107 (0.0056)

Se = 0.95, 
Sp = 0.95

0.01 11 76.49 0.90 0.993 0.43 (0.84) 0.0010 (0.0005)

Se = 0.95, 
Sp = 0.95

0.02 8 69.07 0.90 0.992 0.31 (0.72) 0.0020 (0.0011)

Se = 0.95, 
Sp = 0.95

0.05 5 54.64 0.90 0.989 0.19 (0.50) 0.0052 (0.0028)

Se = 0.95, 
Sp = 0.95

0.10 4 39.05 0.90 0.985 0.13 (0.32) 0.0109 (0.0058)

Se = 0.95, 
Sp = 0.90

0.01 11 72.01 0.90 0.982 0.67 (0.91) 0.0010 (0.0006)

Se = 0.95, 
Sp = 0.90

0.02 8 64.81 0.90 0.979 0.54 (0.84) 0.0020 (0.0011)

Se = 0.95, 
Sp = 0.90

0.05 6 50.82 0.90 0.971 0.38 (0.67) 0.0053 (0.0029)

Se = 0.95, 
Sp = 0.90

0.10 4 35.77 0.90 0.967 0.25 (0.49) 0.0111 (0.0061)

Se = 0.95, 
Sp = 0.80

0.01 12 63.15 0.90 0.944 0.86 (0.95) 0.0010 (0.0006)

Se = 0.95, 
Sp = 0.80

0.02 9 56.42 0.90 0.938 0.77 (0.91) 0.0021 (0.0013)

Se = 0.95, 
Sp = 0.80

0.05 6 43.47 0.90 0.926 0.61 (0.80) 0.0055 (0.0033)

Se = 0.95, 
Sp = 0.80

0.10 5 29.29 0.90 0.908 0.48 (0.65) 0.0118 (0.0069)

Se = 0.95, 
Sp = 0.70

0.01 13 54.35 0.90 0.888 0.92 (0.97) 0.0011 (0.0007)

Se = 0.95, 
Sp = 0.70

0.02 10 48.11 0.90 0.878 0.87 (0.94) 0.0023 (0.0015)

Se = 0.95, 
Sp = 0.70

0.05 6 36.11 0.90 0.866 0.74 (0.86) 0.0059 (0.0037)

Se = 0.95, 
Sp = 0.70

0.10 5 23.38 0.90 0.843 0.61 (0.74) 0.0127 (0.0079)

Se = 0.90, 
Sp = 0.99

0.01 11 80.59 0.81 0.999 0.10 (0.52) 0.0019 (0.0010)

Se = 0.90, 
Sp = 0.99

0.02 8 73.22 0.81 0.999 0.07 (0.35) 0.0039 (0.0021)

Se = 0.90, 
Sp = 0.99

0.05 5 58.87 0.81 0.998 0.04 (0.17) 0.0099 (0.0053)

Se = 0.90, 
Sp = 0.99

0.10 4 43.39 0.81 0.997 0.03 (0.09) 0.0207 (0.0111)

Se = 0.90, 
Sp = 0.95

0.01 11 77.01 0.81 0.993 0.45 (0.85) 0.0019 (0.0011)

Se = 0.90, 
Sp = 0.95

0.02 8 69.81 0.81 0.992 0.33 (0.73) 0.0039 (0.0021)
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Table 1   (continued)

Test quality p k* Eff (%) SD
e

SD
p

FPPV (FPPVI) FNPV (FNPVI)

Se = 0.90, 
Sp = 0.95

0.05 6 55.82 0.81 0.988 0.22 (0.51) 0.0100 (0.0055)

Se = 0.90, 
Sp = 0.95

0.10 4 40.77 0.81 0.986 0.13 (0.33) 0.021 (0.0116)

Se = 0.90, 
Sp = 0.90

0.01 12 72.58 0.81 0.982 0.69 (0.92) 0.0020 (0.0011)

Se = 0.90, 
Sp = 0.90

0.02 9 65.59 0.81 0.978 0.57 (0.84) 0.0039 (0.0023)

Se = 0.90, 
Sp = 0.90

0.05 6 52.14 0.81 0.972 0.40 (0.68) 0.0102 (0.0058)

Se = 0.90, 
Sp = 0.90

0.10 4 37.49 0.81 0.968 0.26 (0.5) 0.0213 (0.0122)

Se = 0.90, 
Sp = 0.80

0.01 13 63.73 0.81 0.944 0.87 (0.96) 0.0020 (0.0013)

Se = 0.90, 
Sp = 0.80

0.02 9 57.25 0.81 0.939 0.79 (0.92) 0.0041 (0.0025)

Se = 0.90, 
Sp = 0.80

0.05 6 44.79 0.81 0.928 0.63 (0.81) 0.0107 (0.0065)

Se = 0.90, 
Sp = 0.80

0.10 5 31.33 0.81 0.912 0.49 (0.67) 0.0226 (0.0137)

Se = 0.90, 
Sp = 0.70

0.01 14 54.98 0.81 0.888 0.93 (0.97) 0.0022 (0.0014)

Se = 0.90, 
Sp = 0.70

0.02 10 49.02 0.81 0.880 0.88 (0.94) 0.0044 (0.0029)

Se = 0.90, 
Sp = 0.70

0.05 7 37.61 0.81 0.862 0.76 (0.86) 0.0115 (0.0075)

Se = 0.90, 
Sp = 0.70

0.10 5 25.43 0.81 0.848 0.63 (0.75) 0.0243 (0.0156)

Se = 0.80, 
Sp = 0.99

0.01 12 81.69 0.64 0.999 0.13 (0.55) 0.0036 (0.0020)

Se = 0.80, 
Sp = 0.99

0.02 9 74.75 0.64 0.999 0.09 (0.38) 0.0073 (0.0041)

Se = 0.80, 
Sp = 0.99

0.05 6 61.41 0.64 0.998 0.05 (0.19) 0.0186 (0.0105)

Se = 0.80, 
Sp = 0.99

0.10 4 46.83 0.64 0.998 0.03 (0.10) 0.0385 (0.0220)

Se = 0.80, 
Sp = 0.95

0.01 12 78.15 0.64 0.994 0.50 (0.86) 0.0036 (0.0021)

Se = 0.80, 
Sp = 0.95

0.02 9 71.42 0.64 0.992 0.38 (0.75) 0.0074 (0.0043)

Se = 0.80, 
Sp = 0.95

0.05 6 58.47 0.64 0.989 0.25 (0.54) 0.0188 (0.0110)

Se = 0.80, 
Sp = 0.95

0.10 5 44.29 0.64 0.985 0.18 (0.36) 0.0390 (0.0229)

Se = 0.80, 
Sp = 0.90

0.01 13 73.73 0.64 0.982 0.74 (0.93) 0.0037 (0.0022)

Se = 0.80, 
Sp = 0.90

0.02 9 67.25 0.64 0.980 0.61 (0.86) 0.0074 (0.0045)

Se = 0.80, 
Sp = 0.90

0.05 6 54.79 0.64 0.974 0.43 (0.70) 0.0191 (0.0116)
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Finally, it may be noted here that the impacts of the two diagnostic errors are asymmet-
ric. In case of more false positive cases, more people are to be quarantined leading to a lot 
of economic, social, and emotional turmoil. On the other hand, in case of more false nega-
tive results, more infected people will be released into the population causing the disease to 
spread faster. Where detection and containment of the disease is the goal, the policy plan-
ner must make a trade-off. However, these considerations are not relevant when the goal is 
to the estimation of prevalence.

4 � Estimation of prevalence using pooled testing data

In this section, first, we present the theory of estimation of the prevalence of a disease from 
the test data using basic probability theory (Feller 1968). Next, we study the impact of mis-
specification of sensitivity and specificity on the estimate of prevalence.

An accurate estimation of the prevalence of SARS-CoV-2-virus, being critical for 
assessing the lethality of the pandemic, is crucial for the policymakers to make strate-
gic decisions. Recently, Ioannidis (2020), lamented in a highly critical opinion piece on 
COVID-19: “Three months after the outbreak emerged, most countries, including the U.S., 
lack the ability to test a large number of people and no countries have reliable data on 
the prevalence of the virus in a representative random sample of the general population.” 
Ioannidis argued that in the absence of such data, the estimate of fatality rate is bound to 
be a substantial overestimate of the true fatality rate if a significant percentage of COVID-
19 cases are undetected. It is now well known that a significant percentage of COVID-19 
cases are asymptomatic. Raman R Gangakhedkar, chief epidemiologist, ICMR, reported 
“Of 100 people with infection, 80 do not have symptoms,” (Thacker 2020). A lab in Ice-
land has suggested that 50% of the infected are asymptomatic, see John (2020). According 

Table 1   (continued)

Test quality p k* Eff (%) SD
e

SD
p

FPPV (FPPVI) FNPV (FNPVI)

Se = 0.80, 
Sp = 0.90

0.10 5 41.33 0.64 0.966 0.32 (0.53) 0.0398 (0.0241)

Se = 0.80, 
Sp = 0.80

0.01 14 64.98 0.64 0.945 0.89 (0.96) 0.0038 (0.0025)

Se = 0.80, 
Sp = 0.80

0.02 10 59.02 0.64 0.940 0.82 (0.92) 0.0078 (0.0051)

Se = 0.80, 
Sp = 0.80

0.05 7 47.61 0.64 0.928 0.68 (0.83) 0.0200 (0.0130)

Se = 0.80, 
Sp = 0.80

0.10 5 35.43 0.64 0.919 0.53 (0.69) 0.0417 (0.0270)

Se = 0.80, 
Sp = 0.70

0.01 15 56.34 0.64 0.890 0.94 (0.97) 0.0041 (0.0029)

Se = 0.80, 
Sp = 0.70

0.02 11 50.95 0.64 0.883 0.90 (0.95) 0.0083 (0.0058)

Se = 0.80, 
Sp = 0.70

0.05 8 40.67 0.64 0.865 0.80 (0.88) 0.0214 (0.0148)

Se = 0.80, 
Sp = 0.70

0.10 6 29.91 0.64 0.849 0.68 (0.77) 0.0450 (0.0308)
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to a report by Arnold (2020), in a Boston homeless shelter, out of 400 guests staying there, 
146 tested positive for COVID-19, but all were reported to be asymptomatic. If, for exam-
ple, 80% of the cases are asymptomatic, then the estimate of fatality rate would naturally be 
five times the true fatality rate. While the reported percentage of asymptomatic cases vary 
from place to place, all agree that it is significant. Considering the possibility of substantial 
underestimation of infected cases in the absence of test data, Ioannidis has contended that 
the virus could be less deadly than people think, and destroying the economy in the effort 
to fight with the virus could be a “once-in-a-century-evidence-fiasco”.

A recent research paper published by Bendavid et al. (2021) lends support to Ioannidis’ 
contention. By estimating the prevalence of SARS-CoV-2 virus among the residents of 
Santa Clara County of California using antibody test data of a “properly selected” sample 

Fig. 2   Surface plots representing efficiency, SD
e
, SD

p
, FPPV and FNPV for different values of Se and Sp for 

p = 0.01, 0.02, 0.05 and 0.10. SD
e
 is independent of p and hence only one common surface plot is produced
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Table 2   Expected values of the proportion of samples testing positive (π) corresponding to different preva-
lence rates, sensitivities (Se) and specificities ( Sp ) for individual testing (πI) Dorfman’s algorithm (πD). The 
πD values are based on k = 4, the most conservative pooling choice from Tables 1

Test Quality p πI πD

Se  = 1, Sp  = 1 0.01 0.01 0.01
Se  = 1, Sp  = 1 0.02 0.02 0.02
Se  = 1, Sp  = 1 0.05 0.05 0.05
Se  = 1, Sp  = 1 0.10 0.10 0.10
Se  = 1, Sp  = 0.90 0.01 0.11 0.02
Se  = 1, Sp  = 0.90 0.02 0.12 0.03
Se  = 1, Sp  = 0.90 0.05 0.14 0.07
Se  = 1, Sp  = 0.90 0.10 0.19 0.13
Se  = 1, Sp  = 0.80 0.01 0.21 0.05
Se  = 1, Sp  = 0.80 0.02 0.22 0.07
Se  = 1, Sp  = 0.80 0.05 0.24 0.11
Se  = 1, Sp  = 0.80 0.10 0.28 0.18
Se  = 1, Sp  = 0.70 0.01 0.31 0.11
Se  = 1, Sp  = 0.70 0.02 0.31 0.12
Se  = 1, Sp  = 0.70 0.05 0.34 0.16
Se  = 1, Sp  = 0.70 0.10 0.37 0.23
Se  = 0.90, Sp  = 1 0.01 0.01 0.01
Se  = 0.90, Sp  = 1 0.02 0.02 0.02
Se  = 0.90, Sp  = 1 0.05 0.05 0.04
Se  = 0.90, Sp  = 1 0.10 0.09 0.08
Se  = 0.90, Sp  = 0.90 0.01 0.11 0.02
Se  = 0.90, Sp  = 0.90 0.02 0.12 0.03
Se  = 0.90, Sp  = 0.90 0.05 0.14 0.06
Se  = 0.90, Sp  = 0.90 0.10 0.18 0.11
Se  = 0.90, Sp  = 0.80 0.01 0.21 0.05
Se  = 0.90, Sp  = 0.80 0.02 0.21 0.06
Se  = 0.90, Sp  = 0.80 0.05 0.23 0.10
Se  = 0.90, Sp  = 0.80 0.10 0.27 0.15
Se  = 0.90, Sp  = 0.70 0.01 0.31 0.10
Se  = 0.90, Sp  = 0.70 0.02 0.31 0.11
Se  = 0.90, Sp  = 0.70 0.05 0.33 0.15
Se  = 0.90, Sp  = 0.70 0.10 0.36 0.21
Se  = 0.80, Sp  = 1 0.01 0.01 0.01
Se  = 0.80, Sp  = 1 0.02 0.02 0.01
Se  = 0.80, Sp  = 1 0.05 0.04 0.03
Se  = 0.80, Sp  = 1 0.10 0.08 0.06
Se  = 0.80, Sp  = 0.90 0.01 0.11 0.02
Se  = 0.80, Sp  = 0.90 0.02 0.11 0.03
Se  = 0.80, Sp  = 0.90 0.05 0.13 0.05
Se  = 0.80, Sp  = 0.90 0.10 0.17 0.09
Se  = 0.80, Sp  = 0.80 0.01 0.21 0.05
Se  = 0.80, Sp  = 0.80 0.02 0.21 0.06
Se  = 0.80, Sp  = 0.80 0.05 0.23 0.13
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of 3300 residents, it predicted that between 50 and 85 times more residents of the county 
were actually infected than what appeared in the official tallies, see Regaldo (2020). The 
authors claimed that “their data helps prove ··· if undetected infections are as widespread 
as they think, then the death rate in the county may be less than 0.2%, about a fifth to a 
tenth other estimates.” The publication of this research paper immediately created waves 
in social media, in the press, and policy circles; if indeed, this number is not far from the 
truth, then the COVID-19 fatality rate is not very different from common flu. Realizing 
the findings’ serious policy implications, especially its lending support to the view of lift-
ing the lockdown, some scientists immediately issued a caveat about the accuracy of the 
estimate. They expressed concerns about the flaws in the sample selection method (through 
Facebook advertisements), the statistical analysis carried out, and the reliability of the anti-
body tests (Bajak and Howe 2020; McCormick 2020).

We now discuss the methodology used by Bendavid et al. (2021) for prevalence esti-
mation based on individual serological testing data. Let us denote the probability of a 
positive test result for an arbitrarily chosen individual by π. Clearly, for a sample of size 
n, the estimate of π is simply the proportion of people being identified as positive out of 
the sample. But we know from the previous section that

Plugging in the proportion of positive test results obtained from the sample, say �̂  , 
for π in (6), we obtain.

(6)� = P(Positive result) = (1 − p)(1 − Sp) + pSp

Table 2   (continued)

Test Quality p πI πD

Se  = 0.80, Sp  = 0.80 0.10 0.26 0.10
Se  = 0.80, Sp  = 0.70 0.01 0.31 0.10
Se  = 0.80, Sp  = 0.70 0.02 0.31 0.11
Se  = 0.80, Sp  = 0.70 0.05 0.33 0.14
Se  = 0.80, Sp  = 0.70 0.10 0.35 0.18
Se  = 0.70, Sp  = 1 0.01 0.01 0
Se  = 0.70, Sp  = 1 0.02 0.01 0.01
Se  = 0.70, Sp  = 1 0.05 0.03 0.02
Se  = 0.70, Sp  = 1 0.10 0.07 0.05
Se  = 0.70, Sp  = 0.90 0.01 0.11 0.02
Se  = 0.70, Sp  = 0.90 0.02 0.11 0.02
Se  = 0.70, Sp  = 0.90 0.05 0.13 0.04
Se  = 0.70, Sp  = 0.90 0.10 0.16 0.07
Se  = 0.70, Sp  = 0.80 0.01 0.20 0.05
Se  = 0.70, Sp  = 0.80 0.02 0.21 0.05
Se  = 0.70, Sp  = 0.80 0.05 0.22 0.08
Se  = 0.70, Sp  = 0.80 0.10 0.25 0.11
Se  = 0.70, Sp  = 0.70 0.01 0.30 0.10
Se  = 0.70, Sp  = 0.70 0.02 0.31 0.10
Se  = 0.70, Sp  = 0.70 0.05 0.32 0.13
Se  = 0.70, Sp  = 0.70 0.10 0.34 0.16
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However, for estimating prevalence using Dorfman’s algorithm, we simply need to replace 
Se and Sp in (6) by SD

e
 and SD

p
 respectively (cf. Eqs. (3)–(4)). Thus, we have

or, equivalently,

Now, when Dorfman’s algorithm is used, and the estimate of π is given by �̂D , the 
sample proportion of positive results, we can show that �̂D is unbiased and consistent 
for π, and moreover 

√
n
�
�̂D − �

�
→ N(0,C), where

The details are given in Appendix B.
Now, from (9) we observe that d�

dp
= 
(
Se + Sp − 1

)[(
1 − Sp

)
(1 − p)k−1 + Se

]
 , whose 

sign is the same as that of 
(
Se + Sp − 1

)
; as long as Se + Sp ≠ 1 . In practice, Se and Sp are 

both high (> 0.5) and so Se + Sp is always positive. Therefore, π is a strictly monotonic 
function of p, and therefore, if the value of π is known, from (9) we can easily solve for 
p using a suitable numerical algorithm, e.g., a grid search algorithm. In the current 
paper, we achieve that using the uniroot function from the statistical software R, which 
computes the real roots of a polynomial within a given range by implementing an algo-
rithm by Brent (1973) through successive linear interpolations. In Table 2, we report the 
values of π, the probability of testing positive, for the individual testing as well as for 
the Dorfman testing procedure, for different values of p, Se and Sp. We denote by πI (cf. 
Equation (6)) and πD (cf. Equation (8)) the π values corresponding to the individual and 
Dorfman testing procedure, respectively. Figure 3 and Table 2 compare the values of πI 
and πD for different values of p. It is evident that individual testing leads to a much 
higher chance of testing positive compared to pooled testing when the test is not 
perfect. 

Plugging in �̂D, the estimate of π obtained from the test data, in (8) or (9) and then 
solving it numerically for p, we can get an estimate of p, say p̂D . This estimate, although 
biased, is consistent for p, and 

√
n
�
p̂D − p

�
→ N(0,C�) , where C

�

=
C

|||
d�

dp

|||
, 

d�

dp
=
(
Se + Sp − 1

)((
1 − Sp

)
k(1 − p)k−1 + Se

)
. This allows us to construct confidence 

intervals for p, for example, an approximate level-α confidence interval for p is given by 
p̂D ± z�∕2

Ĉ�√
n
 , where Ĉ′ is the plug-in estimator of C′, and zα/2 is the upper α/2th quantile of 

the standard normal distribution. The details of the derivations are given in Appendix C.
As noted in Sect. 3, both RT-PCR and antibody tests have high sensitivity and specific-

ity in lab settings, but in a real-world situation, these values may be substantially lower 
than those obtained in lab settings. Suppose SP

e
 and SP

p
 are respectively the sensitivity and 

the specificity values as perceived and used by the scientist for estimating the prevalence 
from Eq. (7) or (8), whereas ST

e
 and ST

p
 are respectively the true sensitivity and specificity 

values in the field. In real-life situations, it is often the case that ST
e
(ST

p
) , is substantially less 

than SP
e
(SP

p
) , because the scientist’s perceived values are usually influenced by the values 

(7)p̂ =
�̂ + Sp − 1

Se + Sp − 1
.

(8)� =
(
1 − Sp

)(
1 − Sp − Se

)
(1 − p)k +

(
1 − Sp

)
Se(1 − p) + pS2

e
,

(9)� =
(
1 − Sp − Se

)[(
1 − Sp

)
(1 − p)k − pSe

]
+
(
1 − Sp

)
Se.

C =
(
� − �

2 +
k − 1

2
(1 − p)k+2

(
1 − Sp

)3
+
(
1 − (1 − p)k

)
Se
(
Sep +

(
1 − Sp

)
(1 − p)

)2)
.
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under the lab setting. Thus, given the true value of π, the solution to Eq. (7) or (8) for p is 
equal to the true prevalence pT if Se and Sp are replaced ST

e
 and ST

p
. On the other hand, given 

the true value of π, replacing Se and Sp respectively by SP
e
 and SP

p
 in (7) and (8) would yield 

a solution pP which is expected to deviate from the true prevalence pT. We note that for p̂T 
and p̂P , obtained as above, 

(
p̂T − p̂P

)
 is asymptotically consistent for the true bias (

pT − pP
)
 , provided the true sensitivity and specificity values are known. In fact, in such a 

scenario, we can also provide an approximate level-α confidence interval for the bias, 
which will be of the form 

�
p̂T − p̂P

�
± z�∕2

Ĉε√
n
, where Ĉε is the plug-in estimator of C”. For 

detailed derivation and the expression for Cε , the readers can refer to Appendix D.
We study the effect of the misspecification of sensitivity and specificity values on the 

estimate of prevalence by evaluating the bias in the estimation of (pT − pP). In Table 3, 
we report the values of the bias (pT −pP) resulting from the individual testing as well as 
Dorfman’s pooled testing, denoted by biasI and biasD, respectively, for different values 
of p, SP

e
, SP

p
, ST

e
 and ST

p
 . The same are also presented in Fig. 4.

The following patterns are visible from Table 3 and Fig. 4:

	 (i)	 With the increase in the prevalence p, the bias is decreasing. Initially, it reduces from 
positive to zero and then becomes negative. We report the bias for four different 
values of p: 0.01, 0.02, 0.05 and 0.10.

	 (ii)	 The effect of misspecification of Se and Sp are asymmetric in nature. Misspecifica-
tion of Se has a little effect on the bias. However, the misspecification of Sp has a 
significantly large effect on the bias. Also, more is the deviation from the true values 
more is the effect on bias.

	 (iii)	 The most interesting observation is, compared to the individual testing, pooled 
testing reduces the bias due to misspecification of Se and Sp substantially. This is 
extremely important to know given the fact that misspecification of Se and Sp are 
quite common.

In Table 2, we have reported the values of π, the probability of testing positive, for the 
individual testing as well as for the Dorfman testing procedure, for different values of p, 
Se, and Sp. Notice from Table 2 that, like the observation (ii) made above, the value of π is 
significantly influenced by Sp but not so by Se. Also, it is important to note that, for a given 
value of Sp (say, 0.9) reduction in Se (say, from 1 to 0.7) results in a reduction of π, though 

Fig. 3   Surface plot of πI and πD for p = 0.01, 0.02, 0.05 and 0.10
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Fig. 4   Surface plots depicting biasI and biasD for different values of p, SP
e
, SP

p
, ST

e
 and ST

p
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not a significant reduction. Thus, we may conclude that misspecification of Sp (Se) has a 
large (negligible) effect on the value of π, and consequently, on the estimates of preva-
lence obtained by solving Eqs. (6) or (8), as the case may be. So, for accurate estimation of 
prevalence, it is very important to specify the value of Sp correctly, while misspecification 
of Se has little effect.

Finally, we explain a subtle connection between the numbers reported in Table 2 and 3 
with a specific example. Consider the case when prevalence p is equal to 0.01, and the true 
sensitivity ( ST

e
 ) and specificity ( ST

p
 ) are both equal to 0.9. From Table 2, we observe that 

the corresponding value of π (cf. Equation (6)) for individual testing is equal to 0.11. Sup-
pose now the perceived sensitivity ( SP

e
 ) and specificity ( SP

p
 ) are equal to 1. To obtain the 

biased prevalence p corresponding to the perceived sensitivity and specificity, we plug in 
0.11 for π on the left-hand side of Eq. (6), and Se = Sp = 1 on the right-hand side. The solu-
tion can be obtained from Table 2 by observing the value of p corresponding to Se = Sp = 1 
and πI = 0.11, which is clearly 0.11. Thus, the resulting bias due to misspecification is 
0.11 − 0.01 = 0.10, which is reported in Table 3. By using a similar argument, we can find 
the bias for pooled testing which is 0.01 using Table 2.

5 � Discussions and concluding remarks

In this article, we have revisited the statistical theory behind Dorfman’s pooled test-
ing technique used for screening. We have explained the method of estimation of preva-
lence from individual testing and pooled testing data. Most importantly, we have provided 
insights, by looking into the practical issues that are being discussed in the scientific com-
munity, arising out of the fact that the tests for the SARS-CoV-2 virus are imperfect. We 
have illustrated that pooled testing is not only preferable for reducing the time and cost 
of screening and widening the net of testing, but it also helps in a significant reduction of 
misclassification among those who are tested positive. We have noted that for prevalence 
estimation, pooled testing is preferable to individual testing for a wide range of situations, 
especially when the specificity of the test is low. It helps in reducing the bias of the preva-
lence estimate significantly. A particularly interesting point that we have made is that for an 
imperfect test with a sensitivity less than 1, group testing can lead to cost savings even for 
a widely prevalent disease, which goes against the commonly held perception that group 
testing is useful only for low values of prevalence It is worth mentioning, however, that the 
cost-saving benefits are the most pronounced for the lower prevalence rates.

We note that for estimating the prevalence of SARS-CoV-2 of Santa Clara County, Cali-
fornia, Bendavid et  al. (2021) collected data by conducting individual antibody tests on 
the 3300 subjects; a similar procedure was followed by ICMR for its serosurveys as well. 
Instead, had they used pooled testing technique, it would have been possible to collect the 
test data from a much larger sample for a similar cost and time. Also, as mentioned in the 
paper, given that the prevalence was quite low (estimated as 2.8%), adopting pooled testing 
technique would have made all the more sense in the context of their study.

As a final remark, we would like to emphasize that for countries with limited resources 
like India, pooled testing provides an avenue to achieve more without straining the 
resources too much and offers a way to follow the WHO guidance of testing enough 
members of the population (WHO 2020a). For the upcoming ICMR surveys in estimat-
ing COVID-19 spread in India, pooled testing can be effectively used, more so in regions 
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where the virus has not spread widely. In some “hot spots,” the prevalence of the disease 
may be seen to be more than 10% among the exposed population based on the present 
testing data where the savings would be less compared to areas where prevalence is less. 
However, when the goal is the estimation of the prevalence of the disease among the wider 
population, given that India’s number of cases per million population is still among the 
lowest in the world (Sarkar 2020; The Hindu 2020), the pooled testing methodology can 
help ICMR in achieving a significant reduction of cost and time, as well as in increasing 
accuracy and efficiency.

Appendix A: Computation of SD
e

 and SD
p

In the context of Dorfman’s testing procedure, SD
e
 , the probability that a positive person 

can come positive is the probability that both the pooled test as well as the individual test 
comes correct, which is S2

e
.

To compute the misclassification probability that a person is non-diseased and is found 
to be diseased, we first note that a non-diseased person, say Person j, can either be a part of 
a pool constituted entirely of non-diseased individuals (Case A) or a pool containing some 
diseased individuals (Case B). The probability of Case A is (1 − p)k , and the probability of 
Case B is (1 − p) − (1 − p)k.

Now, for Person j to be found to be diseased in Case A, the pooled test, and subsequently, 
the individual’s test, will both erroneously give a positive result, the probability of which is (
1 − Sp

)2 for the original Dorfman algorithm. On the other hand, in Case B, the pooled test 
will be positive, but this time correctly, while the individual’s test will still be erroneously pos-
itive, the probability of which is Se(1 − Sp). Putting all together, the probability that a non-dis-
eased person is found to be diseased is [

(
1 − Sp

)
2

(1 − p)k + Se(1 − Sp)((1 − p) − (1 − p)k))]∕

(1 − p) = (1 − Sp)Se + (1 − Sp)(1 − Sp − Se)(1 − p)k−1 . Hence, SD
p
 is 1 −

(
1 − Sp

)
Se+

(1 − Sp)(1 − Sp − Se)(1 − p)k−1.

Appendix B: Derivation of the properties of �̂
D

Let us define Ŷ∗
ij
 =1 if the ith member of the jth pool is positive, and 0 otherwise, i = 1, …, k, 

j = 1, …, J. Therefore, we have �̂D =
1

Jk

∑J

j=1

∑k

i=1
Ŷ∗
ij
 , where Jk = n. As π is the probability 

of a positive result, E(�̂D) = π. This also means that �̂D is consistent for π as J → ∞, and k 
remains fixed. Now, noting that observations from different groups are independent,

where

Therefore,

V(�̂D) = V

(
1

n

J∑
j=1

k∑
i=1

Ŷ∗
ij

)
=

1

n2

J∑
j=1

V

(
k∑

i=1

Ŷ∗
ij

)
=

Jk

n2
V
(
Ŷ∗
ij

)
+

Jk(k − 1)∕2

n2
(P(Ŷ∗

ij
1

= 1, Ŷ∗
ij
2

= 1) − �
2)

=
� − �2

n
+

k − 1

2n
(P(Ŷ∗

ij
1

= 1, Ŷ∗
ij
2

= 1) − �
2),

P(Ŷ∗
ij
1

= 1, Ŷ∗
ij
2

= 1)= (1 − p)k
(
1 − Sp

)
3

(1 − p)2 +
(
1 − (1 − p)k

)
Se
(
Sep +

(
1 − Sp

)
(1 − p)

)
2

= (1 − p)k+2
(
1 − Sp

)
3

+
(
1 − (1 − p)k

)
Se
(
Sep +

(
1 − Sp

)
(1 − p)

)
2

.



189Health Services and Outcomes Research Methodology (2022) 22:163–191	

1 3

Keeping k fixed, as J → ∞, n → ∞, and 
√
n
�
�̂D − �

�
→ N(0,C) , where

Appendix C: Derivation of the properties of p̂D

From (9), we have d�
dp

=
(
Se + Sp − 1

)((
1 − Sp

)
k(1 − p)k−1 + Se

)
. Using the delta-method, 

we can write that.
�̂D − � ≈

(
p̂D − p

)
d�

dp
. As long as Se + Sp ≠ 1, this shows that p̂D is a consistent estimator 

of p, and, moreover, 
√
n
�
p̂D − p

�
→ N(0,C�) , where C�

= C∕
|||
d�

dp

|||.

Appendix D: Derivation of the properties of p̂T − p̂P

The estimates p̂T and p̂P will be obtained by plugging in �̂D in both of the following two equa-
tions, and solving:

This tells us,

In other words,

This tells us that p̂T − p̂P will be consistent for pT − pP for large sample sizes, and 
moreover,
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