
Correspondence: Tanja Gernhard, Department of Mathematics, Kombinatorische Geometrie (M9), TU
München, Boltzmannstr. 3, 85747 Garching, Germany. Tel: +49 89 289 16882; Email: gernhard@ma.tum.de

ORIGINAL RESEARCH

Estimating the Relative Order of Speciation or
Coalescence Events on a Given Phylogeny
Tanja Gernhard1, Daniel Ford2, Rutger Vos3 and Mike Steel4
1Department of Mathematics, Kombinatorische Geometrie (M9), TU München, Boltzmannstr.
 3, 85747 Garching, Germany.
2Department of Mathematics, Stanford University, U.S.A.
3Department of Biological Sciences, Simon Fraser University, Vancouver, Canada.
4Biomathematics Research Centre, University of Canterbury, Christchurch, New Zealand.

Abstract: The reconstruction of large phylogenetic trees from data that violates clocklike evolution (or as a supertree con-
structed from any m input trees) raises a diffi cult question for biologists– how can one assign relative dates to the vertices
of the tree? In this paper we investigate this problem, as suming a uniform distribution on the order of the inner vertices of
the tree (which includes, but is more general than, the popular Yule distribution on trees). We derive fast algorithms for
computing the probability that (i) any given vertex in the tree was the j–th speciation event (for each j), and (ii) any one
given vertex is earlier in the tree than a second given vertex. We show how the first algorithm can be used to calculate the
expected length of any given interior edge in any given tree that has been generated under either a constant- rate speciation
model, or the coalescent model.

Keywords: Phylogenetics, neutral model, dating speciation events, edge lengths.

1. Introduction
A fundamental task in evolutionary biology is constructing evolutionary trees from a variety of data.
These constructed trees show the ancesteral relationship between the species.

Not only the relationship between species is of interest, but also the time between speciation events.
When constructing an evolutionary tree from a set of molecular data which satisfies the molecular clock,
the edge lengths can be interpreted as a time scale. In many cases, no time scale is obtained when
constructing a tree though:
• Often, molecular data does not satisfy the molecular clock and so the edge lengths do not represent

a time scale.
• Trees can be constructed from morphological data or non -standard molec ular data like gene order.

This does not provide any edge lengths.
• Having several different trees, one can combine them and construct a ‘supertree.’ Even though there

may have been time scales on the original trees, most supertree methods return a tree without a time
scale.
For those trees, we still want to find edge lengths representing the time between speciation events.

In this paper, we will estimate the edge lengths from the shape of the tree. The method works for trees
which evolved under the Yule model [Yule, 1924; Edwards, 1970; Harding, 1971; Page, 1991]. Under
the Yule model, in each point of time, each species is equally likely to split. Minor changes to the method
for the Yule model give us an edge length estimation for trees under the popular coalescent setting
[Nordborg, 2001].

An example for a tree with unknown edge lengths is the primate supertree Tp recently published in
[Vos and Mooers]. Figure 1 shows a part of Tp. The primate tree is a supertree on 218 species and was
constructed with the MRP method (Matrix Representation using Parsimony analysis, see [Baum, 1992;
Ra gan, 1992]). Since for most of the interior vertices, no molecular estimates were available, the edge
lengths for the tree were estimated. In [Vos and Mooers], 106 rank functions on Tp were drawn uniformly
at random. For each of those rank functions, the expected time intervals, i.e. the edge lengths, between
vertices were considered (the expected waiting time after the (n − 1)th event until the nth event is 1/n).

Evolutionary Bioinformatics Online 2006: 2 285-293 285

Evolutionary Bioinformatics Online 2006: 2

Gernhard et al

The authors of [Vos and Mooers] concluded their
paper by asking for an analytical approach to the
estimation of the edge length, which we will
provide below.

In order to estimate the edge lengths, we devel-
oped the algorithms RANKPROB and COMPARE.
Those algorithms answer questions like:

Was speciation event with label 76 in the
primate tree (see Fig. 1) more likely to be an early
event in the tree or a late event? What is the
probability that 76 was the 6th speciation event?
Was it more likely that speciation event 76
happened before speciation event 162 or 162
before 76?

The algorithms work for trees where every
labeled history is equiprobable. This class of
model, which includes the Yule model and the
coalescent model, has been popular in macroevo-
lutionary studies [Nee and May, 1997; Zhaxy-
bayeva and Gogarten, 2004]. Note that the
algorithms here are the same for the Yule model
and the coalescent model, whereas the edge length
estimation has minor differences for the two
models.

The algorithms RANKPROB, COMPARE and an
algorithm for obtaining the expected rank and vari-
ance for a vertex were implemented in Python, see
[Gern hard, 2006].

2. Probability Distribution
of the Rank of a Ver tex
Let T be a rooted phylogenetic tree [Semple and
Steel, 2003] with |V | = n leaves. The set of interior
vertices of T shall be V

○

. For a binary tree, we have
|V

○

| = n − 1. Let the function r be a bijection from
the set of interior vertices V

○

 of T into {1, 2, . . . ,
|V

○

|} with r(v1) ≤ r(v2) if v1 is an ancestor of v2. The
function r is called a rank function for T . A vertex
v with r(v) = i is said to have rank i. Note that r
induces a linear order on the set V

○

. Further, define
r(T) := {r : r is a rank function on T }. We are
interested in the distribution of the possible ranks
for a certain vertex, i.e. we want to know the prob-
ability of r (v) = i for a given v ∈ V

○

. If every rank
function on a given tree is equally likely, we have

 P[()] |{ : () , ()} |
| () |

r v i r r v i r r
r

= = = ∈ T

T
 (1)

which will be calculated for rooted binary trees in
polynomial time by algorithm RANKPROB. In the
algorithm, we will use the formula [Semple and
Steel, 2003]

 | () | | | !
()

r V
nv V v

T =
−∈

o

Π 1
 (2)

where nv is the number of leaves below v. Note that
Equation 2 holds for binary and nonbinary trees.

Examples of stochastic models on phylogenetic
trees where each rank function is equally likely
include:

• The Yule model has the probability distribution
P[r|T] = Πv V vn

n
∈ −

−

○ ()
()!

1
1 which is the uniform distribu-

tion [Edwards, 1970; Brown, 1994].
• The coalescent model has the same probability

distribution on rooted bi nary ranked trees as the
Yule model. So P[r|T] is the uniform distribu-
tion [Aldous, 2001].

• For some sets of trees (e.g. those drawn from
the uniform model [Pinelis, 2003], also known
as PDA model), no rank function is induced. If
one assumes that all rank functions are equally
likely on these trees, one can apply Equation 1
to such trees as well.

2.1. A polynomial -time algorithm
The following algorithm calculates the probability
distribution of the rank of a vertex v in a rooted

Figure 13

Figure 12

Figure 11

Figure 9

Figure 10

Figure 8

Figure 7

Figure6

Figure 5

Figure 3

Figure 4

MYA
65 60 55 50 45 40 01015202535 30 5

208

209

195

166

75

76

55

77

41
42

33

92

160

161
135

136

113

162

163

167

210

Figure 1. Part of the primate supertree. Figure 4–13 are some
subtrees, for details see [Vos and Mooers].

○

286

Relative Order of Speciation or Coalescence Events

binary phylogenetic tree T . The idea of the algo-
rithm is the following (cf. Figure 2). Label the
vertices on the path from v to the root ρ by v =
x1, . . ., xn = ρ. Let Tm be the subtree of T containing
the vertex xm and all its descendants. Let αTm,v(i)
be the number of rank functions on the tree Tm
where v has rank i. The values α Tm,v(i), i = 1, . . . , |V

○

|
are calculated iteratively for m = 1, . . . , n. The prob-
ability P[r(v) = i] equals

a

a

T

T

n v

i
V

n v

i

i

,

| |
,

()

()S =1

○ . The α-values
in the fraction have a lot of factors in common
which cancel out. In the fol lowing algorithm, we
calculate α-values without the unnecessary terms
instead, α~ Tm,v(i). We have αTm,v(i) = α~ Tm,v(i)|r(T1)|
|r(¢T 1)||r(¢T 2)|…|r(¢ -T m 1)|.

Algorithm: RANKPROB(T, v)
Input: A rooted binary phylogenetic tree T and an
interior vertex v.
Output: The probabilities P[r(v) = i] for i = 1, . . . ,
|V

○ |.

 1: Denote the vertices of the path from v to root
ρ with (v = x1, x2, . . . , xn = ρ).

 2: Denote the subtree of T, consisting of root xm
and all its descendants, by Tm for m = 1, . . . , n.

 3: Initialize α~ Tm ,v(i) := 0 for i = 1, . . . , |V
○

T |,
m = 1, . . . , n.

 4: α~ T1,v(1) := 1
 5: for m = 2, . . . , n do
 6: ¢ -T m 1 := Tm \ (Tm – 1 ∪ x m) (cf. Figure 3)

 7: for i = m, . . . , |V
○

T m| do

 8: M V iTm: min{| |, }= -¢ -

○

1 2

9:

� �

○ ○

○

a aT T

T T

m m

m m

v v
j

M

i i j

V V i

V

, ,(): ()

| | | | ()

|

= - -

+ - -

-

- -

=

¢

Â 1

1 1

1

1

0

¢¢ - -

Ê

Ë
Á
Á

ˆ

¯
˜
˜

-Ê
ËÁ

ˆ
¯̃

Tm j

i
j

1

2

|
(*)

10: end for
11: end for
12: for i = 1, . . . , |V

○

T | do

13:

P [()] :
()
()

,

,

r v i
i

j
n

n

v

j v

= =
�

�
a
a
T

TS

14: end for
15: RETURN P[r(v) = i], i = 1, . . . , |V

○

|.

Proving the correctness and runtime of RANK
PROB makes use of the follow ing two observa-
tions.

Remark 1. Let Ai be a set containing ni elements
with a linear order, i ∈ {1, 2}. There are ()n

n n
1

1 2+

possible linear orders on A1 ∪ A2 which preserve
the linear order on A1 and A2. This follows from
the observation that the number of such linear
orders on A1 ∪ A2 is equivalent to the number of
ways of choosing n1 elements from n1 + n2
elements, which is ()n

n n
1

1 2+ .

Remark 2. The values ()k
n for all n, k ≤ N (n, k, N

∈N) can be calculated in O(N 2) using Pascal’s
Triangle. Thus, after O(N 2) calculations, any value
()k

n with n, k ≤ N can be obtained in constant
time.

Theorem 3. RANKPROB returns the quantities

P[r(v) = i]

for each given v ∈V
○

 and all i ∈1, . . . , |V
○

|. The
runtime is O(|V

○

|2).

Proof. Let αTm , v(i) = �αTm,v(i)|r(T1)||r (T1')|
|r(T2')| . . . |r(Tm' -1)|. We fi rst show that αTm,v(i) =
|{r : r(v) = i, r ∈r(Tm)}| for m = 1, ... , n, i = 1, ... ,
|V

○

T |. That impliesFigure 2. Labeling the tree for the algorithm RANKPROB.

xn−1

T1

T2

x2

Tn−1

= x1

ρ = xn

v

287Evolutionary Bioinformatics Online 2006: 2

Evolutionary Bioinformatics Online 2006: 2

Gernhard et al

P[()] |{ : () , ()} |

| () |
()
()

,

,

,

r v i r r v i r r
r

i
i

v

i v

v

= = = Œ

= =

Τ
Τ

Τ

Τ

Τa
a

a
S

� (()
(),

i
ii vS �aΤ

which proves the theorem.
The proof is by induction over m.

For m = 1, α T 1,v(1) = |r(T1)| �αT1,v(i) = |r(T1)| = |{r :
r(v) = 1, r ∈ r(T)}|. Vertex v is the root of T1,
so αT 1,v(i) = 0 for all i > 1.
Let m = k and αTm ,v(i) = |{r : r(v) = i, r ∈r (Tm)}|
holds for all m < k. αT k ,v(i) = 0 clearly holds for all
i > |V

○

T k
| since rT k

 : v → {1, ... , |V
○

T k
|}. So it remains

to verify that the term (*) returns the right values
for αT k , v(i). Assume that the vertex v is in the
(i − j − 1)- th position in Tk − 1 (with i − j − 1 > 0)
for some rank function rTk − 1

 and v shall be in the i- th
position in Tk.

Now combine the linear order in the tree Tk−1
induced by rTk −1

with a linear order in T 'k − 1 induced
by r

k¢-T 1
to get a linear order on Tk. The first j

vertices of T 'k − 1 must be inserted between vertices
of Tk −1 with lower rank than v so that v ends up to
be in the i- th position of the tree Tk. Count the
number of possible way to do this as follows. The
tree T 'k − 1 has |r(T 'k − 1)| possible rank functions.
Combining a rank function rTk −1

 with a rank func-
tion r

k¢-T 1
to get a rank function rTk

 with rTk
(v) = i

means inserting the first j vertices of T 'k − 1 anywhere
between the first (i − j − 2) vertices of Tk −1. There are

()i j j

j
i

j
− − +⎛

⎝⎜
⎞
⎠⎟

=
−⎛

⎝⎜
⎞
⎠⎟

2 2

possibilities according to Remark 1. For combining
the |V

○

Tk−1
| − (i − j − 1) vertices of rank bigger than

v in Tk−1 with the remaining |V
○

¢-Tk 1 | − j vertices in
T 'k − 1, there are

| | () | |

| |

| | |

V i j V j

V j

V

k k

k

k

○ ○

○

○

T - -

-

-

- - - + -

-

Ê

Ë
Á
Á

ˆ

¯
˜
˜

=
+

¢

¢

1 1

1

1

1 Τ

Τ

Τ VV i

V j

k

k

○

○

¢

¢

-

-

- -

-

Ê

Ë
Á
Á

ˆ

¯
˜
˜

Τ

Τ

1

1

1| ()

| |

possibilities. This follows again from Remark 1.
The number of rank functions rTk −1

 with rTk −1
(v) =

i − j − 1 is α Tk−1,v (i − j − 1) by the induction assump-
tion. Multiplying all those possibilities gives

aT

T T

T

T
k

k k

k

v ki j r

V V i

V

-

- -

-

- - ¢

+ - -

-

-

¢

¢

1

1 1

1

1

1

1, () | () |

| | | | ()

| |

○ ○

○

jj

i
j

Ê

Ë
Á
Á

ˆ

¯
˜
˜

-Ê
ËÁ

ˆ
¯̃

2

where α Tk−1,v(i) = �αTk – 1,v(i)|r(T 1)||r (T1')||r(T2')| ... |
r(T k' –2)|. The value |{r : r(v) = i, r ∈ r(T)}| is then
the sum over all possible j which establishes the
correctness of the algorithm.

All that remains is to verify the runtime. Note
that the combinatorial factors ()k

n for all n, k ≤ |V
○

|
can be calculated in advance in quadratic time, see
Remark 2. In the algorithm, those factors can then
be obtained in constant time.

The most time consuming part of the algorithm
is line 13. Adding up all calculations needed for
obtaining α'T m,v(i), m = 1, ... , n, i = 1, ... , |V

○

Tm
|

comes to:

| | | | | || |

| | | | | |

V V V V

V V V

m m m

m

m

n

m

n○ ○ ○ ○

○ ○ ○

T T T

T

=
¢ ¢

=

¢

Â Â- -

-

£

= £

2 2
1 1

1
22

2m

n

=
Â

The last inequality holds since the vertices of the
T 'm , m = 1, ... , n − 1, are distinct. Therefore, the
runtime is quadratic.

Remark 4. With P[r(v) = i] from Theorem 3, the
expected value µr (v) and the variance σ r v()

2 for r(v)
can be calculated by

xn

xm −1

xm

xn−1

Tm

Tm −1

Tm −1

subtree

Figure 3. Labeling the tree for the recursion in RANKPROB.

288

Evolutionary Bioinformatics Online 2006: 2

Relative Order of Speciation or Coalescence Events

m

s m

r v
i

V

r v
i

V

r v

i r v i

i r v i

()

| |

()

| |

()

[()]

[()]

= =

= = -

=

=

Â

Â

P

P

1

2 2

1

2

○

○

Remark 5. The algorithm RankProb can be gener-
alized to non- binary trees [Gernhard, 2006]. The
runtime is again quadratic.

3. Application of RANKPROB -
Estimating Edge Lengths

3.1. The Yule model
A very common stochastic model for rooted binary
phylogenetic trees with edge lengths is the
continuous -time Yule model [Edwards, 1970]. As
in the discrete Yule model, at every point in time,
each species is equally likely to split and give birth
to two new species. The expected waiting time for
the next speciation event in a tree with n leaves is
1/n. That is, each species at any given time has a
constant speciation rate (normalized so that 1 is
the expected time until it next speciates).

Assume that the primate tree Tp evolved under
the continuous -time Yule model. In [Gernhard,
2006], the tree shape of Tp (i.e. the tree without
edge lengths) under the discrete Yule model is
tested against the uniform model and accepts the
Yule model.

Here, we describe how to estimate the edge
lengths for a tree which is as sumed to have evolved
under the continuous -time Yule model.

Let (u, v) be an interior edge in T with u the
immediate ancestor of v. Let X be the random
variable ‘length of the edge (u, v)’ given that T is
generated according to the continuous- time Yule
model.

The expected length E[X] of the edge (u, v) is
given by

E[X] = E
i j,
∑ [X |r(u) = i, r(v) = j] P[r(u) = i, r(v) = j].

Since, under the continuous- time Yule model, the
expected waiting time for the next speciation event
is 1/n it follows that:

 E[X |r(u) = i, r(v) = j] = 1
1 i kk

j i

+=

−

∑ .

It remains to calculate the probability P[r(u) = i,
r(v) = j]. This is equivalent to counting all the
possible rank functions where r(u) = i and r(v) = j.
The subtree Tv consists of v and all its descendants.
The tree Tu equals the tree T where all the descen-
dants of v are deleted, i.e. v is a leaf in Tu, see
Figure 4.

Note that P[r(u) = i, r(v) = j] = 0 if |V
○

Tu| < j − 1.
Therefore, assume |V

○

Tu| ≥ j − 1 in the following.
The number of rank functions on Tu is |r(Tu)|.

The probability P[r(u) = i] can be calculated with
RANKPROB(Tu, u). So the number of rank functions
in Tu with P[r(u) = i] is P[r(u) = i] . |r(Tu)|.

The number of rank functions on Tv is |r(Tv)|.
Let any linear order on the trees Tu and Tv be given.
Combining those two linear orders into an order,
r, on T with r(v) = j means that the vertices with
rank 1, 2, ... , j − 1 in Tu keep their rank. Vertex v gets
rank j. The remaining |V

○

Tu| − (j − 1) vertices in Tu
and |V

○

Tv| − 1 vertices in Tv have to be shuffl ed together.
According to Remark (1), this can be done in

| | () | |

| |

| | | |

|

V j V

V

V V j

V

u v

v

u v

v

� �

�

� �

�

T T

T

T T

T

- - + -

-

Ê

Ë
Á
Á

ˆ

¯
˜
˜

=
+ -1 1

1 || -

Ê

Ë
Á
Á

ˆ

¯
˜
˜1

different ways. Thus overall there are:

P[()] | () | | () |
| | | |

| |
r u i r r

V V j

V
u v

u v

v

= ◊ ◊ ◊
+ -

-

Ê

Ë
Á
Á

ˆ

¯
˜
˜

Τ Τ
� �

�

T T

T 1

different rank functions on T with r(u) = i and
r(v) = j. For the probability P[r(u) = i, r(v) = j]:

P

P

[() , ()]

[()] | () | | () |
| | | |

r u i r v j

r u i r r
V V j

u v
u v

= =

=

= ◊ ◊ ◊
+ -

Τ Τ
� �

T T

|| |

[()] | () | | () |
| | |

,

V

r u i r r
V V

v

u
i j u v

�

� �

T

T T

-

Ê

Ë
Á
Á

ˆ

¯
˜
˜

= ◊ ◊ ◊
+

1

S P Τ Τ vv

v

j

V

|

| |

-

-

Ê

Ë
Á
Á

ˆ

¯
˜
˜�

T 1

Figure 4. Labeling the tree for estimating the edge lengths.

u

v

Tv

Tu

289

Evolutionary Bioinformatics Online 2006: 2

Gernhard et al

Since |r(Tu)| and |r(Tv)| are independent of i and j,
those factors cancel out, giving

P

P

[() , ()]

[()]
| | | |

| |

r u i r v j

r u i
V V j

V

u v

v

= =

=

= ◊
+ -

-

Ê

Ë
Á
Á

ˆ

¯
˜
˜

� �

�

T T

T 1

SSi j r u i
V V j

V

u v

v

, [()]
| | | |

| |
P = ◊

+ -

-

Ê

Ë
Á
Á

ˆ

¯
˜
˜

� �

�

T T

T 1

 (3)

Furthermore, note that

| | | |

| |

V V j

V

u v

v

� �

�

T T

T

+ -

-

Ê

Ë
Á
Á

ˆ

¯
˜
˜1

= -

- - - -

(| |)!

(| |)!(| | (| |))!

V j

V V j V
v

v v

�

� � �
T

T T T1 1

Again, since (|V
○

Tv| − 1)! is independent of i and j,
this factor cancels out, and so

P

P

P

[() , ()]

[()] (| |)

[(

| |

,

r u i r v j

r u i V j k

r

k
V

i j

v

= =

=
= ◊ - -=

-P

S

0
2

� �
T

T

uu i V j kk
V v)] (| |)| |= ◊ - -=

-P 0
2

� �
T

T

Let Ω = {(i, j) : i < j, i, j ∈ {1, . . . , |V
○ |}, |V

○

Tu | ≥ j − 1}.
With this notation, the expected edge length E[X]
is

Remark 6. Equation 4 enables the estimation of
the length of every interior edge. For pendant
edges, the approach above gives no definite answer.
All we know is that the time from the latest interior
vertex, which has rank n − 1, until today is expected
to be at most 1/n where n is the number of leaves.

Suppose that the growth process is stopped as
soon as the n − 1- st speciation event occurs. In this
case the expected length X of a pendant edge below
an interior vertex v is:

E P[] [()]X r v i
ki

n

k i

n

= =
+=

-

=

-

Â Â
1

1 2 1
1

The expected depth of vertex v from the first
branchpoint is:

P[()]r v i
ki

n

k

i

=
+=

-

=

-

Â Â
1

1

1

1 1
1

So the depth Y of the leaf in question from the first
branchpoint has expectation independent of v:

E P

P

[] [()]

[()]

Y r v i
k

r v i
k

i

n

k

i

i

n

k i

n

= =
+

+ =
+

=

-

=

-

=

-

=

-

Â Â

Â
1

1

1

1

1

1

1
1

1
1

22

1

1

1

2

1

2

1
1

1
1

Â

Â Â

Â

= =
+

=
+

=

-

=

-

=

-

P[()]r v i
k

k

i

n

k

n

k

n

In other words, assigning to each edge of a given
tree topology its expected length gives a tree which
obeys a molecular clock.

E E P[] [| () , ()] [() , ()]
(,)

X X r u i r v j r u i r v j
i j

= = = = =
ŒW

Â

=
+

Ê
ËÁ

ˆ
¯̃

= ◊ - -

=

-
=

-

Â 1
1

0
2

i k
r u i V j k

k

j i
k
V

i j

vP [()] (| |)| |

(,)

P

S

� �
T

T

ŒŒW =
-Œ = ◊ - -È

ÎÍ
˘
˚̇

È

Î

Í
Í
Í

˘

˚

˙
˙
˙P[()] (| |)| |(,) r u i V j kk

Vi j vP 0
2

� �
T

T
WW

Â

=
+

Ê
ËÁ

ˆ
¯̃

◊ = ◊ - -ŒW =

-

=
-S S P(,)

| |[()] (| |i j k

j i

k
V

i k
r u i V jv

1 0
21 P

� �
T

T kk

r u i V j ki j k
V v

)

[()] (| |)(,)
| |

È

Î
Í

˘

˚
˙

= ◊ - -È
ÎÍ

˘
˚̇ŒW =

-S PP 0
2

� �
T

T

(4)

290

Evolutionary Bioinformatics Online 2006: 2

Relative Order of Speciation or Coalescence Events

Remark 7. Often, an inferred tree has vertices with
more than two descen dants, i.e. there is lack of
resolution due to, e.g. confliciting data. Our calcula-
tion for the expected edge length assumes a binary
tree though.

However, the expected edge length may be
calculated for each possible binary resolution of
the supertree. Assume the supertree T has the
possible binary resolutions T1, . . . , Tm. For an edge
(u, v) in T where u is the immediate ancestor of v,
the expected edge length is calculated in the trees
Ti for i = 1, . . . , m. The expected edge length in Ti
is denoted by ei for i =1, . . . , m. Note that if u is a
vertex with more than two descendants in T then
v is in general not a direct descendant of u in Ti.
The value ei in resolution Ti is then the sum of all
expected edge lengths on the path from u to v in Ti.

Calculate the expected edge length E[X] of
(u, v) in the supertree T by

 E P
P

[] []
[]

X ei i i

i i

= S
S

T

T (5)

where the probability of a tree T under the Yule
model is [Brown, 1994]

P[]
! ()

T =
-

-

Œ

2
1

1n

v V vn nP ○

Again, once the expected length of pendant
edges is included the resulting tree obeys a molecular
clock, meaning that all leaves are at the same depth.

3.2. The coalescent process
The edge length estimation in the previous section
works for the continuous- time Yule model. By
changing the method above slightly, we get an edge
length estimation for the coalescent process. In the
coalescent setting, we have

E[| () , ()]
() ()

.X r u i r v j
i k i kk

j i

= = =
+ + -=

-

Â 1
11

Therefore, the expected edge length for an interior
edge (u,v) can be calculated by the following
modification of Equation 4:

The calculations in Section 3.1 and 3.2 provide
exact values for the expected length of an interior
edge under the Yule or coalescent process as an
alterna tive to simulations. However simulations
also provide some indication of the variability in
the estimate of edge lengths, and it may be of
interest to also in vestigate analytically the variance
(or even the distribution) of the edge length in
future work, rather than just its mean.

4. Comparing Two Interior Vertices
The algorithm RANKPROB can also be used for
comparing two interior vertices. Assume again that
every rank function on a rooted binary phyloge-
netic tree T is equally likely. The aim is to compare
two interior vertices u and v of T. Was u more likely
before (of lower rank than) v or v before u? In other
words, what is the probability

Pu < v := P[r(u) < r(v)]

where r(T) is the set of all possible rank functions
on T. Note that it does not hold P[r(u) < r(v)] =
P[r (u) > r (v)] even with the uniform distibution
on the rank functions. The probability Pu < v is
equivalent to counting all the possible rank func-
tions on T in which u has lower rank than v and
divide that number by all possible rank functions
on T. One idea is to sum up the probabilities
P[r (u) = i, r (v) = j] in Equation 3 for all i < j which
yields to a runtime of O(|V |4). The following algo-
rithm COMPARE solves the problem in quadratic
time. In the following, for a vertex v, the subtree
Tv of T consists again of v and all its descendants.
Algorithm: COMPARE (T, u, v)
Input: A rooted binary phylogenetic tree T and two
distinct interior vertices u and v.
Output: The probability Pu < v := P[r(u) < r(v)|T].
 1: Denote the most recent common ancestor of

u and v by ρ1.
 2: if ρ1 = v then
 3: RETURN Pu < v = 0.

E
P

[]
[()](,)

|

()()
X

r u ii j k
j i

k
V

i k i k
=

Ê
ËÁ

ˆ
¯̃

◊ = ◊ŒW =
-

=+ + -
S S P1 0

1

1

�
Tvv

v

V j k

r u i Vi j k
V

|

(,)
| |

(| |)

[()] (| |

-

ŒW =
-

- -
È

Î
Í

˘

˚
˙

= ◊

2

0
2

�

��

T

T
TS PP -- -

È
ÎÍ

˘
˚̇j k)

291

Evolutionary Bioinformatics Online 2006: 2

Gernhard et al

 4: end if
 5: if ρ1 = u then
 6: RETURN Pu < v = 1.
 7: end if
 8: Let Tρ1

 be the subtree of T which is induced
by ρ1.

 9: Delete the vertex ρ1 from Tρ1
. The two

evolving subtrees are labeled Tu and Tv with
u ∈Tu and v ∈Tv.

10: Run RANKPROB(Tu, u) and RANKPROB(Tv, v)
to get P[r (u) = i] on Tu and P[r (v) = i] on Tv
for all possible i.

11: for i = 1, . . . , |V
○

 Tu| do
12: ucum(i) := Sk

i
=1P[r (u) = i]

13: end for
14: Pu < v = 0
15: for i = 1, . . . , | |V v

�
T do

16: for j = 1, . . . | |V u

�
T do

17: p := P[r (v) = i]◊
- +Ê

ËÁ
ˆ
¯̃

i j
j

1

◊ - + -

-

Ê

Ë
Á

ˆ

¯
˜ ◊| | | |

| |
()V i V j

V j
ucum jv u

u

� �

�
T T

T

18: Pu < v := Pu < v + p
19: end for
20: end for

21:

tot V V
V

u v

v

: | | | |
| |

= +Ê

Ë
Á

ˆ

¯
˜

� �

�
T T

T

22: Pu < v := Pu < v /tot
23: RETURN Pu < v
Theorem 8. The algorithm COMPARE returns the
value

Pu < v = P[r (u) < r (v)].

The runtime of COMPARE is O(|V
○ |2).

Proof. Note that the probability of u having smaller
rank than v in tree Tρ1

equals the probability of u
having smaller rank than v in tree T, since for any
rank function on Tρ1

, there is the same number of
linear extensions to get a rank function on the
tree T.

So it is suffi cient to calculate the probability
Pu < v in Tρ1

. If ρ1 = u then u is an ancestor of v in

T, so return Pu < v = 1. If ρ1 = v then v is an ancestor
of u in T, so return Pu < v = 0.

Now assume that ρ1 ≠ u and ρ1 ≠ v. The run of
RANKPROB calculates the probability P[r (u) = i]
in the tree Tu and P[r (v) = i] in Tv for all i. Next,
combine those two linear orders. Assume that
r (v) = i and that j vertices of Tu are inserted before v.
Inserting j vertices of Tu into the linear order of Tv
before v is possible in ()j

i j− +1 ways (see Remark 1).
Putting the remaining vertices in a linear order is
possible in (

| |

| | | |

V j

V i V j

u

v u
�

� �

T

T T

-

- + -) ways. The probability that the
vertex u is among the j vertices which have smaller
rank than v is P[r (u) ≤ j] = ucum(j). There are
|r (Tu)| possible linear orders on Tu and |r (Tv)|
possible linear orders on Tv. The number of linear
orders where vertex v has rank i in Tv, v has rank
i + j in Tρ1

 and r(u) < i + j therefore equals

¢ = = ◊ ◊
- +Ê

ËÁ
ˆ
¯̃

◊
- + -

p r v i r
i j

j

V i V j

V

i j v

v u

, [()] | () |

| | | |

|

P T

T T

1

� �

�
TT

T

u j
ucum j r u

|
() | () |

-

Ê

Ë
Á
Á

ˆ

¯
˜
˜

◊ ◊

Adding up the p′ for each i and j gives the number
of linear orders where u has smaller rank than v.

Combining a linear order on Tv with a linear
order on Tu is possible in

tot V V
V

u v

v

: | | | |
| |

= +Ê

Ë
Á

ˆ

¯
˜

� �

�
T T

T

different ways (see Remark 1). There are |r (Tu)|
linear orders on Tu and |r (Tv)| linear orders on Tv,
so on Tρ1

, there are

tot V V
V

r ru v

v

v v¢ = +Ê

Ë
Á

ˆ

¯
˜: | | | |

| |
| () || () |

� �

�
T T

T

T T

linear orders. Therefore:

Pu v
i j i j i j i jp
tot

p
tot< =

¢
¢

=
S S, , , ,

with
p r v i

i j
j

V i V j

V j

i j

v u

u

, [()]

| | | |

| |

= = ◊
- +Ê

ËÁ
ˆ
¯̃

◊
- + -

-

Ê

Ë
Á
Á

P
1

� �

�

T T

T

ˆ̂

¯
˜
˜

◊ ◊ucum j()

This shows that COMPARE works correct.

292

Evolutionary Bioinformatics Online 2006: 2

Relative Order of Speciation or Coalescence Events

Since RANKPROB has quadratic runtime,
COMPARE also has quadratic run time.

Acknowledgements
We thank Arne Mooers for very helpful comments
and suggestions on earlier versions of this manu-
script and the two anonymous referees for a very
careful report.

The Second author’s work is partially supported
by grant NSF-DMS-0241246

References
 Aldous, D.J. 2001. Stochastic models and descriptive statistics for phylo-

genetic trees, from Yule to today. Statist. Sci., 16(1):23–34. ISSN
0883-4237.

Baum, B.R. 1992. Combining trees as a way of combining data sets for
phylogenetic inference, and the desirability of combining gene trees.
Taxon, 41(1):3–10.

Brown, J.K.M. 1994. Probabilities of evolutionary trees. Syst. Biol.,
43(1):78–91.

Edwards, A.W.F. 1970. Estimation of the branch points of a branching dif-
fusion process. (With discussion.). J. Roy. Statist. Soc. Ser. B.,
32:155–174. ISSN 0035- 9246.

Gernhard, T. 2006. Stochastic models of speciation events in phylogenetic
trees. Diplom thesis.

Harding, E.F. 1971. The probabilities of rooted tree -shapes generated by
random bifurcation. Advances in Appl. Probability, 3:44–77. ISSN
0001-8678.

Hey, J. 1992. Using phylogenetic trees to study speciation and extinction.
Evolution, 46:627–640.

Nee, S.C. and May, R.M. 1997. Extinction and the loss of evolutionary
history. Science, 278:692–694.

Nordborg, M. 2001. Coalescent theory. Handbook of Statistical Genetics,
p179–212.

Page, B. 1991. Random cladograms and null hypotheses in cladistic bioge-
ography. Systematic Zoology, 40:54–62.

Pinelis, I. 2003. Evolutionary models of phylogenetic trees. Roy. Soc. Lond.
Proc. Ser. Biol. Sci., 270(1522):1425–1431+15. ISSN 0962- 8452.
With an electronic appendix [DOI 10. 1098 spb. 2003. 2374].

Ragan, M. 1992. Phylogenetic inference based on matrix representation of
trees. Mol. Phylogenet. Evol., 1:53–58.

Semple, C. and Steel, M. 2003. Phylogenetics, volume 24 of Oxford Lecture
Series in Mathematics and its Applications. Oxford University Press,
Oxford. ISBN 0- 19- 850942- 1.

Vos, R.A. and Mooers, A.O. A new dated supertree of the primates. System-
atic Biology, in Revision.

Yule, G.U. 1924. A mathematical theory of evolution: based on the conclu-
sions of Dr. J.C. Willis. Philos. Trans. Roy. Soc. London Ser. B.,
213:21–87.

Zhaxybayeva, O.D. and Gogarten, J.P. 2004. Cladogenesis, coalescence and
the evolution of the three domains of life. Trends in Genetics,
20:182–187.

293

