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Abstract: The reconstruction of large phylogenetic trees from data that violates clocklike evolution (or as a supertree con-
structed from any m input trees) raises a diffi cult question for biologists– how can one assign relative dates to the vertices 
of the tree? In this paper we investigate this problem, as suming a uniform distribution on the order of the inner vertices of 
the tree (which includes, but is more general than, the popular Yule distribution on trees). We derive fast algorithms for 
computing the probability that (i) any given vertex in the tree was the j–th speciation event (for each j), and (ii) any one 
given vertex is earlier in the tree than a second given vertex. We show how the first algorithm can be used to calculate the 
expected length of any given interior edge in any given tree that has been generated under either a constant- rate speciation 
model, or the coalescent model.
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1. Introduction 
A fundamental task in evolutionary biology is constructing evolutionary trees from a variety of data. 
These constructed trees show the ancesteral relationship between the species.

Not only the relationship between species is of interest, but also the time between speciation events. 
When constructing an evolutionary tree from a set of molecular data which satisfies the molecular clock, 
the edge lengths can be interpreted as a time scale. In many cases, no time scale is obtained when 
constructing a tree though:
• Often, molecular data does not satisfy the molecular clock and so the edge lengths do not represent 

a time scale.
• Trees can be constructed from morphological data or non -standard molec ular data like gene order. 

This does not provide any edge lengths. 
• Having several different trees, one can combine them and construct a ‘supertree.’ Even though there 

may have been time scales on the original trees, most supertree methods return a tree without a time 
scale.
For those trees, we still want to find edge lengths representing the time between speciation events. 

In this paper, we will estimate the edge lengths from the shape of the tree. The method works for trees 
which evolved under the Yule model [Yule, 1924; Edwards, 1970; Harding, 1971; Page, 1991]. Under 
the Yule model, in each point of time, each species is equally likely to split. Minor changes to the method 
for the Yule model give us an edge length estimation for trees under the popular coalescent setting 
[Nordborg, 2001].

An example for a tree with unknown edge lengths is the primate supertree Tp recently published in 
[Vos and Mooers]. Figure 1 shows a part of Tp. The primate tree is a supertree on 218 species and was 
constructed with the MRP method (Matrix Representation using Parsimony analysis, see [Baum, 1992; 
Ra gan, 1992]). Since for most of the interior vertices, no molecular estimates were available, the edge 
lengths for the tree were estimated. In [Vos and Mooers], 106 rank functions on Tp were drawn uniformly 
at random. For each of those rank functions, the expected time intervals, i.e. the edge lengths, between 
vertices were considered (the expected waiting time after the (n − 1)th event until the nth event is 1/n). 
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The authors of [Vos and Mooers] concluded their 
paper by asking for an analytical approach to the 
estimation of the edge length, which we will 
provide below.

In order to estimate the edge lengths, we devel-
oped the algorithms RANKPROB and COMPARE. 
Those algorithms answer questions like: 

Was speciation event with label 76 in the 
primate tree (see Fig. 1) more likely to be an early 
event in the tree or a late event? What is the
probability that 76 was the 6th speciation event? 
Was it more likely that speciation event 76 
happened before speciation event 162 or 162 
before 76?

The algorithms work for trees where every 
labeled history is equiprobable. This class of 
model, which includes the Yule model and the 
coalescent model, has been popular in macroevo-
lutionary studies [Nee and May, 1997; Zhaxy-
bayeva and Gogarten, 2004]. Note that the
algorithms here are the same for the Yule model 
and the coalescent model, whereas the edge length 
estimation has minor differences for the two 
models.

The algorithms RANKPROB, COMPARE and an 
algorithm for obtaining the expected rank and vari-
ance for a vertex were implemented in Python, see 
[Gern hard, 2006].

2. Probability Distribution
of the Rank of a Ver tex 
Let T be a rooted phylogenetic tree [Semple and 
Steel, 2003] with |V | = n leaves. The set of interior 
vertices of T shall be V

○

. For a binary tree, we have 
|V

○

| = n − 1. Let the function r be a bijection from 
the set of interior vertices V

○

 of T into {1, 2, . . . , 
|V

○

|} with r(v1) ≤ r(v2) if v1 is an ancestor of v2. The 
function r is called a rank function for T . A vertex 
v with r(v) = i is said to have rank i. Note that r 
induces a linear order on the set V

○

. Further, define 
r(T  ) := {r : r is a rank function on T  }. We are 
interested in the distribution of the possible ranks 
for a certain vertex, i.e. we want to know the prob-
ability of r (v) = i for a given v ∈ V

○

. If every rank 
function on a given tree is equally likely, we have 

 P[ ( ) ] |{ : ( ) , ( )} |
| ( ) |

r v i r r v i r r
r

= = = ∈ T

T
 (1)

which will be calculated for rooted binary trees in 
polynomial time by algorithm RANKPROB. In the 
algorithm, we will use the formula [Semple and 
Steel, 2003]

 | ( ) | | | !
( )

r V
nv V v

T =
−∈

o

Π 1
 (2)

where nv is the number of leaves below v. Note that 
Equation 2 holds for binary and nonbinary trees.

Examples of stochastic models on phylogenetic 
trees where each rank function is equally likely 
include:

• The Yule model has the probability distribution 
P[r|T  ] = Πv V vn

n
∈ −

−

○ ( )
( )!

1
1  which is the uniform distribu-

tion [Edwards, 1970; Brown, 1994].
• The coalescent model has the same probability 

distribution on rooted bi nary ranked trees as the 
Yule model. So P[r|T  ] is the uniform distribu-
tion [Aldous, 2001].

• For some sets of trees (e.g. those drawn from 
the uniform model [Pinelis, 2003], also known 
as PDA model), no rank function is induced. If 
one assumes that all rank functions are equally 
likely on these trees, one can apply Equation 1 
to such trees as well.

2.1. A polynomial -time algorithm
The following algorithm calculates the probability 
distribution of the rank of a vertex v in a rooted
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Figure 1. Part of the primate supertree. Figure 4–13 are some
subtrees, for details see [Vos and Mooers].
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binary phylogenetic tree T . The idea of the algo-
rithm is the following (cf. Figure 2). Label the 
vertices on the path from v to the root ρ by v = 
x1, . . .,  xn = ρ. Let Tm be the subtree of  T  containing 
the vertex xm and all its descendants. Let αTm,v(i) 
be the number of rank functions on the tree Tm 
where v has rank i. The values α Tm,v(i), i = 1, . . . , |V

○

| 
are calculated iteratively for m = 1, . . . , n. The prob-
ability P[r(v) = i] equals 

a

a

T

T

n v

i
V

n v

i

i

,

| |
,

( )

( )S =1

○ . The α-values 
in the fraction have a lot of factors in common 
which cancel out. In the fol lowing algorithm, we 
calculate  α-values without the unnecessary terms 
instead, α~   Tm,v(i). We have αTm,v(i) = α~   Tm,v(i)|r(T1)|
|r( ¢T 1)||r( ¢T 2)|…|r( ¢ -T m 1)|.

Algorithm: RANKPROB(T, v)
Input: A rooted binary phylogenetic tree T and an 
interior vertex v.
Output: The probabilities P[r(v) = i] for i = 1, . . . ,
|V

○ |.

 1: Denote the vertices of the path from v to root 
ρ with (v = x1, x2, . . . , xn = ρ).

 2: Denote the subtree of T, consisting of root xm 
and all its descendants, by Tm for m = 1, . . . , n.

 3: Initialize α~   Tm ,v(i) := 0 for i = 1, . . . , |V
○

T  |, 
m = 1, . . . , n.

 4: α~   T1,v(1) := 1
 5: for m = 2, . . . , n do
 6:  ¢ -T m 1 := Tm \ (Tm – 1 ∪ x m ) (cf. Figure 3)

 7:  for i = m, . . . , |V
○

T m| do

 8:   M V iTm: min{| |, }= -¢ -

○

1 2
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10:   end for 
11: end for 
12: for i = 1, . . . , |V

○

T  | do 

13:

  

P [ ( ) ] :
( )
( )

,

,

r v i
i

j
n

n

v

j v

= =
�

�
a
a
T

TS

14: end for
15: RETURN P[r(v) = i], i = 1, . . . , |V

○

|.

Proving the correctness and runtime of RANK 
PROB makes use of the follow ing two observa-
tions. 

Remark 1. Let Ai be a set containing ni elements 
with a linear order, i ∈ {1, 2}. There are ( )n

n n
1

1 2+

possible linear orders on A1 ∪ A2 which preserve 
the linear order on A1 and A2. This follows from 
the observation that the number of such linear 
orders on  A1 ∪ A2 is equivalent to the number of 
ways of choosing n1 elements from n1  +  n2 
elements, which is ( )n

n n
1

1 2+ .

Remark 2. The values ( )k
n  for all n, k ≤ N (n, k, N 

∈N) can be calculated in O(N 2) using Pascal’s 
Triangle. Thus, after O(N 2 ) calculations, any value 
( )k

n  with n, k ≤ N can be obtained in constant 
time.

Theorem 3. RANKPROB returns the quantities 

P[r(v) = i]

for each given v ∈V
○

 and all i ∈1, . . . , |V
○

|. The 
runtime is O(|V

○

|2).

Proof. Let αTm , v(i) = �αTm,v(i)|r(T1)||r (T1'   )|
|r(T2'   )| . . . |r(Tm'     -1)|. We fi rst show that αTm,v(i) = 
|{r : r(v) = i, r ∈r(Tm)}| for m = 1, ... , n, i = 1, ... ,
|V

○

T |. That impliesFigure 2. Labeling the tree for the algorithm RANKPROB.
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which proves the theorem.
The proof is by induction over m. 

For m = 1, α T 1,v(1) = |r(T1)| �αT1,v(i) = |r(T1)| = |{r : 
r(v) = 1, r ∈ r(T )}|. Vertex v is the root of T1, 
so αT 1,v(i) = 0 for all i > 1. 
Let m = k and αTm ,v(i) = |{r : r(v) = i, r ∈r (Tm)}| 
holds for all m < k. αT k ,v(i) = 0 clearly holds for all 
i > |V

○

T k
| since rT k

 : v → {1, ... , |V
○

T k
|}. So it remains 

to verify that the term (*) returns the right values 
for αT k , v(i). Assume that the vertex v is in the 
(i − j − 1)- th position in Tk − 1 (with i − j − 1 > 0) 
for some rank function rTk − 1

 and v shall be in the i- th 
position in Tk.

Now combine the linear order in the tree Tk−1 
induced by rTk −1

with a linear order in T 'k − 1 induced 
by r

k¢-T 1
to get a linear order on Tk. The first j 

vertices of T 'k − 1 must be inserted between vertices 
of Tk −1 with lower rank than v so that v ends up to 
be in the i- th position of the tree Tk. Count the 
number of possible way to do this as follows. The 
tree T 'k − 1 has |r(T 'k − 1)| possible rank functions. 
Combining a rank function rTk −1

 with a rank func-
tion r

k¢-T 1
to get a rank function rTk 

 with  rTk 
(v) = i 

means inserting the first j vertices of T 'k − 1 anywhere 
between the first (i − j − 2) vertices of Tk −1. There are
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possibilities according to Remark 1. For combining 
the |V

○

Tk−1
| − (i − j − 1) vertices of rank bigger than 

v in Tk−1 with the remaining |V
○

¢-Tk 1 | − j vertices in 
T 'k − 1, there are
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possibilities. This follows again from Remark 1. 
The number of rank functions rTk −1

 with rTk −1
(v) = 

i − j − 1 is α Tk−1,v (i − j − 1) by the induction assump-
tion. Multiplying all those possibilities gives 
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where α Tk−1,v(i) = �αTk – 1,v(i)|r(T 1)||r (T1'   )||r(T2'   )| ... | 
r(T k'     –2)|. The value |{r : r(v) = i, r ∈ r(T )}| is then 
the sum over all possible j which establishes the 
correctness of the algorithm.

All that remains is to verify the runtime. Note 
that the combinatorial factors ( )k

n  for all n, k ≤ |V
○

| 
can be calculated in advance in quadratic time, see 
Remark 2. In the algorithm, those factors can then 
be obtained in constant time. 

The most time consuming part of the algorithm 
is line 13. Adding up all calculations needed for 
obtaining α'T  m,v(i), m = 1, ... , n, i = 1, ... , |V

○

Tm
| 

comes to:
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The last inequality holds since the vertices of the 
T 'm , m = 1, ... , n − 1, are distinct. Therefore, the 
runtime is quadratic. 

Remark 4. With P[r(v) = i] from Theorem 3, the 
expected value µr (v) and the variance σ r v( )

2  for r(v) 
can be calculated by 

xn

xm −1

xm

xn−1

Tm

Tm −1

Tm −1

subtree

Figure 3. Labeling the tree for the recursion in RANKPROB.
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Remark 5. The algorithm RankProb can be gener-
alized to non- binary trees [Gernhard, 2006]. The 
runtime is again quadratic.

3. Application of RANKPROB - 
Estimating Edge Lengths 

3.1. The Yule model
A very common stochastic model for rooted binary 
phylogenetic trees with edge lengths is the 
continuous -time Yule model [Edwards, 1970]. As 
in the discrete Yule model, at every point in time, 
each species is equally likely to split and give birth 
to two new species. The expected waiting time for 
the next speciation event in a tree with n leaves is 
1/n. That is, each species at any given time has a 
constant speciation rate (normalized so that 1 is 
the expected time until it next speciates). 

Assume that the primate tree Tp evolved under 
the continuous -time Yule model. In [Gernhard, 
2006], the tree shape of Tp (i.e. the tree without 
edge lengths) under the discrete Yule model is 
tested against the uniform model and accepts the 
Yule model.

Here, we describe how to estimate the edge 
lengths for a tree which is as sumed to have evolved 
under the continuous -time Yule model. 

Let (u, v) be an interior edge in T with u the 
immediate ancestor of v. Let X  be the random 
variable ‘length of the edge (u, v)’ given that T is 
generated according to the continuous- time Yule 
model.

The expected length E[X ] of the edge (u, v) is 
given by

E[X ] = E
i j,
∑ [X |r(u) = i, r(v) = j] P[r(u) = i, r(v) = j].

Since, under the continuous- time Yule model, the 
expected waiting time for the next speciation event 
is 1/n it follows that:

 E[X |r(u) = i, r(v) = j] = 1
1 i kk

j i

+=

−

∑ .  

It remains to calculate the probability P[r(u) = i, 
r(v) = j]. This is equivalent to counting all the 
possible rank functions where r(u) = i and r(v) = j. 
The subtree Tv consists of v and all its descendants. 
The tree Tu equals the tree T where all the descen-
dants of v are deleted, i.e. v is a leaf in Tu, see 
Figure 4.

Note that P[r(u) = i, r(v) = j] = 0 if |V
○

Tu| < j − 1. 
Therefore, assume |V

○

Tu| ≥ j − 1 in the following.
The number of rank functions on Tu is |r(Tu)|. 

The probability P[r(u) = i] can be calculated with 
RANKPROB(Tu, u). So the number of rank functions 
in Tu with P[r(u) = i] is P[r(u) = i] . |r(Tu)|. 

The number of rank functions on Tv is |r(Tv)|. 
Let any linear order on the trees Tu and Tv be given. 
Combining those two linear orders into an order, 
r, on T with r(v) = j means that the vertices with 
rank 1, 2, ... , j − 1 in Tu keep their rank. Vertex v gets 
rank j. The remaining |V

○

Tu| − (  j − 1) vertices in Tu 
and |V

○

Tv| − 1 vertices in Tv have to be shuffl ed together. 
According to Remark (1), this can be done in
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different rank functions on T with r(u) = i and 
r(v) = j. For the probability P[r(u) = i, r(v) = j]:
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Figure 4. Labeling the tree for estimating the edge lengths.
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Since |r(Tu)| and |r(Tv )| are independent of i and j, 
those factors cancel out, giving
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Furthermore, note that
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Again, since (|V
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Tv| − 1)! is independent of i and j, 
this factor cancels out, and so
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Let Ω = {(i, j) : i < j, i, j ∈ {1, . . . , |V
○ |}, |V

○

Tu | ≥ j − 1}. 
With this notation, the expected edge length E[X ] 
is

Remark 6. Equation 4 enables the estimation of 
the length of every interior edge. For pendant 
edges, the approach above gives no definite answer. 
All we know is that the time from the latest interior 
vertex, which has rank n − 1, until today is expected 
to be at most 1/n where n is the number of leaves.

Suppose that the growth process is stopped as 
soon as the n − 1- st speciation event occurs. In this 
case the expected length X of a pendant edge below 
an interior vertex v is:
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The expected depth of vertex v from the first 
branchpoint is: 
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So the depth Y of the leaf in question from the first 
branchpoint has expectation independent of v:
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In other words, assigning to each edge of a given 
tree topology its expected length gives a tree which 
obeys a molecular clock. 
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Remark 7. Often, an inferred tree has vertices with 
more than two descen dants, i.e. there is lack of 
resolution due to, e.g. confliciting data. Our calcula-
tion for the expected edge length assumes a binary 
tree though. 

However, the expected edge length may be 
calculated for each possible binary resolution of 
the supertree. Assume the supertree T has the 
possible binary resolutions T1, . . . , Tm. For an edge 
(u, v) in T where u is the immediate ancestor of v, 
the expected edge length is calculated in the trees 
Ti for i = 1, . . . , m. The expected edge length in Ti 
is denoted by ei for i =1, . . . , m. Note that if u is a 
vertex with more than two descendants in T then 
v is in general not a direct descendant of u in Ti. 
The value ei in resolution Ti is then the sum of all 
expected edge lengths on the path from u to v in Ti.

Calculate the expected edge length E[X ] of 
(u,  v) in the supertree T by

 E P
P

[ ] [ ]
[ ]

X ei i i

i i

= S
S

T

T  (5) 

where the probability of a tree T under the Yule 
model is [Brown, 1994] 

P[ ]
! ( )

T =
-

-

Œ

2
1

1n

v V vn nP ○

Again, once the expected length of pendant 
edges is included the resulting tree obeys a molecular 
clock, meaning that all leaves are at the same depth.

3.2. The coalescent process
The edge length estimation in the previous section 
works for the continuous- time Yule model. By 
changing the method above slightly, we get an edge 
length estimation for the coalescent process. In the 
coalescent setting, we have 

E[ | ( ) , ( ) ]
( ) ( )

.X r u i r v j
i k i kk

j i

= = =
+ + -=

-

Â 1
11

Therefore, the expected edge length for an interior 
edge (u,v) can be calculated by the following 
modification of Equation 4: 

The calculations in Section 3.1 and 3.2 provide 
exact values for the expected length of an interior 
edge under the Yule or coalescent process as an 
alterna tive to simulations. However simulations 
also provide some indication of the variability in 
the estimate of edge lengths, and it may be of 
interest to also in vestigate analytically the variance 
(or even the distribution) of the edge length in 
future work, rather than just its mean.

4. Comparing Two Interior Vertices 
The algorithm RANKPROB can also be used for 
comparing two interior vertices. Assume again that 
every rank function on a rooted binary phyloge-
netic tree T  is equally likely. The aim is to compare 
two interior vertices u and v of T. Was u more likely 
before (of lower rank than) v or v before u? In other 
words, what is the probability

Pu < v := P[r(u) < r(v)]

where r(T ) is the set of all possible rank functions 
on T. Note that it does not hold P[r(u) < r(v)] = 
P[r (u) > r (v)] even with the uniform distibution 
on the rank functions. The probability Pu < v is 
equivalent to counting all the possible rank func-
tions on T  in which u has lower rank than v and 
divide that number by all possible rank functions 
on T. One idea is to sum up the probabilities 
P[r (u) = i, r (v) = j] in Equation 3 for all i < j which 
yields to a runtime of O(|V |4). The following algo-
rithm COMPARE solves the problem in quadratic 
time. In the following, for a vertex v, the subtree 
Tv of T consists again of v and all its descendants.
Algorithm: COMPARE (T, u, v)
Input: A rooted binary phylogenetic tree T and two 
distinct interior vertices u and v.
Output: The probability Pu < v := P[r(u) < r(v)|T   ].
 1: Denote the most recent common ancestor of 

u and v by ρ1. 
 2: if ρ1 = v then 
 3:  RETURN Pu < v = 0. 
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 4: end if
 5: if ρ1 = u then 
 6:  RETURN Pu < v = 1. 
 7: end if
 8: Let Tρ1

 be the subtree of T which is induced 
by ρ1.

 9: Delete the vertex ρ1 from Tρ1
. The two 

evolving subtrees are labeled Tu and Tv with 
u ∈Tu and v ∈Tv.

10: Run RANKPROB(Tu, u) and RANKPROB(Tv, v) 
to get P[r (u) = i] on Tu and P[r (v) = i] on Tv 
for all possible i.

11: for i = 1, . . . , |V
○

 Tu| do 
12:  ucum(i) := Sk

i
=1P[r (u) = i]

13: end for
14: Pu < v = 0
15: for i  = 1, . . . ,  | |V v

�
T  do

16:  for j = 1, . . .  | |V u

�
T  do

17:   p := P[r (v) = i]◊
- +Ê

ËÁ
ˆ
¯̃

i j
j

1

     
◊ - + -

-

Ê

Ë
Á

ˆ

¯
˜ ◊| | | |

| |
( )V i V j

V j
ucum jv u

u

� �

�
T T

T

18:   Pu < v := Pu < v + p
19:  end for 
20: end for

21:
 

tot V V
V

u v

v

: | | | |
| |

= +Ê

Ë
Á

ˆ

¯
˜

� �

�
T T

T

22: Pu < v := Pu < v /tot 
23: RETURN Pu < v 
Theorem 8. The algorithm COMPARE returns the 
value

Pu < v = P[r (u) < r (v)]. 

The runtime of COMPARE is O(|V
○ |2).

Proof. Note that the probability of u having smaller 
rank than v in tree Tρ1 

equals the probability of u 
having smaller rank than v in tree T, since for any 
rank function on Tρ1

, there is the same number of 
linear extensions to get a rank function on the 
tree T.

So it is suffi cient to calculate the probability 
Pu < v in Tρ1

. If ρ1 = u then u is an ancestor of v in 

T, so return Pu < v = 1. If ρ1 = v then v is an ancestor 
of u in T, so return Pu < v = 0. 

Now assume that ρ1 ≠ u and ρ1 ≠ v. The run of 
RANKPROB calculates the probability P[r (u) = i] 
in the tree Tu and P[r (v) = i] in Tv for all i. Next, 
combine those two linear orders. Assume that 
r (v) = i and that j vertices of Tu are inserted before v. 
Inserting j vertices of Tu into the linear order of Tv 
before v is possible in ( )j

i j− +1  ways (see Remark  1). 
Putting the remaining vertices in a linear order is 
possible in (

| |

| | | |

V j

V i V j

u

v u
�

� �

T

T T

-

- + - ) ways. The probability that the 
vertex u is among the j vertices which have smaller 
rank than v is P[r (u) ≤ j] = ucum(  j). There are 
|r (Tu)| possible linear orders on Tu and |r (Tv )| 
possible linear orders on Tv. The number of linear 
orders where vertex v has rank i in Tv, v has rank 
i + j in Tρ1

 and r(u) < i + j therefore equals
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Adding up the p′ for each i and j gives the number 
of linear orders where u has smaller rank than v.

Combining a linear order on Tv with a linear 
order on Tu is possible in 
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V
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v
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different ways (see Remark 1). There are |r (Tu)| 
linear orders on Tu and |r (Tv )| linear orders on Tv, 
so on Tρ1

, there are
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This shows that COMPARE works correct. 
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Since RANKPROB has quadratic runtime, 
COMPARE also has quadratic run time. 
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