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Background: Timely and accurate prediction of delayed cerebral ischemia is critical for

improving the prognosis of patients with aneurysmal subarachnoid hemorrhage. Machine

learning (ML) algorithms are increasingly regarded as having a higher prediction power

than conventional logistic regression (LR). This study aims to construct LR and ML

models and compare their prediction power on delayed cerebral ischemia (DCI) after

aneurysmal subarachnoid hemorrhage (aSAH).

Methods: This was a multicenter, retrospective, observational cohort study that enrolled

patients with aneurysmal subarachnoid hemorrhage from five hospitals in China. A total

of 404 aSAH patients were prospectively enrolled. We randomly divided the patients into

training (N = 303) and validation cohorts (N = 101) according to a ratio of 75–25%. One

LR and six popular ML algorithms were used to construct models. The area under the

receiver operating characteristic curve (AUC), accuracy, balanced accuracy, confusion

matrix, sensitivity, specificity, calibration curve, and Hosmer–Lemeshow test were used

to assess and compare the model performance. Finally, we calculated each feature

of importance.

Results: A total of 112 (27.7%) patients developed DCI. Our results showed that

conventional LR with an AUC value of 0.824 (95%CI: 0.73–0.91) in the validation cohort

outperformed k-nearest neighbor, decision tree, support vector machine, and extreme

gradient boosting model with the AUCs of 0.792 (95%CI: 0.68–0.9, P = 0.46), 0.675

(95%CI: 0.56–0.79, P < 0.01), 0.677 (95%CI: 0.57–0.77, P < 0.01), and 0.78 (95%CI:
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0.68–0.87, P = 0.50). However, random forest (RF) and artificial neural network

model with the same AUC (0.858, 95%CI: 0.78–0.93, P = 0.26) were better than

the LR. The accuracy and the balanced accuracy of the RF were 20.8% and 11%

higher than the latter, and the RF also showed good calibration in the validation

cohort (Hosmer-Lemeshow: P = 0.203). We found that the CT value of subarachnoid

hemorrhage, WBC count, neutrophil count, CT value of cerebral edema, and monocyte

count were the five most important features for DCI prediction in the RF model.

We then developed an online prediction tool (https://dynamic-nomogram.shinyapps.io/

DynNomapp-DCI/) based on important features to calculate DCI risk precisely.

Conclusions: In this multicenter study, we found that several ML methods, particularly

RF, outperformed conventional LR. Furthermore, an online prediction tool based on the

RF model was developed to identify patients at high risk for DCI after SAH and facilitate

timely interventions.

Clinical Trial Registration: http://www.chictr.org.cn, Unique identifier:

ChiCTR2100044448.

Keywords: logistic regression, prediction model, delayed cerebral ischemia, subarachnoid hemorrhage,

inflammatory response, machine learning

INTRODUCTION

Aneurysmal subarachnoid hemorrhage (aSAH) is a severe
acute cerebrovascular disorder resulting in high morbidity and
mortality; roughly 50% of aSAH survivors have permanent
neurological deficits (Molyneux et al., 2005; Fugate and
Rabinstein, 2012). Delayed cerebral ischemia (DCI) is the most
frequent complication after aSAH, affecting ∼ 30% of patients,
often causing serious damage because of its late diagnosis
(Macdonald, 2014; Francoeur and Mayer, 2016). Hence, timely
and accurate prediction of DCI is critical for the treatment and
prognosis of patients with aSAH. A precise, reliable model for
early prediction of DCI development is urgently needed.

Traditional logistic regression (LR) is the primary method
to construct models for predicting disease outcomes. However,
when LR is used for complex multivariate non-linear
relationships, complex transformations are often required
owing to low robustness and multicollinearity between variables
(Tu, 1996). Machine learning (ML) is valuable for analyzing
clinical data because it can fully employ input features and
predict outcomes more accurately (Jordan and Mitchell, 2015).
Several studies suggested that in DCI, ML models utilizing
admission clinical characteristics have better predictive power
than LR (Ramos et al., 2019; de Jong et al., 2021; Savarraj et al.,
2021). However, the model performance is not generally high
due to the incomplete clinical features. Admission clinical
characteristics include baseline information, laboratory test
results, and imaging data, and the fragmented application of
these data may reduce predictive performance; therefore, these
features must be systematically utilized. To the best of our
knowledge, there is no study that utilizes relatively complete
clinical features to construct ML and LR models, some of which
were not compared in previous studies.

We determined several types of the currently most popular
ML algorithms to achieve the following aims. First, we
constructed and validated a conventional LR and several
ML models based on relatively complete clinical features on
admission. Second, we compared the predictive performances
of the LR and ML models. Third, we established an online
prediction tool based on the important features identified by
the optimal model, which is convenient for clinicians and can
precisely calculate the risk of DCI after aSAH.

METHODS

Study Design and Patient Enrollment
This multicenter, retrospective, observational cohort study
utilized clinical data from the electronic health record
system. The study participants consisted of all adult
patients with aSAH within 24 h of onset who were treated
in the Department of Neurosurgery from April 2019
to June 2021, Renmin Hospital of Wuhan University,
Huzhou Central Hospital, Affiliated Hospital of Panzhihua
University, General Hospital of Northern Theater Command,
First Hospital of Shanxi Medical University. The study
eventually enrolled 404 patients (Figure 1). According
to SAH guidelines, aSAH was diagnosed using head
computed tomography (CT), CT angiography, or digital
subtraction angiography.

The inclusion criteria were: (1) spontaneous aSAH, (2)
admission within 24 h after onset, (3) blood laboratory tests and
head CT scans within 24 h after admission, (4) microsurgical
clipping or coil embolization within 72 h after onset, and (5) DCI,
which occurs within 4–30 days after aSAH.

The exclusion criteria were: (1) admission time exceeded
24 h after onset, (2) intracerebral hemorrhage or vascular
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FIGURE 1 | The flowchart of study design and detailed patient enrollment.

malformation, (3) acute infection, (4) postoperative state on
admission, (5) bilateral mydriasis or other permanent brain
injuries on admission, (6) non-surgical treatment, and (7)
patients who died within 3 days after admission.

Clinical Data Collection
Patient demographic data (sex, age), medical history
(hypertension, diabetes mellitus, coronary heart disease,
smoking, alcohol consumption, anticoagulant treatment, and
previous diseases), and clinical state on admission [World
Federation of Neurosurgical Societies (WFNS), Hunt and Hess
grade (HH), and modified Fisher scale (mFS)] were collected.
Aneurysmal details were also recorded, including aneurysm
number, location, length, neck size, and treatment. Surgical
methods and laboratory tests on admission (glucose, D-dimer,
as well as white blood cell [WBC], neutrophil, lymphocyte, and
monocyte counts) were also utilized in this study.

CT Value Assessment
The CT values of subarachnoid clots and cerebral edema were
manually measured and collected, and measurement methods
and references are provided in the Supplementary Data 1.

All CT scans were completed using a GE scanner (64-section
Optimal CT680) without contrast enhancement. The following
parameters were used: tube voltage, 120 kVp; tube current
modulation, 300mA; detector configuration, 64 × 0.625mm;
rotation time, 0.5 s; slice thickness, 5mm; and collimation,
10 mm.

Regions of interest (ROIs) were manually drawn on the
central area of the blood clots in representative slices by
two neurosurgeons who were blinded to the patients’ clinical
information. The mean blood clot density in the subarachnoid
space was measured in each ROI (a circle 3–8mm across),
returning the mean Hounsfield Unit (HU) value. Subarachnoid
cisterns/fissures, including the lateral Sylvian fissure, anterior
interhemispheric fissure, medial Sylvian fissure, suprasellar
cistern, ambient cistern, and quadrigeminal cistern, were used to
determine themeanHU (Woo et al., 2017; Kanazawa et al., 2020).

Regions of interest (circles 5–10mm across) of the
cerebral edema were bilaterally and symmetrically drawn
on a representative CT slice. If blood clots were below the
insular cortex, the ROI was drawn on the thalamus and basal
ganglia. Otherwise, the ROI was drawn on the bilateral centrum
semiovale (Claassen et al., 2002; Ahn et al., 2018).
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Outcome Definitions
The definition of DCI should meet at least one of the following
criteria: (1) no other etiology could have caused a permanent
or temporary focal neurological impairment (such as aphasia,
apraxia, hemianopia, or neglect) between 4 and 14 days after
aSAH; (2) the Glasgow Coma Scale score decreased by at least
two points [either on one of its components (eye opening, verbal
response, motor response), or on total score]; and (3) head CT
scans revealed a low-density area that was not noticeable on
admission or immediately after the operation, and there were no
other causes except vasospasms between 4 and 30 days after aSAH
(Vergouwen et al., 2010).

Sample Size
We used the events per variable criterion with a value of 10
(Peduzzi et al., 1996) to estimate the effective sample size in
this study. Our preliminary analysis indicated that nine variables
were entered into a multivariable LR model. Hence, at least 90
patients with DCI should be included in the training cohort.
Moreover, according to the risk of DCI occurrence after SAH,
∼30% worldwide, there should be at least 300 patients in the
model training cohort.

Processing of Missing Data
This dataset included 17 patients with missing values, which
accounted for <5% of the study population, so we directly used
the missing value deletion method to process the data (Eekhout
et al., 2012).

Model Development
A total of 404 patients with aSAH from five medical centers
were prospectively enrolled. We randomly divided the patients
as training cohort (N = 303) and validation cohort (N =

101) according to a ratio of 75–25%. The training cohort
was utilized to develop a conventional LR, k-nearest neighbor
(KNN), support vector machine, decision tree, random forest
(RF), extreme gradient boosting, and artificial neural network
(ANN) models.

Machine Learning Models Development
LR

The model was trained by fitting the predictor variables with
P < 0.1 in univariate analysis to multivariate logistic analysis.
We used the backward stepwise regression method based on the
Akaike information criterion to select the optimal variables and
constructed a final LR model. “MASS” package in R software was
performed to fit the model.

LASSO

LASSO regression, which is suitable for analyzing high-
dimensional data, was used to select the most informative
prediction variables. We used the “glmnet, corrplot, caret”
packages and 10-fold cross-validation to obtain the optimal λ

and factors.

KNN

KNN model uses local geographic information in the predictive
environment to predict the results of the new samples. For

example, a KNN model with ten neighbors uses the ten closest
observations in multidimensional space to predict the results of a
new sample based on a distance assessment. The optimal K value
was determined by 10-fold cross-validation and the “e1071, class,
kknn, kernlab, caret” packages.

SVM

The uniqueness of SVM algorithms is that they mainly use data
points from each result class that is closest to the class boundary
or misclassified when determining the boundary structure. The
radial basis function was applied in this work, and the optimal
gamma value and minimum error of the SVM model were
determined by 10-fold cross-validation.

DT

DT algorithms partition the sample data by splitting prediction
features at discrete cut-points and are usually presented in the
form of a tree. In this study, the decision tree algorithm uses
the Gini index to determine each split’s optimal variable and
location. The cost complexity parameter that penalizes more
complex trees is used to control the size of the final tree. Ten-fold
cross-validation and “rpart, partykit, caret” packages were used
to determine the minimum error value.

RF

RF builds a predictive model by sampling objects and variables,
generating multiple decision trees, and classifying objects in
turn. Finally, the classification results of each decision tree are
summarized, and themode category in all prediction categories is
the category of the object predicted by the RFmodel. The optimal
number of trees was determined using 10-fold cross-validation
and “randomForest” package.

XGBoost

XGBoost is an optimized distributed gradient enhancement
library designed to be efficient, flexible, and portable. It
implements ML algorithms under the Gradient Boosting
framework. The optimal parameters were determined by
“xgboost” package and 10-fold cross-validation.

ANN

ANN is an algorithmic mathematical model that imitates
the behavioral characteristics of animal neural networks and
performs distributed and parallel information processing. This
kind of network relies on the system’s complexity, adjusts the
interconnection between a mass of internal nodes to achieve
the purpose of processing information, and has the ability
of self-learning and self-adaptation. Ten-fold cross-validation
and “caret, MASS, neuralnet, vcd” packages were conducted to
determine the optimal parameters of this model.

Dynamic Nomogram
A web-based dynamic nomogram application was then
developed based on the optimal prediction variables based
on optimal features. Calibration curve with 1,000 resample
bootstrap was used to assess the calibration ability, and the
clinical effectiveness was evaluated by decision curve analysis
(DCA) and clinical impact curve (CIC). The packages “rmda,
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TABLE 1 | Patinets baseline characteristics in training and validation cohorts.

Characteristics Training cohort

(n = 303)

Validation

cohort

(n = 101)

P-value

Demographics

Age (years) 57 (51, 64) 57 (51, 63) 0.903

Gender (Female) 179 (59) 68 (67) 0.175

Medical history

Hypertension 142 (47) 50 (50) 0.73

Diabetes 9 (3) 3 (3) 1.000

CHD 12 (4) 2 (2) 0.532

Smoking 54 (18) 17 (17) 0.94

Drinking 37 (12) 13 (13) 1.000

Anticoagulant 11 (4) 3 (3) 1.000

Disease history 0.886

ICH 3 (1) 0 (0)

CI 6 (2) 1 (1)

WFNS grade 0.163

I–II 227 (75) 68 (67)

III 37 (12) 13 (13)

IV 22 (7) 12 (12)

V 17 (6) 8 (8)

Hunt and Hess grade 0.327

I–II 211 (70) 59 (58)

III 59 (19) 27 (27)

IV 18 (6) 9 (9)

V 15 (5) 6 (6)

Modified Fisher scale 0.037

1–2 157 (52) 36 (35)

3 76 (25) 37 (37)

4 70 (23) 28 (28)

Aneurysm location 0.694

ACA 273 (90) 93 (92)

PCA 30 (10) 8 (8)

Aneurysm number 0.428

Single 269 (89) 86 (85)

Multiple (≥2) 34 (11) 15 (15)

Mean aneurysm size

Neck (mm) 3.2 (2.4, 3.75) 3.5 (2.5, 4.3) 0.068

Length (mm) 4.4 (3.15, 5.5) 4.9 (3.5, 6.7) 0.017

Aneurysm treatment 0.015

Clipping 154 (51) 66 (65)

Coiling 149 (49) 35 (35)

Decompressive craniectomy 16 (5) 11 (11) 0.084

Admission laboratory

results

Glucose (mmol/L) 6.96 (5.94, 8.17) 6.8 (5.61, 8.06) 0.396

D-dimer (mg/L) 1.17 (0.58, 2.5) 1.36 (0.82, 2.5) 0.288

WBC (10∧9/L) 11.23

(9.27, 13.99)

11.21

(8.98, 14.4)

0.646

Neutrophil (10∧9/L) 9.57 (7.56, 12.28) 9.9 (7.27, 12.8) 0.887

Lymphocyte (10∧9/L) 0.9 (0.68, 1.25) 0.92 (0.65, 1.27) 0.842

Monocytes (10∧9/L) 0.5 (0.34, 0.7) 0.5 (0.33, 0.7) 0.655

(Continued)

TABLE 1 | Continued

Characteristics Training cohort

(n = 303)

Validation

cohort

(n = 101)

P-value

Admission CT value (HU)

ClotCT 57 (52, 62.02) 58 (54, 63) 0.17

EdemaCT 26.82

(24.2, 28.98)

26.88

(25.07, 29)

0.36

DCI 85 (28) 27 (27) 0.898

DCI, indicates delayed cerebral ischemia; ACA, aneurysm includes anterior cerebral

artery, middle cerebral artery, internal cerebral artery, anterior communicating artery;

posterior communicating artery; PCA, aneurysm includes posterior cerebral artery, basilar

artery, anterior inferior cerebellar artery, posterior inferior cerebellar artery, vertebral artery;

ACA, anterior circulation aneurysm; PCA, posterior circulation aneurysm; WBC, White

blood cell; CT, computer tomography; HU, Hounsfield Unit; WFNS, World Federation

of Neurosurgical Surgeons; ICH, Intracerebral hemorrhage; CI, cerebral infarction; CHD,

Coronary heart disease.

MASS, survival, ggplot2, ggridges, DynNom, and riskRegression”
and “shinyapps.io” were performed to achieve this process.

Model Performance Evaluation
We used the area under the receiver operating characteristic
curve (AUC) with 95% confidence intervals (95% CIs), accuracy,
balanced accuracy, confusion matrix, sensitivity, and specificity
indicators in both training and validation cohorts to evaluate
model performance. The AUC value was used to assess model
discrimination, while the calibration curve with 10-fold cross-
validation (1,000 resample) and Hosmer–Lemeshow test can
reflect the model calibration performance.

Statistical Analysis
We applied the Kolmogorov–Smirnov test to determine the
data distribution before formally analyzing the data. Continuous
variables analyzed using the independent t-test or Mann-
Whitney U-test are presented as mean ± SD or median with
interquartile range. Categorical variables analyzed using the
chi-square or Fisher’s exact tests are expressed as numbers
(percentages). The statistical difference between the AUCs of
these models was completed by DeLong test. The feature
importance was calculated by Gini index using RF algorithm.
The total score of all feature importance was added up to 100.
A higher importance coefficient commonly indicated a stronger
influence on the occurrence of DCI. For continuous variables that
were important for DCI indicator, we used the Youden index
to calculate the cut-off value to distinguish patients who were
prone to be DCI. All statistical tests were two-tailed and p < 0.05
were considered statistically significant. Statistical analyses were
conducted using IBM SPSS Statistics for Windows, version 26.0,
(IBM Corp., Armonk NY, USA) and R software, version R×64
4.1.0 (https://www.r-project.org/).

RESULTS

Baseline Characteristics
The number of patients with DCI were 85 (28%) and 27 (27%)
in training and validation cohorts, and women comprised 179
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TABLE 2 | Patients baseline characteristics in model training cohort.

Characteristics Total (n = 303) Non-DCI (n = 218) DCI (n = 85) P-value

Demographics

Age (years) 57 (51, 64) 57 (52, 65) 56 (49, 64) 0.414

Gender (Female) 179 (59) 126 (58) 53 (62) 0.552

Medical history

Hypertension 142 (47) 103 (47) 39 (46) 0.932

Diabetes 9 (3) 6 (3) 3 (4) 0.714

CHD 12 (4) 5 (2) 7 (8) 0.042

Smoking 54 (18) 35 (16) 19 (22) 0.263

Drinking 37 (12) 26 (12) 11 (13) 0.962

Anticoagulant 11 (4) 6 (3) 5 (6) 0.19

Disease history 0.367

ICH 3 (1) 2 (1) 1 (1)

CI 6 (2) 3 (1) 3 (4)

WFNS grade <0.001

I–II 227 (75) 185 (85) 42 (49)

III 37 (12) 22 (10) 15 (18)

IV 22 (7) 7 (3) 15 (18)

V 17 (6) 4 (2) 13 (15)

Hunt and Hess grade <0.001

I–II 211 (70) 167 (77) 44 (52)

III 59 (19) 42 (19) 17 (20)

IV 18 (6) 5 (2) 13 (15)

V 15 (5) 4 (2) 11 (13)

Modified Fisher scale <0.001

1–2 157 (52) 126 (57) 31 (36)

3 76 (25) 56 (26) 20 (24)

4 70 (23) 36 (17) 34 (40)

Aneurysm location 0.695

ACA 273 (90) 195 (89) 78 (92)

PCA 30 (10) 23 (11) 7 (8)

Aneurysm number 1.000

Single 269 (89) 194 (89) 75 (88)

Multiple (≥2) 34 (11) 24 (11) 10 (12)

Mean aneurysm size

Neck (mm) 3.2 (2.4, 3.75) 3.2 (2.5, 3.98) 3.2 (2.2, 3.7) 0.228

Length (mm) 4.4 (3.15, 5.5) 4.4 (3.26, 5.5) 4.2 (3, 6) 0.963

Aneurysm treatment 0.002

Clipping 154 (51) 98 (45) 56 (66)

Coiling 149 (49) 120 (55) 29 (34)

Decompressive craniectomy 16 (5) 3 (1) 13 (15) <0.001

Admission laboratory results

Glucose (mmol/L) 6.96 (5.94, 8.17) 6.94 (5.92, 8.14) 6.96 (6.1, 8.3) 0.454

D-dimer (mg/L) 1.17 (0.58, 2.5) 1.11 (0.55, 2.33) 1.51 (0.78, 3.82) 0.024

WBC (10∧9/L) 11.23 (9.27, 13.99) 10.5 (8.75, 12.65) 14.6 (11.7, 17.3) <0.001

Neutrophil (10∧9/L) 9.57 (7.56, 12.28) 8.89 (7.27, 11.16) 12.1 (9.67, 14.7) <0.001

Lymphocyte (10∧9/L) 0.9 (0.68, 1.25) 0.94 (0.68, 1.26) 0.83 (0.68, 1.09) 0.266

Monocytes (10∧9/L) 0.5 (0.34, 0.7) 0.44 (0.32, 0.66) 0.65 (0.44, 0.9) <0.001

Admission CT value (HU)

ClotCT 57.1 ± 7.05 55.23 ± 6.33 61.9 ± 6.54 <0.001

EdemaCT 26.82 (24.2, 28.98) 26.75 (24.25, 28.45) 27 (24.2, 30) 0.28

ACA, aneurysm includes anterior cerebral artery, middle cerebral artery, internal cerebral artery, anterior communicating artery; posterior communicating artery; PCA, aneurysm includes

posterior cerebral artery, basilar artery, anterior inferior cerebellar artery, posterior inferior cerebellar artery, vertebral artery; ACA, anterior circulation aneurysm; PCA, posterior circulation

aneurysm; WBC, White blood cell; CT, computer tomography; HU, Hounsfield Unit; WFNS, World Federation of Neurosurgical Surgeons; ICH, Intracerebral hemorrhage; CI, cerebral

infarction; CHD, Coronary heart disease.
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(59%) and 68 (67%) patients in the two groups, respectively. The
median age in both the cohorts was 57 years. In terms of other
admission clinical features, there were more patients with mFS
of 3–4 point in the validation cohort than training cohort (P
< 0.05), and the aneurysm mean length size in the validation
cohort was larger than the training cohort (p < 0.05). Among
the patients with aSAH in the validation cohort, there is a larger
proportion of patients who chose aneurysm clipping (p < 0.05).
However, there were no significant differences in medical history,
disease history, other clinical conditions, aneurysm location,
aneurysm number, admission laboratory results, and admission
CT value between the two cohorts (P > 0.05). Table 1 shows the
detailed baseline characteristics of the datasets. We also analyzed
the baseline characteristics of the DCI and non-DCI groups in
the training cohort. Table 2 shows the detailed baseline data of
the two groups in the training cohort.

Model Performance Evaluation and
Comparison
When using the validation cohort to evaluate and comparemodel
performance, our results showed that conventional LR with an
AUC value of 0.824 (95%CI: 0.73–0.91) outperformed KNN,
decision tree, support vector machine, and extreme gradient
boosting model with the AUCs of 0.792 (95%CI: 0.68–0.9,

DeLong: P = 0.46), 0.675 (95%CI: 0.56–0.79, DeLong: P < 0.01),
0.677 (95%CI: 0.57–0.77, DeLong: P < 0.01), and 0.78 (95%CI:
0.68–0.87, DeLong: P = 0.50). However, the RF and ANN model

TABLE 3 | Model performance evaluation using training and validation cohorts.

Cohort Model AUC (95%CI) Accuracy Sensitivity Specificity

Training LR 0.837 (0.784–0.889) 0.828 0.552 0.935

KNN 0.992 (0.985–0.998) 0.904 0.658 1.000

SVM 0.781 (0.728–0.834) 0.934 0.765 1.000

DT 0.827 (0.772–0.883) 0.808 0.623 0.881

RF 1.000 (1.000–1.000) 1.000 1.000 1.000

XGB 0.884 (0.844–0.925) 0.828 0.917 0.600

ANN 1.000 (1.000–1.000) 0.759 0.548 0.905

Validation LR 0.824 (0.737–0.912) 0.802 0.444 0.932

KNN 0.792 (0.683–0.901) 0.802 0.407 0.946

SVM 0.677 (0.578–0.775) 0.772 0.259 0.959

DT 0.675 (0.559–0.791) 0.703 0.444 0.797

RF 0.858 (0.783–0.932) 0.802 0.518 0.905

XGB 0.780 (0.686–0.874) 0.693 0.77 0.481

ANN 0.858 (0.782–0.932) 0.594 0.365 0.837

LR, logistic regression; KNN, K-nearest neighbor; SVM, support vector machine; DT,

decision tree model; RF, random forest; XGBoost, extreme gradient boosting; ANN,

artificial neural network.

FIGURE 2 | The ROC curves, accuracy, sensitivity, and specificity of ML methods and conventional LR. (A,B) The AUCs of ML methods and LR in the training and

testing datasets. (C–E) The accuracy, sensitivity, and specificity of LR, KNN, SVM, DT, RF, XGB, and ANN in the training and testing datasets are 82.8, 90.4, 93.4%,

80.8, 100, 82.8, 75.9% (blue); 80.2, 80.2, 77.2, 70.3, 80.2, 69.3, 59.4% (orange); 55.2, 65.8, 76.5, 62.3, 100, 91.7, 54.8% (blue); 44.4, 40.7, 25.9, 44.4, 51.8, 77,

36.5% (orange), 93.5, 100, 100, 88.1, 100, 60, 90.5% (blue); 93.2,94.6, 95.9, 79.7, 90.5, 48.1, 83.7% (orange).
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FIGURE 3 | The calibration curve of RF model. (A) shows the 10-fold cross validation using training cohort; (B) illustrates the 10-fold cross-validation using the

validation cohort.

with a same AUC (0.858, 95%CI: 0.78–0.93, DeLong: P = 0.26)
still performed well than the LR. Furthermore, the accuracy
and balanced accuracy of the RF were 20.8 and 11% higher
than the latter. Supplementary Table 1 shows the confusion
matrix and balanced accuracy of ML and LR model using
training and validation cohorts. Figure 2 and Table 3 present
the performances of all models when using the training and
validation cohorts. In addition, Figure 3 demonstrates that the
superior RFmodel had a good calibration performance according
to the calibration curve and Hosmer–Lemeshow test in the
training (X2 = 8.78, df = 8, P-value = 0.36;) and validation
cohort (X2 = 10.97, df = 8, P-value = 0.203). Table 4 and
Figure 4 show the process of model development.

Individual Variable Importance
The five most important features for DCI prediction were
CT value of subarachnoid hemorrhage (15.68), WBC count
(13.72), neutrophil count (12.28), CT value of cerebral edema
(8.54), and monocyte count (7.54). The cut-off value of
WBC, neutrophil, and monocyte counts for predicting DCI
were 11.2 × 10∧9/L, 9.58 × 10∧9/L, and 0.46 × 10∧9/L,
respectively. Moreover, the cut-off value of CT value in
subarachnoid hemorrhage and cerebral edema were 60.12 (HU)
and 28.15 (HU). Figure 5 shows all input feature importance. An
online prediction tool (https://dynamic-nomogram.shinyapps.
io/DynNomapp-DCI/) was developed based on the five optimal
predictors in the RF model, which could precisely calculate
the risk value of DCI after aSAH. A risk percentage of 50%
calculated by this tool commonly represents an occurrence of
DCI in patients with aSAH. Figure 6 displays the interface of the
online tool for predicting DCI. Both decision curve analysis and
clinical impact curve on the validation cohort showed a superior
overall net benefit over the entire range of threshold probabilities
(Figure 7).

TABLE 4 | The univariate and multivariate analysis during fitting logistic regression

model.

Variable OR (95%CI) P-value Variable aOR (95%CI) P-value

CHD 3.82 (1.18–13.25) 0.025 NA NA NA

WFNS 2.07 (1.65–2.63) <0.001 WFNS 1.53 (1.11–2.12) 0.009*

HH 1.97 (1.53–2.58) <0.001 NA NA NA

MFS 1.57 (1.24–2.02) <0.001 MFS 0.76 (0.53–1.08) 0.137

Treatment 0.42 (0.24–0.71) 0.001 Treatment 0.41 (0.21–0.77) 0.007*

DC 12.93 (4.03–57.6) <0.001 DC 4.54 (1.01–25.13) 0.059

ClotCT 1.17 (1.12–1.23) <0.001 ClotCT 1.11 (1.05–1.17) <0.001*

WBC 1.29 (1.19–1.39) <0.001 WBC 1.58 (1.11–2.33) 0.018*

NC 1.25 (1.16–1.36) <0.001 NC 0.74 (0.5–1.07) 0.141

MC 8.44 (3.48–21.59) <0.001 NA NA NA

D-dimer 1.07 (1.02–1.15) 0.016 NA NA NA

CHD, Coronary heart disease; WFNS, World Federation of Neurosurgical Surgeons; HH,

Hunt and Hess grade; MFS, modified Fisher scale; DC, Decompressive craniectomy;

WBC, White blood cell; NC, Neutrophil; MC, Monocytes. aOR, adjusted odds ratio.

*indicates statistical significance (p < 0.05) by multivariate logistic regression.

DISCUSSION

In this study, the eligible patients with aSAH from five
medical centers were randomly divided into model training and
validation cohorts. One conventional LR and six types of famous
ML methods were used to construct the prediction model by
incorporating relatively complete admission clinical data, and all
model performances were assessed and compared. To the best of
our knowledge, this study is the first to utilize the rounded clinical
features to develop the model and systematically compare the
performance of several popular ML methods and conventional
LR onDCI prediction. In addition, firstly, we developed an online
prediction tool based on the most important features of the RF
model to precisely calculate the risk of DCI development.
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FIGURE 4 | The training process and optimal parameters of six types of full-feature ML models. (A) shows the training process of k-nearest neighbor, and the optimal

K-value is 21; (B) shows the error and gamma parameter of the support vector machine during the training process, and the two optimal parameters are 0.238 and

0.1; (C) illustrates the training process of the decision tree model, and the most important branches are subarachnoid clot CT value and WBC count; (D) displays the

training process of random forest, and the optima tree number of the RF model is 179; (E) shows the training process of eXtreme Gradient Boosting, and the optimal

parameters are gamma of 0.25, max depth of 2, and n-rounds value of 100; (F) demonstrates the training process of artificial neural network, and generalized weights

of all clinical features are seen.

It was considered that only a few admission clinical features
would not lead to an accurate DCI prediction. However, the
most commonly used multivariable prediction models are still
based on LR. For instance, de Rooij et al. (2013) incorporated
some features selected by LR and constructed a practical risk
chart for DCI prediction. The AUC value of this risk chart was
0.69 in the validation cohort. Liu et al. (2020) used six factors
selected via LR to develop a nomogram for DCI, which achieved
an AUC value of 0.65 on the test set. Other studies have also
employed the conventional LR method to identify independent
factors for DCI prediction (Al-Mufti et al., 2017, 2019a; Duan
et al., 2018; Hurth et al., 2020). In our study, the LR model
incorporated four independent features for DCI classification
and achieved an AUC value of 0.837 in the validation cohort,
which was higher than the AUC values previous models reported
(de Oliveira Manoel et al., 2015; Foreman et al., 2017; van
der Steen et al., 2019; Liu et al., 2020). The inclusion of
complete admission clinical information can enable the LR
to select the optimal variables to improve the prediction
performance, which may explain the better performance of our
LR model. However, owing to the robustness of the LR model,
it cannot take full advantage of information from all clinical
input features.

Machine learning models can solve the problem of high-
dimensional data more robustly than the conventional LR

method, making them suitable for fitting more features for
prediction (Brusko et al., 2018; Buchlak et al., 2020). This
capability can reduce the subjectivity in statistical analysis
and ensure the objectivity of the results. Recently, ML
algorithms have been developed rapidly, and some studies
have reported the use of ML to predict the occurrence of
DCI. de Jong et al. (2021) constructed a feedforward artificial
neural network model and achieved an AUC of 0.72 for
DCI prediction with a database with 362 patients. Their
model performed equally well as the VASOGRADE model (de
Oliveira Manoel et al., 2015). The ANN model in our study,
with an AUC of 0.858, had a better predictive power than
the conventional LR model and outperformed the previous
ANNmodel.

Some researchers have compared the performances of LR and
ML models for the prediction of DCI or other diseases. For
instance, Savarraj et al. (2021) developed ML and LR models
for DCI classification using a dataset with 399 patients. Their
results showed that the ML model with the highest AUC value
of 0.75 ± 0.07 outperformed the LR model. Ramos et al. (2019)
reported that the ML model with the highest AUC value of
0.74 performed better than the best LR model with an AUC
of 0.63. However, Nusinovici et al. (2020) reported that the
LR model could perform equivalently to the ML models in
their study, and Chen et al. (2020) showed that ML models
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FIGURE 5 | All features importance of random forest calculated by Gini index.

FIGURE 6 | The interface of the online prediction tool for predicting delayed cerebral ischemia.
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FIGURE 7 | The clinical and practical evaluation of the online prediction tool. (A) shows a decision curve analysis (DCA); (B) displays a clinical impact curve (CIC).

cannot outperform the conventional LR model in predicting
other diseases. In our study, we constructed several popular ML
models based on the relatively complete clinical features, some
of which were not compared in previous studies. The prediction
ability of the LR model was inferior to those of the ANN and
RF models, but better than those of the KNN, support vector
machine, decision tree, and extreme gradient boosting models.
This indicates that the traditional LR method still can play an
important role in DCI prediction. AlthoughML canmake perfect
use of the input characteristics, data overfitting may lead to poor
prediction performance.

Subarachnoid hemorrhage is a state of systemic inflammatory
response syndrome, with both biochemical and cellular reactions
(Parkinson and Stephensen, 1984). SAH initiates the rapid
activation of the inflammatory cascade, and growing evidence
suggests that an early neurovascular inflammatory response is
a potential mechanism of late cerebral vasospasm and early
brain injury (Helbok et al., 2015). The CT value in SAH often
represents the subarachnoid clot density and can reflect the
cerebral inflammatory response. At present, the measurement
method of CT density value of subarachnoid clot still relies
on the manual drawing of ROI. Kanazawa et al. (2020) found
that an ROI CT value of ≥49.95 HU is correlated with DCI
occurrence. Our results are consistent with those of previous
studies showing that the CT value of >60.12 HU plays a
prominent role in DCI prediction. Additionally, Ahn et al.
(2018) constructed a scoring system for predicting DCI and
clinical outcomes based on early cerebral edema after aSAH.
This scoring system may become a surrogate marker of early
brain injury and predicts DCI and prognosis after aSAH. Our
consequence also illustrates that early cerebral edema also has
an important influence on DCI prediction. As we know, WBC
and neutrophil counts also play an important role in reflecting
neuroinflammatory responses. Al-Mufti et al. (2019b) found that
a WBC count >12.1 × 109/L was the strongest predictor of
DCI after adjusting for confounding factors, including clinical

grade and aneurysm clipping treatment. Our results found that
the WBC count >11.2 × 10∧9/L, neutrophil count >9.58 ×

10∧9/L, and monocytes count >0.46 × 10∧9/L were the most
important features for the prediction DCI. A recent study has
shown that admission WBC, neutrophil, and monocyte counts
were higher in patients with DCI and unfavorable prognosis
(Gusdon et al., 2021). Inspiringly, our study confirmed this,
which could account for the fact that DCI development is closely
relative to the inflammatory response. Future basic research
should further explore the inflammatory machine during the
occurrence of DCI.

Based on the superior prediction performance of the RF,
we used the most important features to construct an online
prediction tool, which will aid in the early identification
of patients at high risk of DCI after aSAH and allow
timely interventions.

Our study systematically collected admission baseline
information, laboratory test results, and admission CT imaging
data, and these pieces of information are representative as
possible of the true condition of aSAH patients when they
are admitted to the hospital. Secondly, in order to avoid the
defects of single-center data modeling, we collected data from
multiple medical centers, making the DCI prediction model
more generalized and robust, which is the second innovation of
this study. Thirdly, this study covers several of the most popular
machine learning algorithms, which have not been systematically
compared with conventional models in previous studies, which
is also an innovation point. Fourth, we built an online version of
the prediction tool, which is convenient for clinicians to calculate
the risk of DCI based on patient information at admission.
However, there are several limitations that were observed.
This was a retrospective study, and a larger prospective study
should be considered to validate our results. Second, a possible
deviation caused by manual ROI drawing is unavoidable. The
agreement measurements for CT values between an experienced
neurosurgeon and a radiologist were acceptable. Third, having
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an accuracy of 1 or AUC of 1 on the training dataset means
the model is perfect, which is clearly not the case. Among the
model we constructed, the random forest has overfitting. We
know that overfitting may occur when the model tries to fit all
the predicted features with a limited training dataset, which is
to say a modeling error in statistics that occurs when a function
is too closely aligned to the training dataset. Our future studies
will collect more samples to further verify the results of the
RF mode.

CONCLUSIONS

In this multicenter study, we found that several ML methods,
particularly random forest, outperformed conventional LR.
Furthermore, an online prediction tool based on the random
forest model was developed to identify patients at high risk for
delayed cerebral ischemia after subarachnoid hemorrhage and
facilitate timely interventions.
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