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Performance and clinical utility of supervised machine-learning
approaches in detecting familial hypercholesterolaemia in
primary care
Ralph K. Akyea 1✉, Nadeem Qureshi 1, Joe Kai 1 and Stephen F. Weng1

Familial hypercholesterolaemia (FH) is a common inherited disorder, causing lifelong elevated low-density lipoprotein cholesterol
(LDL-C). Most individuals with FH remain undiagnosed, precluding opportunities to prevent premature heart disease and death.
Some machine-learning approaches improve detection of FH in electronic health records, though clinical impact is under-explored.
We assessed performance of an array of machine-learning approaches for enhancing detection of FH, and their clinical utility,
within a large primary care population. A retrospective cohort study was done using routine primary care clinical records of
4,027,775 individuals from the United Kingdom with total cholesterol measured from 1 January 1999 to 25 June 2019. Predictive
accuracy of five common machine-learning algorithms (logistic regression, random forest, gradient boosting machines, neural
networks and ensemble learning) were assessed for detecting FH. Predictive accuracy was assessed by area under the receiver
operating curves (AUC) and expected vs observed calibration slope; with clinical utility assessed by expected case-review workload
and likelihood ratios. There were 7928 incident diagnoses of FH. In addition to known clinical features of FH (raised total cholesterol
or LDL-C and family history of premature coronary heart disease), machine-learning (ML) algorithms identified features such as
raised triglycerides which reduced the likelihood of FH. Apart from logistic regression (AUC, 0.81), all four other ML approaches had
similarly high predictive accuracy (AUC > 0.89). Calibration slope ranged from 0.997 for gradient boosting machines to 1.857 for
logistic regression. Among those screened, high probability cases requiring clinical review varied from 0.73% using ensemble
learning to 10.16% using deep learning, but with positive predictive values of 15.5% and 2.8% respectively. Ensemble learning
exhibited a dominant positive likelihood ratio (45.5) compared to all other ML models (7.0–14.4). Machine-learning models show
similar high accuracy in detecting FH, offering opportunities to increase diagnosis. However, the clinical case-finding workload
required for yield of cases will differ substantially between models.
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INTRODUCTION
Familial hypercholesterolaemia (FH) is a common inherited
genetic disorder causing high cholesterol levels from birth1 and
increased risk of premature heart disease and death2. FH affects
~1 in 200–500 of the general population3,4. However, most
individuals with FH and affected family members remain
undiagnosed worldwide5. In patients with heterozygous FH,
lipid-lowering therapy such as the use of moderate- to high-
intensity statins, or newer PCSK9 inhibitors markedly improves
prognosis6 – reducing risk of coronary heart disease and all-cause
mortality by at least 44%7,8. Patients who remain unidentified will
be untreated or be sub-optimally treated with low-intensity statins
and assumed to have commoner multifactorial causes for raised
cholesterol.
Internationally, current approaches to identity FH based on

clinical characteristics recommend use of the Simon-Broome
diagnostic criteria (SB)2, Dutch Lipid Clinic Network criteria
(DLCN)9, Make Early Diagnosis to Prevent Early Deaths
(MEDPED)10, or Japanese Atherosclerosis Society (JAS) criteria11

(see Supplementary Box 1). These criteria have all been developed
from specialist FH or lipid clinic registries, with emphasise on
conducting a thorough family history and assessment of clinical
features such as tendon xanthoma and arcus senilis. This means
the application of these criteria in searching electronic health
records of the wider general population in primary care will be

limited. For instance, family histories are poorly recorded as
evidenced in primary care databases from the UK and Australia,
hence an acknowledged limitation of using primary care
databases12.
Hence, there has been a drive to develop bespoke algorithms

derived from large electronic health records (EHRs) to detect FH.
The SEARCH study in the US13 used an electronic version of the
DLCN criteria, while the FAMCAT tool in the UK14–16 and FindFH
model in the US17 have been recently developed from prediction
modelling. Using standard logistic regression, area under receiver
operating curves (AUC) for FAMCAT were from 0.86 in its
development database (UK Clinical Practice Research Datalink)18,
to 0.83 and 0.84 in two separate external validation databases14,15

(QRESEARCH and RCGP Surveillance Network). Developed as a
data-driven machine-learning (ML) algorithm from US adminis-
trative health data, the recent FindFH model resulted in an AUC of
0.89 using a random forest models approach17.
ML algorithms have diverse applications including disease

modelling19, with the potential of improving prediction, identify-
ing latent variables which are unlikely to be observed but might
be inferred from other variables. ML, therefore, offers an
alternative approach to standard prediction modelling20. The
aims of this study were firstly, to evaluate the performance of a
range of different ML algorithms to identify patients with FH
within a large UK general primary care population; secondly, we
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sought to determine potential differences in the clinical utility of
using different ML algorithms.

RESULTS
Study population characteristics
There was a total of 4,157,705 individuals in CPRD study
population with either a total cholesterol or LDL-cholesterol
record during the study period. 129,930 (3.1%) individuals were
excluded from the analysis for either having outlying cholesterol
measurements, data entry errors, having a death or transfer out
date before study start date or a diagnosis of FH before the study
start date. The complete study cohort for analysis was made up of
4,027,775 individuals, with 7928 (0.2%) having a documented
diagnosis of FH (Fig. 1). Reported FH prevalence was higher
towards the south of England, with London having greatest
frequency of FH identified. Other regions of England towards the
North and Northeast have lower population frequency of FH
identified.
To develop the FH models, 75% of the complete cohort (n=

3,020,832) was randomly sampled to become the training cohort
and the remaining 25% of the cohort (n= 1,006,943) assigned as
the validation cohort. Table 1 shows the descriptive characteristics
of both training and validation cohorts stratified by sex.

Variable rankings
Clinical features ranking for predicting FH are presented in Fig. 2,
Supplementary Table 1. All 45 predictor variables were included in
developing all the models. All models, apart from deep learning,
indicated that cholesterol values and family history features were
strong indicators of FH, consistent with existing diagnostic criteria.

For the logistic regression model, only three features remained as
relevant. For random forests and gradient boosting machines both
featured current statin potency, triglycerides, body mass index
and systolic blood pressure to determine the likelihood of FH. The
deep learning model prioritised exclusion features which indicate
a lower likelihood of FH, including secondary causes of raised
cholesterol due to chronic conditions such as kidney disease,
diabetes, hypertension and hypothyroidism. The deep learning
model also identified rare signals such as tendon xanthomata,
which is known to be under-recognised in primary care.

Discrimination
To predict the risk/probability of having FH for each individual, the
algorithms were applied to the validation cohort (n= 1,006,943).
The discrimination accuracy based on AUC, c-statistics, is
presented in Fig. 3 for all the models (Supplementary Table 2
for details). AUC was lowest for the logistic regression model. The
discrimination accuracy was similar by sex. For instance, for the
ensemble model, which is a combination of all the other models,
the c-statistics for FH in men was 0.898 (95% CI: 0.886–0.911)
compared to 0.884 (95% CI: 0.873–0.895) for women.

Calibration
Calibration accuracy for all the models was assessed by plotting
deciles of predicted risk against expected proportion of FH
diagnosis for each decile, Fig. 4. At lower predicted risks, the
algorithms were generally well calibrated, however, at higher
predicted risks were not as well-calibrated.

Fig. 1 Map of familial hypercholesterolaemia prevalence. Reported prevalence of familial hypercholesterolaemia in primary care electronic
health records by English region.
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Sensitivity and specificity
Using a cut-off above 1 in 250 (0·004), we determined the sensitivity,
specificity, positive predictive value (PPV) and negative predictive
value (NPV) of each machine-learning algorithm shown in Table 2.
The number of high probability individuals varied due to the shapes
of the probability distributions between algorithms, ranging from

0.73% of the population using ensemble learning to 10.16% of the
population using deep learning. Specificity was not as variable as
sensitivity ranging from 90.0% for deep leaning to 99.3% for
ensemble learning. The corresponding NPVs for all algorithms were
all above 99%. Sensitivity was highest for the deep learning
algorithm (72.6%) and lowest for ensemble learning (30.5%).

Table 1. Clinical characteristics for men and women age 16 years or above in the derivation and validation cohorts.

Training cohort (n= 3,020,832) Validation cohort (n= 1,006,943)

Men Women Men Women

Total sample size 1,464,128 (48.5) 1,556,704 (51.5) 487,071 (48.4) 519,872 (51.6)

No (%) diagnosed with FH 2527 (0.2) 3452 (0.2) 817 (0.2) 1132 (0.2)

Highest total cholesterol (TC) ever, mean (SD) 5.6 (1.3) 5.8 (1.4) 5.6 (1.3) 5.8 (1.4)

Age at TC measurement, mean (SD) 55.3 (15.8) 57.0 (17.3) 55.3 (15.8) 57.0 (17.3)

Triglyceride at time of highest TC, mean (SD) 1.9 (1.6) 1.5 (1.0) 1.9 (1.6) 1.5 (1.1)

Diastolic blood pressure at highest TC, mean (SD) 81 (11) 79 (11) 81 (11) 79 (11)

Systolic blood pressure at highest TC, mean (SD) 137 (19) 134 (20) 137 (19) 134 (20)

Highest LDL cholesterol (LDL-C) ever, mean (SD) 3.5 (1.0) 3.5 (1.1) 3.5 (1.0) 3.5 (1.1)

Age at LDL-C measurement, mean (SD) 56.1 (16.6) 57.2 (18.1) 56.2 (16.6) 57.2 (18.1)

Triglyceride at time of highest LDL-C, mean (SD) 1.7 (1.1) 1.4 (0.8) 1.7 (1.1) 1.4 (0.9)

Diastolic blood pressure at highest LDL-C, mean (SD) 81 (11) 78 (11) 81 (11) 78 (11)

Systolic blood pressure at highest LDL-C, mean (SD) 136 (18) 133 (20) 136 (18) 132 (20)

Tendon xanthomata 35 (<0.01) 56 (<0.01) 15 (<0.01) 19 (<0.01)

Family history of FH 5522 (0.4) 8852 (0.6) 1847 (0.4) 2935 (0.6)

Family history of CHD 53,105 (3.6) 69,806 (4.5) 17,675 (3.6) 23,219 (4.5)

Family history of raised cholesterol 7602 (0.5) 10,485 (0.7) 2513 (0.5) 3570 (0.7)

Family history of MI 43,620 (3.0) 47,839 (3.1) 14,742 (3.0) 16,158 (3.1)

Body mass index, mean (SD) 28.0 (4.7) 27.8 (5.9) 28.0 (4.7) 27.8 (5.9)

Smoking status

Non-smoker 705,878 (48.2) 956,996 (61.5) 234,004 (48.0) 319,413 (61.4)

Ex-smoker 491,858 (33.6) 376,326 (24.2) 163,994 (33.7) 125,919 (24.2)

Current smoker 266,392 (18.2) 223,382 (14.4) 89,073 (18.3) 74,540 (14.3)

Alcohol status

Non-drinker 418,657 (28.6) 603,787 (38.8) 139,229 (28.6) 201,069 (38.7)

Ex-drinker 55,943 (3.8) 46,680 (3.0) 18,392 (3.8) 15,578 (3.0)

Drinks alcohol 989,528 (67.6) 906,237 (58.2) 329,450 (67.6) 303,225 (58.3)

Hypertension 355,388 (24.3) 378,706 (24.3) 118,645 (24.4) 126,557 (24.3)

Chronic kidney disease 145,606 (9.9) 193,754 (12.5) 48,508 (9.9) 64,300 (12.4)

Hypothyroidism 42,382 (2.9) 155,282 (9.9) 13,859 (2.9) 51,770 (9.9)

Diabetes 218,271 (14.9) 179,788 (11.6) 72,671 (14.9) 59,968 (11.5)

Chronic liver disease 36,603 (2.5) 31,508 (2.0) 12,087 (2.5) 10,426 (2.0)

Nephrotic syndrome 1807 (0.1) 1396 (0.1) 562 (0.1) 482 (0.1)

History of CHD 179,494 (12.3) 114,314 (7.3) 59,814 (12.3) 38,228 (7.4)

History of CVA 44,819 (3.1) 44,171 (2.8) 14,907 (3.1) 14,764 (2.8)

History of PVD 24,130 (1.7) 15,998 (1.0) 7887 (1.6) 5253 (1.0)

Lipid-lowering medication

No statin prescription 869,788 (59.4) 1,047,007 (67.3) 288,997 (59.3) 349,298 (67.2)

Low potency statin 31,422 (2.2) 29,592 (1.9) 10,543 (2.2) 10,014 (1.9)

Medium potency statin 332,747 (22.7) 292,403 (18.8) 111,313 (22.9) 97,552 (18.8)

High potency statin 225,434 (15.4) 180,912 (11.6) 74,602 (15.3) 60,669 (11.7)

Other lipid-lowering drugs 4737 (0.3) 6790 (0.4) 1616 (0.3) 2339 (0.5)

Family history of CHD excludes myocardial infarction. Statins were grouped into three different intensity categories according to the percentage reduction in
low-density lipoprotein cholesterol28, based on UK National Institute for Health and Care Excellence (NICE) Clinical Guideline (CG 181).
CHD coronary heart disease, CVA cerebrovascular accident, FH familial hypercholesterolaemia, PVD peripheral vascular disease, SD standard deviation.
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However, a lower proportion of high probability individuals using
ensemble learning models meant that the PPV for ensemble learning
would be the highest (15.5%). In contrast, deep learning models, by
identifying a far greater number of high probability individuals,
meant that this model would result in the lowest PPV (2.8%).

Likelihood ratios
We determined positive and negative likelihood ratios (LR) for
each machine-learning algorithm (Fig. 5). The positive likelihood
ratio (LR+) estimates the likelihood of having FH, give a positive
test result (>1 in 250). The negative likelihood ratio (LR−)
estimates the likelihood of not having FH, given a negative test
result (≤1/250). All machine-learning models resulted in significant
LR+ and LR−, with ensemble learning having the highest LR+
(45.5, 95% CI 42.4–49.9) and deep learning models having lowest
LR− (0.31, 95% CI 0.28–0.33).

DISCUSSION
We have assessed the ability of five different machine-learning
(ML) algorithms to detect cases of familial hypercholesterolaemia
(FH) in over 4 million patients’ routine primary health care records.
We found four ML models (random forest, gradient boosting,

deep learning and ensemble learning) all had similarly high
predictive accuracy, with AUC > 0.89. This is highly consistent with
that found for the FindFH model, using a random forest algorithm
in US administrative health data17; and a 3–6% improvement on
the UK FAMCAT tool using standard logistic regression14,15,18.
We found substantial differences for clinical utility between ML

algorithms. Despite their similar overall accuracy (apart from
logistic regression), our analysis highlights a trade-off that will be
necessary between specificity and sensitivity of these models for
binary risk stratification. Specificity and negative predictive values
were consistently high across all methods, due to the low
prevalence of FH in the general population. However, numbers
identified as high probability of FH, sensitivity and positive
predictive values varied between approaches.

Fig. 2 Top 10 risk factors for familial hypercholesterolaemia. Algorithms were derived from training cohort of 3,020,832 patients. BP blood
pressure, CHD coronary heart disease, DLM deep learning model, FH familial hypercholesterolaemia, GBM gradient boosting model, LDL-C
low-density lipoprotein cholesterol, LRM logistic regression model, RFM random forest model, TC total cholesterol.

Fig. 3 Discrimination accuracy of the models for identifying
familial hypercholesterolaemia in primary care. Based on valida-
tion cohort of 1,006,943 patients.
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For instance, we found a deep learning model would identify
~10% of the population as probable FH, generating a very high
case load for clinicians to screen, review and test. This would have
the highest sensitivity (i.e. proportion of patients with actual FH
identified) but the detection rate would be poor (low positive
predictive value). Conversely, ensemble learning would identify
only 0.73% of the population as probable FH requiring clinical
review. Although this has lower sensitivity, it would be more
efficient in having a higher detection rate (higher positive
predictive value).
For example, in an average sized UK primary care practice of

8800 patients, an estimated 30% (n= 2640) of individuals would
have had a registered cholesterol measured21. Using a deep
learning model would identify 264 probable FH needing clinical
assessment and testing. This strategy would yield the maximum
absolute number of FH cases identified but would also be the
most resource intensive. Conversely, ensemble learning would
minimise the number of probable FH to <20 patients for clinical

assessment. As the ensemble learning algorithm has the greatest
positive likelihood ratio whilst maintaining a significant negative
likelihood ratio, this may arguably be the most viable ML model to
implement for FH case-finding in primary care practice, given
workload and resource implications. Following a model-based
approach to case-finding for potential FH, the patient would
require a detailed clinical assessment and confirmatory diagnosis
by genetic testing to identify a pathogenic mutation. Hence, the
extent of false-positive results would have significant resource
implications.
This study further highlights interesting and significant varia-

tions in the clinical variables identified by the different ML models
used. The ML-based logistic regression only consisted of three
variables (total cholesterol, LDL-cholesterol and potency of statin
prescribed) which is similar to the initial triage of primary care
electronic health records recommended by English NICE guideline
recommendations through identification of elevated cholesterols
alone to systematically identify those with possible FH22. Other

Fig. 4 Calibration plots for all models. Based on validation cohort of 1,006,943 patients: a logistic regression model, b random forest model,
c gradient boosting model, d deep-learning model and e ensemble model. E:O log of the expected/observed number of events, CITL
calibration-in-the-large, AUC area under the curve, slope calibration slope. The circles represent deciles of patients grouped by similar
predicted risk. The distribution of patients (stratified by outcome) is indicated with spikes at the bottom of the graph. Patients with a diagnosis
of familial hypercholesterolaemia (FH) are represented by spikes above the x-axis (red line), and patients without a diagnosis of FH, below the
x-axis).

Table 2. Sensitivity, specificity, positive predictive and negative values for machine-learning models for detecting familial hypercholesterolaemia in
the validation cohort (n= 1,006,943).

Machine-learning models % High probability
(>1/250) (%)

Sensitivity Specificity Positive predictive
value (PPV)

Negative predictive
value (NPV)

Logistic regression 3.38 37.6% (35.5–39.8) 96.7% (96.6–96.7) 4.4% (4.1–4.6) 99.7% (99.7–99.8)

Random forest 8.09 69.1% (67.0–71.2) 92.0% (92.0–92.1) 3.4% (3.3–3.5) 99.9% (99.9–99.9)

Gradient boosting 4.27 58.3% (56.1–60.5) 95.8% (95.8–95.9) 5.3% (5.1–5.5) 99.8% (99.8–99.8)

Deep learning 10.16 72.6% (70.6–74.6) 90.0% (89.9–90.0) 2.8% (2.8–2.9) 99.9% (99.9–99.9)

Ensemble learning 0.73 30.5% (28.4–32.6) 99.3% (99.3–99.3) 15.5% (14.5–16.4) 99.7% (99.7–99.7)

aAssumes population frequency of familial hypercholesterolaemia of 1 in 2504.
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models also identified potential negative indicators of FH – those
with elevated triglycerides and secondary causes of raised
cholesterol. In FH patients, serum triglycerides are usually not
elevated23. Raised triglycerides appeared as an important negative
feature in both random forest and gradient boosting models.
Deep learning identified several secondary causes which were
strong negative indicators of FH, including liver disease, chronic
kidney disease, hypothyroidism and diabetes. These factors are
supported by guidelines recommending excluding these second-
ary causes prior to establishing a possible FH diagnosis22. The
deep learning model also identified tendon xanthomata as an
important clinical feature suggesting a definite FH diagnosis, in
line with established SB and DLCN criteria2,9. Given its poor
recognition in primary care, in any standard modelling, this would
have been very unlikely to have the statistical power to identify FH
given this clinical feature is only present in <0.01% of the total
cohort population.
This research offers a number of strengths. Our study evaluates

a range of different ML models for detection of FH in primary care
and has done so using not only conventional AUC but also the
sensitivity, specificity, positive predictive value and negative
predictive values. We employed a large sample size of over four
million patients, embracing 6% of the entire UK population,
enhancing generalisability of the findings. In particular, this work
has also assessed the clinical value of these ML algorithms by
exploring diagnostic test accuracy metrics, seldom reported for
prediction models using machine-learning.
The current UK study and recent study in the US17 confirm that

ML approaches are viable to use in EHR systems and can
significantly enhance detection FH. This offers major opportunities
to increase diagnosis of FH and to prevent premature heart

disease and early deaths. Moreover, while replication of ML
methods can be questioned24, the use of different datasets in the
UK and US, with consistency between their analysis by different
study teams is now available, supporting the generalisability of
these ML approaches. In this regard, we have also made fully
available, in GitHub, the codes for our models to assist with
replication, validation and implementation.
However, we acknowledge several study limitations, in common

with other research using large health care databases. These
include lack of formal adjudication of diagnoses, information bias
and potential bias due to missing data. Missing data could
potentially introduce bias in the effect estimates of the prediction
models as well as a reducing power. However, we used imputation
methods for variables which were sufficiently missing-at-random
and a very large sample size to mitigate these effects. The specific
coding of FH recorded in UK general practice records will include
patients identified with phenotypic FH, who may or may not have
been confirmed by genetic testing. A recognised issue in EHRs is
that some patients FH could potentially be misclassified, have not
yet been identified, or might not have had cholesterol assessed.
Future research should validate and replicate our ML models in

other large clinical datasets in other populations. Secondly, further
evaluation of the feasibility and acceptability of machine-learning
applications in clinical practice is needed. The computational
capacity of health care systems continues to evolve; and electronic
health records are increasingly moving to cloud-based servers
with data centralisation. This presents exciting opportunities to
exploit machine-learning as a realistic option to detect uncommon
conditions of major health importance, such as familial
hypercholesterolaemia.

Fig. 5 Positive and negative likelihood ratios for machine-learning models for detecting familial hypercholesterolaemia. Based on
validation cohort of 1,006,943 patients: a positive likelihood ratios (95% confidence interval) and b negative likelihood ratios (95% confidence
interval).
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METHODS
Study design and data source
The study cohort was obtained from the Clinical Practice Research Datalink
(CPRD). CPRD contains anonymised electronic medical records from 836
general practices with over 11 million research-usable patients25 and is
representative of the UK general population26. Over 5.2 million of these
patient records are currently of active research-quality, making CPRD one
of the most widely used real-world data sources for healthcare research.
Information routinely collected from primary care practices, as part of the
database, include demographics, lifestyle, diagnoses, prescriptions, diag-
nostic tests, referrals to specialists and secondary care and death status.
Secondary care activity is incorporated in the primary care records through
hospital discharge letters from hospital or referral notes from specialists.

Study population
A record of cholesterol level is essential to establish a diagnosis of FH
hence, all patients included in the study had at least a single record of total
cholesterol measurement between the baseline date of 1 January 1999 or
the earliest date the CPRD primary care practice started contributing data
to the database after 1 January 1999 and the end date of 25 June 2019 or
the latest date the CPRD primary care practice finished contributing data
prior to 25 June 2019. Where follow-up was not completed by a patient,
the end date was specified as the date of death, transfer out of practice, or
final practice visit. Patients with a diagnosis of FH, had the date of the
diagnosis specified as their end date. Patients aged 16 years and younger
were excluded as the cholesterol level thresholds for the diagnosis and
treatment of FH vary when compared to adults22. Patients with a FH
diagnosis prior to study entry date (1 January 1999) or with a prior
diagnosis of other inherited lipid disorders were excluded.

Clinical features
Clinical features incorporated into all machine-learning models are
documented in Box 1. These were derived from known associations
between these features and having FH from previous literature, in
recommended diagnostic criteria, previously developed algorithms, or
expert clinical opinion. We included a range of clinical features which could
either increase or decrease the likelihood of FH.
Identifying patients with possible FH using Simon-Broome criteria is

based on the following variables: total cholesterol, LDL-cholesterol, family
history of MI, and family history of raised cholesterol3. Where a patients
had both LDL and total cholesterol levels recorded, the LDL-cholesterol
was prioritised, given its importance in recommended diagnostic criteria.
For patients with multiple cholesterol levels recorded, the highest
cholesterol value at any point between 1 January 1999 and 25 June
2019 was used. Each patient’s recorded triglyceride record at the time of
each cholesterol measurement was extracted – raised levels are a negative
predictor of FH23. We assessed for outliers (cholesterol and triglyceride
levels ≤0mmol/L or >5 positive standard deviations [SD] from the mean)
and data entry errors. A prior history of CHD <60 years may also lead to a
higher likelihood of being diagnosed with FH27.
Family histories of MI and of raised cholesterol were included as likely

diagnostic variables22. while not specifically included in previous criteria/
guidelines, family history of FH was also examined. Family history variables
were dichotomised to either having a family history or not. In the event
that family history was not evaluated, we assumed that there was no family
history. Additional information was not available to further categorise
family history to identify the relative affected and age at diagnosis for the
condition28.
Although current diagnostic criteria use untreated cholesterol levels to

evaluate probability of FH27, patients with elevated cholesterol levels may
be receiving lipid-lowering therapy. Consequently, the prescribing and
potency of lipid-lowering therapy were included as variables of interest.
Cholesterol level was considered treated when the most recent prescrip-
tion of lipid-lowering therapy ended within 30-days or overlapped with the
date of the cholesterol measurement. A 30-day washout period was used
to account for any residual effects of the lipid-lowering drugs when the
drug treatment had been stopped29. Statin potency was classified using
the most recent recommendations for statin intensity in the clinical
guidance of the UK National Institute of Health and Care Excellence (NICE),
which is based on a previous meta-analysis30.
Secondary causes of hypercholesterolaemia are currently recommended

as negative predictors of FH in clinical guidelines22. The following
important secondary conditions were, therefore, included in our

assessment: liver disease (defined as, fatty liver disease, cirrhosis, chronic
liver failure and alcoholic liver disease), diabetes mellitus (type I and type
II), hypothyroidism (acquired and congenital), kidney disease (defined as,
chronic kidney disease, renal impairment and acute renal failure) and
nephrotic syndrome.

Outcome
The primary outcome was a documented incident diagnosis of FH in the
patient records during the specified study period. FH is explicitly coded
using the internationally recognised Read coding system in UK primary

Box 1 Baseline predictor variables included in predicting
familial hypercholesterolaemia

● Sex (female; male)
● Tendon xanthomata (yes; no)
● Family history of Familial Hypercholesterolaemia (yes; no)
● Family history of coronary heart disease, excluding myocardial infarction

(yes; no)
● Family history of myocardial infarction (yes; no)
● Family history of raised cholesterol (yes; no)
● Family history of all coronary heart disease (yes; no)
● DNA test for apoB-100 (identified; not identified/no test)
● Any diagnosis of hypertension ever (yes; no)
● Any diagnosis of nephrotic syndrome ever (yes; no)
● Any diagnosis of coronary heart disease ever (yes; no)
● Any diagnosis of cerebrovascular accident ever (yes; no)
● Any diagnosis of peripheral vascular disease ever (yes; no)
● Any diagnosis of kidney disease ever (yes; no)
● Any diagnosis of hypothyroidism ever (yes; no)
● Any diagnosis of diabetes ever (yes; no)
● Any diagnosis of liver disease ever (yes; no)
● Most recent smoking status (non-smoker; ex-smoker; current smoker)
● Most recent alcohol status (non-drinker; ex-drinker; drinks)
● Most recent alcohol consumption (units/week)
● Highest potency statin ever prescribed (no statin usage recorded; other

lipid-lowering drugs; low potency statins; medium potency statins; high
potency statins)

● Highest total cholesterol level ever recorded (mmol/L)
● Age at time of highest total cholesterol record (years)
● Whether high total cholesterol was treated (treated; untreated)
● Treatment for high total cholesterol (untreated; other lipid-lowering

treatment; low potency statins; medium potency statins; high potency
statins)

● Triglyceride level at the time of highest total cholesterol record (mmol/L)
● Diastolic blood pressure closest to time of highest total cholesterol

record (mmHg)
● Systolic blood pressure closest to time of highest total cholesterol

record (mmHg)
● Hypertension control at the time of highest total cholesterol record (no

hypertension; hypertension - unknown control; hypertension - poor control)
● Hypothyroidism control at the time of highest total cholesterol record (no

hypothyroidism; hypothyroidism - unknown control; hypothyroidism - poor
control)

● Diabetes control at the time of highest total cholesterol record (no diabetes;
diabetes - unknown control; diabetes - poor control)

● Liver damage at the time of highest total cholesterol record (no liver
disease; liver disease - unknown control; liver disease - poor control)

● Kidney disease at the time of highest total cholesterol record (no kidney
disease; kidney disease - unknown control; kidney disease - poor control)

● Highest LDL-cholesterol level ever recorded (mmol/L)
● Age at time of LDL-cholesterol measurement (years)
● Whether high LDL-cholesterol was treated (treated; untreated)
● Treatment for high LDL-cholesterol (untreated; other lipid-lowering treat-

ment; low potency statins; medium potency statins; high potency statins)
● Triglyceride level at the time of highest LDL-cholesterol record (mmol/L)
● Diastolic blood pressure closest to time of highest LDL-cholesterol record
● Systolic blood pressure closest to time of highest LDL-cholesterol record
● Hypertension control at the time of highest LDL-cholesterol record (no

hypertension; hypertension - unknown control; hypertension - poor control)
● Hypothyroidism control at the time of highest LDL-cholesterol record (no

hypothyroidism; Hypothyroidism - unknown control; Hypothyroidism - poor
control)

● Diabetes control at the time of highest LDL-cholesterol record (no diabetes;
diabetes - unknown control; diabetes - poor control)

● Liver damage at the time of highest LDL-cholesterol record (no liver disease;
liver disease - unknown control; liver disease - poor control)

● Kidney disease at the time of highest LDL-cholesterol record (no kidney
disease; kidney disease - unknown control; kidney disease - poor control)
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electronic health records (EHRs). This diagnostic code is entered into
primary care electronic records after lipid specialist assessment, based on
clinical phenotype, and/or by genetic test. To ensure temporality between
predictors and the outcome, the diagnosis of FH must have occurred after
the predictor variables.

Machine-learning algorithms/models
The total study cohort was randomly split into a ‘training’ cohort (75% of
the study cohort) in which the FH algorithms were derived and a
‘validation’ cohort (remaining 25% of the cohort) in which the algorithms
were applied and tested. The data split was computer-generated using a
uniform distribution to generate random numbers in STATA. The five
commonly used algorithms were used – logistic regression31, random
forest32, gradient boosting machines33, deep-learning neural networks34

and ensemble learning35. Ensemble learning model was a combination of
the four (4) other ML algorithms. Using the library package h2o (http://
www.h2o.ai) in R Studio, the risk algorithms were developed in the training
cohort and applied to the validation cohort. A grid search was used to
determine the hyper parameters for each model and 10-fold cross-
validations was done to determine the values for the best performance
using the training cohort (Supplementary Methods 1).

Statistical analysis
Descriptive characteristics for the study population are reported as
numbers with percentages or mean with standard deviation (SD) for
categorical and continuous variables, respectively. The level of missing
values ranged between 2.4% for systolic blood pressure to 23.3% for body
mass index (BMI) (Supplementary Methods 2). To estimate missing values
for BMI, LDL-C levels, triglyceride levels, systolic and diastolic blood
pressures, multiple imputation by chained equations was used to generate
10 imputed datasets using all the other available patient variables36. The
imputed datasets were pooled into a single dataset using Rubin’s rule37.
Harrell’s c-statistic, a measure of the total area under the receiver

operating characteristic curve (AUC), was calculated using the validation
cohorts to determine the predictive accuracy of the models developed in
the training cohort. A jack-knife procedure was used to estimate the
standard errors and 95% confidence intervals for the c-statistic estimates38.
AUC is a global indicator of a test’s ability to determine whether or not a
specific condition is present39. AUC value lies between 0.5 and 1.0–0.5
indicates a poor classifier and 1.0 indicates an excellent classifier.
Calibration, the degree of similarity between observed and predicted
probability of sub-optimal response, was assessed by a calibration plot in
groups across the risk spectrum as recommended in TRIPOD guidelines40.
Sensitivity, specificity, positive predictive value, and negative predictive
value were calculated using a probability threshold of >1 in 250 (0.004)4 to
reflect the expected prevalence of FH in the general population. Stata 16
MP4 version was used for statistical analyses to assess model performance.

Informed consent/IRB statement
Ethical approval for this study was obtained from the Independent
Scientific Advisory Committee (ISAC) – study protocol number 19_083R.
De-identified (anonymised) patient data was obtained from CPRD hence
this study was exempt from obtaining informed consent from patients.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The data that support the findings of this study are available from Clinical Practice
Research Datalink (CPRD), but restrictions apply to the availability of these data,
which were used under license for the current study, and so are not publicly
available. Data are however available from the authors upon reasonable request and
with permission of CPRD.
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