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Substance use disorder (SUD) is a chronic, relapsing disease with a highly multifaceted
pathology that includes (but is not limited to) sensitivity to drug-associated cues,
negative affect, and motivation to maintain drug consumption. SUDs are highly
prevalent, with 35 million people meeting criteria for SUD. While drug use and addiction
are highly studied, most investigations of SUDs examine drug use in isolation, rather
than in the more prevalent context of comorbid substance histories. Indeed, 11.3% of
individuals diagnosed with a SUD have concurrent alcohol and illicit drug use disorders.
Furthermore, having a SUD with one substance increases susceptibility to developing
dependence on additional substances. For example, the increased risk of developing
heroin dependence is twofold for alcohol misusers, threefold for cannabis users, 15-
fold for cocaine users, and 40-fold for prescription misusers. Given the prevalence
and risk associated with polysubstance use and current public health crises, examining
these disorders through the lens of co-use is essential for translatability and improved
treatment efficacy. The escalating economic and social costs and continued rise in
drug use has spurred interest in developing preclinical models that effectively model
this phenomenon. Here, we review the current state of the field in understanding
the behavioral and neural circuitry in the context of co-use with common pairings
of alcohol, nicotine, cannabis, and other addictive substances. Moreover, we outline
key considerations when developing polysubstance models, including challenges to
developing preclinical models to provide insights and improve treatment outcomes.

Keywords: polydrug, substance use, addiction, reward circuitry, preclinical models, neuronal signaling and
behavior, review, neurobiology of addiction

INTRODUCTION

Drug addiction is a heterogeneous disorder characterized by cyclic periods of drug use, withdrawal
and abstinence, and drug-craving and recurrence of use (Koob and Volkow, 2016). Addiction
is highly prevalent in our society, with an estimated 35 million people world-wide and 19.3
million people in the United States (US) currently meeting diagnostic criteria for a substance use
disorder (SUD) (Figure 1A; Substance Abuse and Mental Health Services Administration, 2019;
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United Nations Office on Drugs and Crime, 2019). Additionally,
epidemiological surveys suggest that, in a person’s lifetime, there
is a ∼10% prevalence of a SUD (Grant et al., 2016; Substance
Abuse and Mental Health Services Administration, 2019). Drug
addiction is also one of the largest public health problems in
the US, with an annual financial burden of $740 billion in
costs related to treatment, lost work productivity, healthcare, and
crime (National Institute on Drug Abuse, 2020). These numbers
are likely to increase as illicit drug use is rising, with a quarter of
a billion people worldwide reporting use in the past year (United
Nations Office on Drugs and Crime, 2019). Within the US, over
17 million people aged 12 and above are estimated to initiate drug
use annually. Rates of opioid use, in particular, are continuing
to climb, with 53 million past-year opioid users worldwide and
∼11 million people in the US reporting opioid misuse within
the past year (United Nations Office on Drugs and Crime, 2019).
This is especially alarming, as the number of deaths in the US
involving opioids has increased 6-fold from 1999 to 2017, with
∼130 Americans dying from use per day (Centers for Disease
Control, 2018).

Although the majority of research on SUDs has focused
on individual substances in isolation, with a multiple drug
use history often considered an exclusion criterion for clinical
studies, it is important to recognize that many drug users
engage in polysubstance use. For instance, 30–80% of heroin
users have been reported to also use cocaine (Leri et al.,
2003a), and deaths involving both cocaine and opioids in the
US more than doubled between 2010 and 2015 (Centers for
Disease Control, 2018). A person is considered a polysubstance
user if they use more than one substance, including use
of multiple drugs on separate occasions (sequential use) or
at the same time (concurrent/simultaneous). Limiting studies
to individual drugs risks overlooking interactions between
substances, decreases translatability of preclinical research, and
can impede the efficacy of identified treatments for SUDs.
Indeed, polysubstance use has consistently been associated
with worse treatment outcomes, including poorer treatment
retention, higher rates of relapse, and a three-fold higher
mortality rate compared to mono-substance use (Williamson
et al., 2006; Staiger et al., 2013; de la Fuente et al., 2014).
This review seeks to combine the current knowledge of
the mechanisms and consequences of individual drug use
with the most up-to-date research on polysubstance use,
making sure to note, when possible, if polysubstance use
is concurrent/simultaneous, sequential, or a combination of
these patterns. We will first provide an overview of public
health trends regarding single and polysubstance use, as
well as the impact of polysubstance history on metrics of
substance use severity. This will be followed by a discussion
of findings from preclinical studies, and their translatability
to real-world substance use, outlining considerations to be
made when designing polysubstance studies. We then detail
the pharmacology of individual substances and some of their
effects on the cortical-basal ganglia-thalamic (C-BG-T) circuitry,
which sets the groundwork for understanding how polysubstance
use may change the neuropathology of addiction. Care will be
given to discussing the differences between brain alterations in

FIGURE 1 | Public health trends in drug use. (A) Drug use in the
United States from 1990 to 2019. Data from the National Household Survey
on Drug Abuse (Substance Abuse and Mental Health Services Administration,
1993, 1995, 1997, 2003) and the National Survey on Drug Use and Health
(Substance Abuse and Mental Health Services Administration, 2005, 2007,
2009, 2011, 2013, 2015, 2017, 2019). (B) Unspecified polysubstance use in
treatment-seeking drug users in Finland from 1997 to 2008. Top: Primary (left)
and secondary (right) drugs used by treatment-seeking drug users, shown as
percent of total users. Bottom: Percent of users reporting exclusive misuse of
one drug (white bars) or misuse of a given drug along with polysubstance use
of another (colored bars). Data from Onyeka et al. (2012).

single versus polysubstance use, highlighting the most common
combinations of polysubstance use. For clarity and in order to
avoid duplication in our discussions, sections are organized by
primary used substance, with consideration for the consequences
that result when additional drugs are combined with a primary
drug. Finally, we offer suggestions and highlight potential
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methods to move forward with the important task of examining
polysubstance disorders.

PUBLIC HEALTH TRENDS IN
SUBSTANCE USE

Drug addiction is both pervasive and deadly, with ∼585,000
drug use-related deaths occurring each year worldwide (United
Nations Office on Drugs and Crime, 2019). Nonetheless, although
drug addiction and its impacts are often centered around
individual drugs, drug misuse is largely found to involve multiple
substances (Gjersing et al., 2013; Roy et al., 2013; Substance
Abuse and Mental Health Services Administration, 2016).
Indeed, drug-dependent individuals report an average use of 3.5
substances (Onyeka et al., 2012), including both simultaneous
and sequential polydrug use (Figure 1B). In addition, the
likelihood of developing comorbid substance dependencies is
high in clinical populations (Leri et al., 2004; Lorvick et al.,
2018). Although combinations of co-used substances vary,
primary drug dependencies are typically found for alcohol,
opioids, amphetamine, and methamphetamine, while cannabis
and cocaine are more often reported as secondary-or tertiary-
used substances (Substance Abuse and Mental Health Services
Administration, 2016). The high prevalence of polysubstance
use is particularly concerning given the impact it can have
on both SUD severity and treatment outcomes. For example,
a polysubstance history is associated with greater unmet
physical and mental health care needs, increased risk behavior,
violence, and increased overdose and mortality risk compared
to single substance use (Pennings et al., 2002; Gilmore et al.,
2018; Lorvick et al., 2018). In this section, we will discuss
the public health consequences surrounding single substance
use, as well as polysubstance use in relation to secondary
substance combinations. This overview will aim to address
overarching patterns of polydrug use, including the substance
combinations and patterns of use that most commonly occur.
However, given that data is limited for specific drug use
patterns, types of classification, and differences in definition of
polydrug combinations across studies, it is unlikely to capture all
combinations, histories, and patterns of use.

Psychostimulants
Psychostimulants are the second-most widely used class of
drugs, with 18 million current cocaine users and 29 million
current prescription stimulant users worldwide (United Nations
Office on Drugs and Crime, 2019). Worldwide prevalence of
psychostimulant use has remained relatively stable from 1990
to 2017, with 7.38 million reported to meet criteria for an
amphetamine use disorder and 5.02 million reported to meet
criteria for a cocaine use disorder (Degenhardt et al., 2018).
However, the number of drug-related overdose deaths involving
psychostimulants has continued to climb, especially in the US,
with a 2.6-fold increase in the cocaine overdose death rate and
3.6-fold increase in the methamphetamine overdose death rate
from 2000 to 2017 (Degenhardt et al., 2018).

Notably, cocaine and amphetamine users are predominantly
polysubstance users, with one study reporting 74 and 80%
incidence of polysubstance history, respectively (Kedia et al.,
2007). Specifically, cocaine use and developing a cocaine use
disorder is associated with concurrent heroin, cannabis, tobacco,
and alcohol use (Kedia et al., 2007; Roy et al., 2013; John and
Wu, 2017). Similarly, amphetamine users exhibit several types
of polysubstance use, with high probabilities of alcohol, tobacco,
and cannabis use. In addition, other classes of amphetamine
polysubstance users exhibit higher probabilities of heroin and
other opioid use. Across groups, lower probabilities of cocaine
use with amphetamine compared to other drug classes used with
amphetamine are reported as well (Darke and Hall, 1995; Kelly
et al., 2017). Polysubstance use is common among stimulant users
with both concurrent and sequential drug consumption patterns.
For instance, simultaneous use of psychostimulants and opioids
is seen with both cocaine (“speedball”) and methamphetamine
(“bombita”). Sequential use of psychostimulants and opioids is
also common, including the use of cocaine or amphetamine
to avoid opioid-related somatic withdrawal symptoms (Hunt
et al., 1984; Ellis et al., 2018) and the use of opioids to reduce
overexcitation following cocaine use (Kreek, 1997). Additionally,
there is an increased likelihood of same-day methamphetamine
use with alcohol consumption (Bujarski et al., 2014).

Though these studies did not specify the patterns of polydrug
use, a meta-analysis of reports on concurrent versus simultaneous
cocaine use found a 24–98% range of simultaneous cocaine and
alcohol use and 12–76% incidence of simultaneous cannabis
use (Liu et al., 2018). Rates of concurrent use were 37–96%
for cocaine and alcohol use, 43–94% for cocaine and cannabis
use (Liu et al., 2018), 70–80% for cocaine and nicotine use
(Budney et al., 1993; Weinberger and Sofuoglu, 2009), and 85–
95% for amphetamine and nicotine use (Brecht et al., 2007;
Grant et al., 2007). The high variability in reported frequencies
highlights the complexity in identifying drug use patterns, which
can vary across demographics, study periods, study structure, and
definitions of concurrent and simultaneous use.

Polydrug use involving psychostimulants poses significant
public health risks. For example, one study showed that
amphetamine users were 21 times more likely to have a
concurrent cannabis use disorder and 7 times more likely to
have past-year concurrent cocaine use, compared to those with
no prior history of amphetamine use (Massaro et al., 2017).
In addition, nearly one-third of overdose deaths involved both
psychostimulants and opioids, such as heroin and fentanyl
(Kariisa et al., 2019). The hazards of psychostimulant co-use also
extend to other substances, with combined cocaine and cannabis
use resulting in higher standardized death rates in emergency
department (ED) visits, suggesting elevated mortality risks with
this combination (Gilmore et al., 2018). Additionally, combining
cocaine and alcohol use increases the risk for cardiotoxicity
compared to either drug alone (Pennings et al., 2002).

Nicotine
Although the use of tobacco (i.e. the dried leaves of the tobacco
plant containing nicotine) has declined since the early 2000s,
nicotine is still one of the most commonly used drugs, with 58.8
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million people aged 12 or above reporting past-month nicotine
use in the US (Substance Abuse and Mental Health Services
Administration, 2019). It is also commonly used with many other
substances, as 17% of nicotine users also used cannabis, 4.7%
also used opioids, 2.6% also used cocaine, and 1.4% also used
psychostimulants in the past month. In contrast, nonsmokers had
much lower percentages of past-month substance use (3.7, 1.2,
0.2, and 0.3% for the aforementioned substances, respectively),
(Moeller et al., 2018). This difference is notable, given that people
with a nicotine use disorder are 3–4 times more likely to have a
second SUD (Chou et al., 2016). In addition, it was found that
past-year tobacco use was significantly associated with opioid use
disorders, as well as comorbidities for cannabis and alcohol use
and use disorders, and cocaine use in samples of primary care
patients (John et al., 2019). Tobacco use severity (i.e. frequency of
use and number of cigarettes smoked) has also been significantly
correlated with onset of heroin and cocaine use (Frosch et al.,
2000). Historically, nicotine has primaryily been used by smoking
tobacco cigarettes. However, new advances in technology have
led to the development of electronic (e-) cigarettes, designed
to deliver nicotine in a toxin-free manner. The marketing of
e-cigarettes as a safer alternative to traditional tobacco cigarettes
is concerning, as it has led to an increase in the probability
of nicotine use and a resurgence in the potential for nicotine
addiction. For example, e-cigarette use among middle and high
school students has increased from 2012 to 2016 (Gentzke et al.,
2019), and a spike in use was observed among young adults (18–
24 years old) around 2013 to 2014, when e-cigarette products
were introduced (Gentzke et al., 2019). Despite delivery of lower
doses of nicotine, the safety of commercial e-cigarettes has been
debated, since compensatory “puffing” behaviors or high voltage
settings leads to the production of carcinogenic agents (Jensen
et al., 2015). The potential danger of use is further compounded
by the variable amounts of nicotine provided across e-cigarette
manufacturers (Goniewicz et al., 2013). The unique influence of
vaping on the development of nicotine dependence and how this
differentially contributes to polysubstance use disorders remains
largely unknown and should be studied in the coming years.

Opioids
The prevalence of opioid misuse (i.e. use outside of prescribed
use) has risen dramatically in recent years, with ∼53 million
adults (1.1% of global population) reporting past-year non-
medical use of an opioid (United Nations Office on Drugs
and Crime, 2019). In the US alone, 11 million people reported
past-year opioid misuse in 2016 (Substance Abuse and Mental
Health Services Administration, 2017); however, this estimate
is conservative as it does not include homeless or incarcerated
individuals with disproportionately higher levels of opioid use.
In addition, the rate of first-time heroin users rose in parallel
with non-medical use of prescription opioids from 2002 to
2011 (United Nations Office on Drugs and Crime, 2019), a
reflection that suggests individuals with past-year prescription
opioid misuse are 19 times more likely to initiate heroin use
than those without such a history (Muhuri et al., 2013; Cicero
et al., 2018). Studies have investigated polydrug use among
heroin and prescription opioid misusers and found higher

frequencies of opioid use in people that also use cocaine (>33%)
or methamphetamine (>20%) (Wang et al., 2017; Hedegaard
et al., 2018), but reduced prevelance for primary opioid use
in those that have secondary alcohol or cannabis use (Wang
et al., 2017; but see Cicero et al., 2020). In addition, first-time
methamphetamine use is more prevalent following past-month
opioid use (Cicero et al., 2020). Of those entering treatment
for heroin use, it has been found that 91% of people reported
a lifetime history of cocaine use (Williamson et al., 2006).
Additionally, a study in the United Kingdom found that 54%
of opioid users in treatment between 2017 and 2018 also had
a comorbid crack cocaine use disorder (Public Health England,
2018). With respect to patterns of multi-drug use, simultaneous
use of heroin with alcohol and/or cannabis is more common
than with psychostimulants (Kelly et al., 2017; Bobashev et al.,
2018), and a sequential pattern of drug use is preferred for opioids
and psychostimulants.

In the US, opioid use is a national public health emergency
responsible for more than 1.6 million years of life lost from
2001 to 2016 (Gomes et al., 2018). Moreover, opioid overdose
deaths are currently the leading cause of accidental death among
US adults, with 68% of all drug overdose deaths involving an
opioid (United Nations Office on Drugs and Crime, 2019). Given
that nearly 80% of fatal opioid overdoses also involved another
substance, it appears that there is a greater risk of death when
opioids are used in combination with other opioids and/or
other drugs (Jones et al., 2018). Specifically, of these deaths,
78% involved another opioid, 21.6% involved cocaine, 11.1%
involved alcohol, and 5.4% involved a psychostimulant other than
cocaine (Jones et al., 2018). Furthermore, opioid-related ED visits
also involved tobacco (51.1%), cocaine (36.9%), other stimulants
(22.6%), cannabis (25.1%), or alcohol (16.9%). Substantial
polysubstance use of three or more of these substances has
also been reported for opioid-related ED visits (Liu and Vivolo-
Kantor, 2020), and the likelihood of these visits has been
associated with the degree of severity of other SUDs (Zale et al.,
2015; John et al., 2019). Taken together, these reports suggest that
combining opioid use with use of other substances can exacerbate
the deleterious consequences of opioid use. In addition to
overdose risk, opioid users experience very high rates of relapse,
with 59% of individuals relapsing in the first week and 80%
relapsing in the first month of abstinence (Smyth et al., 2010).
Past use of other substances, including the degree of cocaine
use, increases relapse susceptibility (Williamson et al., 2006).
Methamphetamine use among those seeking treatment for opioid
use has also been on the rise (United Nations Office on Drugs and
Crime, 2019), and recent reports indicate that methamphetamine
use is associated with a discontinuation of buprenorphine
treatment in people with an opioid use disorder (Tsui et al., 2020).
Thus, a better understanding of the impact of polysubstance use
in the context of opioids is crucial for more successful emergency
responses and long-term treatment outcomes.

Cannabinoids
It is estimated that 188 million individuals 12 years or older
use cannabis worldwide (United Nations Office on Drugs and
Crime, 2019), including 43.5 million individuals in the US
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(Substance Abuse and Mental Health Services Administration,
2019). Beginning in 2012 with Washington and Colorado, 11
states and the District of Columbia have legalized recreational
cannabis, making it legally accessible to∼328 million people. The
number of cannabis users in the US has risen with its gradual
decriminalization and legalization, from 4.1% in 2002, to 9.9%
in 2007, to 15.9% in 2018 (Hasin et al., 2015; Substance Abuse
and Mental Health Services Administration, 2019). Frequency of
cannabis use is also high, with reports of 40% of individuals being
daily or near-daily users (Substance Abuse and Mental Health
Services Administration, 2019).

Cannabis users are reported to have high rates of past month
tobacco, alcohol, and/or amphetamine use (Connor et al., 2013).
One of the most common combinations is simultaneous use
of alcohol and cannabis (McCabe et al., 2006), along with
simultaneous alcohol, cocaine, and cannabis use (Liu et al., 2018).
The impact of concurrent cannabis is notable, as this pattern of
use is associated with more alcoholic drinks per day, suggesting
facilitation of alcohol use with coexisting cannabis consumption
(Aharonovich et al., 2005; Subbaraman et al., 2017). Polydrug
use is particularly prevalent in younger populations. Among
adolescent cannabis users, 27.5% reported additional drug use
within the same year of starting cannabis use, and nearly 67%
use two or more other drugs (Subbaraman and Kerr, 2015).
Cannabis is frequently used during treatment for other SUDs
(Connor et al., 2013; Subbaraman et al., 2017), and this has
been associated with reduced treatment efficacy. For example,
cannabis use has been found to result in shorter periods of alcohol
abstinence (Subbaraman et al., 2017), as well as greater incidence
of relapse to cocaine (Aharonovich et al., 2005; Mojarrad et al.,
2014). In addition, polydrug use among cannabis users has
been correlated with reduced socioeconomic mobility, financial
instability, and relationship difficulties (Aharonovich et al., 2005;
Cerdá et al., 2016; Subbaraman et al., 2017), a heightened degree
of mood disorder symptom severity, decision-making deficits,
social difficulties, and self-harm (Subbaraman and Kerr, 2015;
Lopez-Quintero et al., 2018). Although these data suggest that the
consequences of drug use are enhanced by concurrent cannabis
use, it should be noted that clinical outcomes can vary for studies
examining polydrug use among cannabis users. For example,
some studies suggest a nuanced impact of polysubstance use
that is dose-dependent, with no synergistic effects of cannabis
and alcohol at low doses of either drug (Ballard and De Wit,
2011), and a lack of association of cannabis use in heroin relapse
(Aharonovich et al., 2005).

Alcohol
Alcohol is one of the most commonly used drugs, with up to 290
million people diagnosed with an alcohol use disorder worldwide
(United Nations Office on Drugs and Crime, 2019), including
15 million people in the US (Substance Abuse and Mental
Health Services Administration, 2019). Alcohol is frequently
used with other substances, with reports indicating that 5.6%
of US adults have used both alcohol and another illicit drug
within the past year, and 1.1% have met diagnostic criteria for
both an alcohol use disorder and another SUD (Falk et al.,
2006). The most commonly reported substance co-used with

alcohol is cannabis (10%), with less common comorbidities found
with opioids (2.4%), cocaine (2.5%), and amphetamine (1.2%)
(Falk et al., 2006). Although simultaneous use of alcohol and
cannabis or alcohol and prescription opioids is most common
(McCabe et al., 2006), simultaneous use is also seen with cocaine
(Liu et al., 2018).

Polydrug use increases the risk of developing an alcohol use
disorder (Grant et al., 2015, 2016), particularly in young adults,
men, and American Indians/Alaskan Natives (Falk et al., 2006).
Polydrug use that includes alcohol is associated with additional
comorbidities, including higher prevalence of mood disorders,
anxiety disorders, more intense drinking, and more intense
drug consumption and drug-craving (Preston et al., 2016; Saha
et al., 2018). The negative consequences of alcohol polydrug
use are also highlighted by data indicating that 21% of ED
visits for patients 12–24 years old involved both alcohol and
drugs. These visits were also more likely to require treatment for
injuries, and had higher rates of inpatient admittance (Naeger,
2017). In addition, 17% of substance treatment admissions were
related to both alcohol and drug use, representing 45% of
primary alcohol admissions and 33% of drug misuse admissions
(White et al., 2011; Substance Abuse and Mental Health Services
Administration, 2016; Naeger, 2017). The rate of hospitalizations
involving alcohol polydrug use has been increasing, particularly
in young adults, with reports suggesting a 76% rise in inpatient
admittance between 1998 and 2008, compared to either drug
or alcohol overdoses alone (White et al., 2011). While the
polysubstance users in these surveys were primarily white and
male, recent trends indicate a rise in ED visits relating to alcohol
and drug combinations in females (Naeger, 2017), suggesting a
change in the demographics of polysubstance combinations that
include alcohol.

BEHAVIORAL MODELS OF ADDICTION
IN POLYDRUG STUDIES

Behavioral models of drug addiction are used to examine the
neurobiological underpinnings of the development, maintenance
and relapse to drug use. The most commonly used models are
locomotor sensitization (a progressive and persistent increase in
locomotor responses to the same dose of a drug), conditioned
place preference (CPP; a test of drug reward measured as an
increase in time spent in a drug-paired chamber) and drug
self-administration (response-contingent intake of drug) (see
Panlilio and Goldberg, 2007; Spanagel, 2017; Kuhn et al., 2019
for review). Experimental designs using these models vary
across a number of pharmacological and non-pharmacological
parameters including contingency of drug use, amount of
access to drug, context associated with drug use, and routes
of administration. Here, we describe how these models have
been used with polydrug combinations, and how this work has
informed our understanding of polydrug use and addiction.

Initial polysubstance studies largely used noncontingent
models of drug administration, particularly CPP and cross-
sensitization models, whereby the impact of priming doses of
one drug on side preference or motor activity, respectively,
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of another drug are determined (Shippenberg et al., 1998;
Lu et al., 2002; Cole et al., 2003; Leri et al., 2003b; Liang
et al., 2006). More recently, studies have been examining
how drug self-administration history impacts subsequent drug
choice preference and/or drug-craving via responding to drug-
associated cues following extinction and/or withdrawal (Leri
and Stewart, 2001; De Luca et al., 2019; Rubio et al., 2019;
Crummy et al., 2020). Preclinical polysubstance models involving
simultaneous administration of multiple drugs, such as alcohol
and nicotine or cocaine and heroin combinations, have also
been used frequently (Mello and Newman, 2011; Mello et al.,
2013; Sentir et al., 2020). In clinical models, both concurrent and
sequential polysubstance use is assessed in subjects via scoring
of affective measures to drug-taking, drug-craving following
visual cues, and autonomic response measures such as blood
pressure and heart rate (Foltin et al., 1993; Greenwald et al., 2010;
Giasson-Gariépy et al., 2017).

More recently, studies are comparing single versus
polysubstance self-administration to determine the effect of drug
history on drug-induced molecular and circuit alterations (Briggs
et al., 2018; Stennett et al., 2020; Zhu et al., 2020). Additionally,
paradigms based on behavioral economic principles can
determine the preferred level of drug intake (i.e. no-cost intake;
Q0), as well as the amount of effort an animal is willing to exert
to defend Q0 before consumption and responding begins to
decline (i.e. price; Pmax) (Oleson and Roberts, 2009). These
paradigms are especially powerful in that they can use Q0 and
Pmax to generate normalized measures of value (i.e. essential
value; α) and price (nPmax), which have been used to compare
price sensitivity, effort, and value across different drug and
non-drug rewards in polysubstance models in several species
(e.g. in rats, rhesus monkeys, and human participants) (Petry
and Bickel, 1998; Ward et al., 2006; Wade-Galuska et al., 2007,
2011; Crummy et al., 2020). In particular, these studies permit
examination of the relative reinforcing properties of different
doses and classes of drugs (Wade-Galuska et al., 2007; Cooper
et al., 2010; Huskinson et al., 2015), as well as alterations in cost
valuation for a drug following pre-exposure to another drug
(Cooper et al., 2010; Hofford et al., 2016; Morris et al., 2018).
Direct quantification of the assigned value of these drugs across
different polysubstance histories and drug doses is very useful
for assessing the impact of polysubstance history on relative
reinforcer value. Furthermore, these measures can be used to
compare how polysubstance users value drug rewards across
different experimental parameters (e.g. differences in priming
dose of one drug, environmental context, pattern of drug use).
Finally, clinical studies are using questionnaires or controlled
laboratory environments to investigate the behavioral effects of
a polysubstance history. Specifically, these studies use monetary
choice procedures that compare assigned value of drugs at
different doses (Greenwald et al., 2010), how assigned value
changes for one drug with a change in price of another (Petry and
Bickel, 1998; Petry, 2001; Sumnall et al., 2004; Chalmers et al.,
2010), or how relative value of one drug changes with perceived
change in subjective quality of another available drug (Cole et al.,
2008). Additionally, progressive ratio tests for a single drug or
drug combinations to study motivation (Greenwald et al., 2010),

and delay-discounting rates for money and drug rewards to
study decision-making, (Strickland et al., 2019) have also been
performed. These studies permit comparison of perceived value
across multiple drugs in participants with histories of single or
polysubstance use (for further review, see Heinz et al., 2012).

Effects of Polydrug Use on Addictive
Behaviors
Given the unique neurobiological alterations that can occur with
exposure to multiple drugs, along with the high prevalence of
polysubstance use disorders, there is a strong need to develop
polydrug paradigms that have high translational value. These
paradigms are critical for fully understanding the behavioral
changes and addiction-related phenotypes that develop following
polydrug use. However, given the vast number of potential
substance combinations and the variability in methodologies
that exist across studies, there are currently mixed results
and interpretations regarding the impact of polydrug history
on addiction-related behaviors. Nonetheless, some general
trends in drug consumption, drug preference and drug-seeking
have been demonstrated in commonly investigated substance
combinations (Figure 2).

Psychostimulants
Some of the more commonly studied polydrug combinations
include administration of cocaine with other drugs (Francesco
et al., 2003; Leri et al., 2003b; Substance Abuse and Mental
Health Services Administration, 2016). However, in contrast to
human reports (Heil et al., 2001; Williamson et al., 2006; Staiger
et al., 2013; Preston et al., 2016; Lorvick et al., 2018; Kariisa
et al., 2019), an increase in addiction-like severity has not been
observed in preclinical studies, suggesting a need for models with
greater translational relevance that can capture the enhanced
severity seen in human polysubstance users. Specifically, animal
studies of sequential cocaine and alcohol or cocaine and heroin
use have not found differences in drug intake or reinstatement
of drug-seeking as a function of single versus polydrug use
(Pattison et al., 2014; Fredriksson et al., 2017; Crummy et al.,
2020; Stennett et al., 2020). These effects were observed despite
variance in the use of contingent and non-contingent drug
administration, drug doses, and species, including rats (Crummy
et al., 2020; Stennett et al., 2020) and rhesus monkeys (Aspen and
Winger, 1997). Consistent with this work, intermittent alcohol
exposure has not been shown to affect cocaine self-administration
(Aspen and Winger, 1997; Fredriksson et al., 2017) or the
reinforcing properties of cocaine measured via demand curves in
rhesus monkeys (Winger et al., 2007). In addition, intermittent
alcohol exposure has not been shown to affect progressive ratio
tests of motivation for cocaine (Mateos-García et al., 2015),
or the long-term reconsolidation of preference for cocaine in
drug-paired contexts (Zhu et al., 2020) in rats. In contrast,
adolescent alcohol exposure has been shown to have long-lasting
effects on cocaine self-administration and reward, suggesting
that this population is particularly susceptible to the effects of
polysubstance use. For example, adolescent alcohol exposure
increases motivation for cocaine (Mateos-García et al., 2015),
enhances the development of a cocaine CPP in both mice
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FIGURE 2 | Summary of the effects of specific polydrug combinations on assays of addiction-like behaviors. Studies are organized into X/Y polydrug combos
(columns) and behavioral assays (rows), with subcolumns for the effect of drug Y on drug X (left subcolumn) and the effect of drug X on drug Y (right subcolumn).
Symbols represent the net effect of the X/Y polydrug combo on a given behavior, with color depicting the specific drugs tested. Sensitization: locomotor
sensitization; Conditioned place preference: acquisition, expression; Drug intake: self-administration; Motivation: progressive ratio, behavioral economics; Drug
craving: reinstatement, cue reactivity. Data from Mello and Mendelson (1978), Mello et al. (1980), Mello et al. (2014), Huston-Lyons et al. (1993), Foltin et al. (1993),
Aspen and Winger (1997), Ranaldi and Wise (2000), Valverde et al. (2001); De Vries et al. (2001), Parker et al. (2004); Solinas et al. (2005), Liang et al. (2006); Biala
and Budzynska (2006), Ward et al. (2006); Panlilio et al. (2007), Panlilio et al. (2013), Winger et al. (2007), Lê et al. (2010), Lê et al. (2014), Levine et al. (2011),
Cortright et al. (2011), Pomfrey et al. (2015), Maguire and France (2016); Mahmud et al. (2017), Fredriksson et al. (2017); Giasson-Gariépy et al. (2017), Griffin et al.
(2017); Schwartz et al. (2018), Winkler et al. (2018); Manwell et al. (2019), Ponzoni et al. (2019), Crummy et al. (2020), and Stennett et al. (2020).

(Molet et al., 2013) and rats (Hutchison and Riley, 2012; Mateos-
García et al., 2015), and weakens cocaine-induced taste aversion
(Busse et al., 2005). In addition, simultaneous heroin and
psychostimulant administration increases the motivation to self-
administer cocaine (Ward et al., 2006) and methamphetamine
(Ranaldi and Wise, 2000), and both simultaneous and sequential
administration of morphine and methamphetamine have been
shown to be rewarding, as measured by the development of a CPP
(Briggs et al., 2018). Pretreatment with an opioid also enhances
methamphetamine-induced psychomotor sensitization (Liang
et al., 2006). These findings suggest that opioids can enhance
the rewarding and motivational properties of psychostimulants,
particularly when administered simultaneously.

Polydrug studies with cocaine and nicotine have largely
reported additive and/or synergistic effects of the two drugs.
In particular, co-administration of cocaine and nicotine
increases drug intake in rhesus monkeys (Mello et al., 2014)
and rats (Bechtholt and Mark, 2002), enhances locomotor
sensitization and the development of a CPP in mice (Levine
et al., 2011), and induces a cross-sensitized drug-craving
(Reid et al., 1998; Weinberger and Sofuoglu, 2009; Cortright
et al., 2012). Additionally, chronic nicotine pretreatment
facilitates the acquisition of cocaine self-administration (Horger
et al., 1992; Bechtholt and Mark, 2002; Linker et al., 2020),

increases motivation under a progressive ratio schedule,
impairs extinction learning, and enhances drug-primed
reinstatement for amphetamine following amphetamine self-
administration (Cortright et al., 2012). Conversely, prior
nicotine treatment history reduces demand elasticity for cocaine
(Schwartz et al., 2018). Notably, the effects of nicotine and
psychostimulant polydrug use are largely dose-dependent
as pretreatment with a smaller dose of nicotine [0.3 mg/kg,
subcutaneous (sc)] increases motivation to take cocaine under
a progressive ratio schedule in rats, whereas a larger dose of
nicotine (0.6 mg/kg, sc) has the opposite effect (Bechtholt
and Mark, 2002). Additionally, simultaneous administration
of methamphetamine [2.0 mg/kg, intraperitoneal (ip)] and
nicotine (1.0 mg/kg ip) induces a conditioned place aversion
in mice, while sequential administration of the same dose
induces a CPP (Briggs et al., 2018). Together, these studies
demonstrate that the effects of nicotine on psychostimulant
motivation, intake, and reward are heavily impacted by the
parameters surrounding nicotine delivery (e.g. dose, route,
pattern, etc.), which should be carefully considered when
comparing study results and developing preclinical polydrug
paradigms. Notably, adolescent exposure to nicotine has
no effect on the subsequent development of a cocaine CPP,
cocaine-induced taste aversion, cocaine self-administration,
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extinction, or reinstatement of cocaine-seeking in adulthood
(Pomfrey et al., 2015), although it has been shown to enhance
cocaine self-administration in adolescent rats (Linker et al.,
2020). These data suggest that, unlike alcohol, early exposure to
nicotine does not lead to increases in addiction-like behavior to
cocaine in animals.

In humans, simultaneous cocaine and cannabis use produces
feelings of “stimulated” and “high” that last longer than
either drug alone (Foltin et al., 1993), and cue-induced drug-
craving in individuals who co-use cocaine and cannabis lasts
longer than for those who only use cocaine (Giasson-Gariépy
et al., 2017). In contrast, THC reduces the motivation to self-
administer cocaine in rodents (Panlilio et al., 2007). Although
this suggests a differential regulation of cocaine’s effects in
humans and rodents, further work is necessary to ensure
that animal models of increased addiction severity cannot,
in fact, be developed. Notably, however, neither cocaine and
cannabis nor cocaine and alcohol co-administration in humans
produces subjective effects that are different from cocaine,
cannabis, or alcohol alone (Foltin et al., 1993). Similarly, THC
pretreatment in rodents has no effect on psychostimulant reward
or self-administration, nor does it potentiate the development
of a CPP to amphetamine (Panlilio et al., 2007; Cortright
et al., 2011; Keeley et al., 2018), indicating a unique effect
of cocaine and cannabis on drug-craving. Interestingly, CBD
has no effect on cocaine self-administration, motivation, or
cue-induced reinstatement of cocaine-seeking (Mahmud et al.,
2017), suggesting the effects of cannabis on cocaine craving
are likely due to THC, rather than CBD. However, CBD
treatment has been found to reduce motivation to self-administer
methamphetamine on a progressive ratio schedule and to
reduce methamphetamine-primed reinstatement of drug-seeking
(Hay et al., 2018). The additive effects of cannabinoid and
psychostimulant polydrug use appear to be dependent on both
the amount of drug consumed and the age range during use.
For example, acute THC weakens psychomotor sensitization,
but repeated THC administration promotes tolerance to the
acute effects, increasing amphetamine-induced stereotypy and
locomotor activity (Gorriti et al., 1999; Cortright et al., 2011).
Additionally, adolescent THC exposure accelerates acquisition
of cocaine self-administration and increases intake of low
doses of cocaine (Friedman et al., 2019), indicating long-lasting
changes in reward circuitry following adolescent THC use,
similar to alcohol.

Nicotine
Limited work has focused on the effects of polydrug use on
nicotine-induced addiction behaviors. However, it has been
found that THC pretreatment can enhance nicotine consumption
and price inelasticity (measured by α) in behavioral economic
tests in rats (Panlilio et al., 2013), and heroin intake has
been found to increase cigarette consumption in people
(Mello et al., 1980). In addition, pre-exposure to alcohol or
simultaneous access to both alcohol and nicotine decreases
nicotine self-administration in rodent studies (Lê et al., 2010,
2014). Although access to alcohol has no effect on responding
for nicotine under extinction conditions, a priming dose

of alcohol does reinstate nicotine-seeking (Lê et al., 2010).
Finally, systemic co-administration of methamphetamine and
nicotine produces a conditioned place aversion in rats (Briggs
et al., 2018), whereas pretreatment with either amphetamine
or morphine increases the rewarding properties of nicotine
as shown with lowered intracranial self-stimulation thresholds
(Huston-Lyons et al., 1993). These studies further emphasize
the need to consider use patterns and dose in interpretation of
polydrug use effects.

Opioids
Similar to psychostimulant polydrug studies, sequential use of
heroin and cocaine has not been found to alter heroin self-
administration or reinstatement of heroin-seeking (Crummy
et al., 2020). Although alcohol pretreatment can prevent the
long-term reconsolidation of preference for morphine in drug-
paired contexts (Zhu et al., 2020), adolescent alcohol exposure
enhances the development of a morphine CPP (Molet et al.,
2013). This finding indicates that the long-term effects of
adolescent alcohol exposure are generalizable to multiple drug
classes. Interestingly, co-administration of morphine and THC
prevents the development of the analgesic tolerance that normally
accompanies long-term exposure to either drug alone (Cichewicz
and McCarthy, 2003; Cox et al., 2007; Smith et al., 2007).
In addition, the analgesic effects of THC and oxycodone co-
administration are additive to oxycodone alone (Nguyen et al.,
2019). Moreover, administration of either THC or both THC
and CBD attenuates naloxone-precipitated withdrawal without
impacting the development of a morphine CPP (Lichtman et al.,
2001; Valverde et al., 2001). These data suggest a potential
role for cannabinoids in regulating a physical dependence
to opioids without altering their reinforcing properties. In
support of this, repeated THC administration has no effect
on breakpoint during a PR test of heroin self-administration
(Solinas et al., 2004, but see Nguyen et al., 2019) or relapse to
heroin-seeking, although it produces a small reduction in both
heroin (Maguire and France, 2016) and oxycodone (Nguyen
et al., 2019) intake in fixed-ratio self-administration sessions.
The effects of opioid and cannabis polydrug use, however,
appear to be dose-dependent as systemic administration of
THC prior to heroin self-administration reduces responding
for large doses of heroin, but has no effect on responding for
lower doses in both monkeys and rats (Solinas et al., 2004;
Maguire and France, 2016).

Cannabinoids
As with psychostimulants and opioids, administration of nicotine
with THC augments the effects of either drug alone when
measured in tests of locomotion, analgesia, and hypothermia
(Valjent et al., 2002). In addition, THC and nicotine co-
administration exacerbates the somatic symptoms of THC
withdrawal (Valjent et al., 2002). However, after repeated
nicotine treatment and 2 weeks of drug abstinence, nicotine re-
administration attenuates THC-induced decreases in locomotor
activity, increases in anxiety measures (when assessed in the
elevated-plus maze), and changes in social interaction (Manwell
et al., 2019). These findings suggest that nicotine enhances the
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negative symptoms of THC when administered concurrently or
in close temporal proximity. Although nicotine pretreatment
enhances the rewarding effects of subthreshold doses of THC
(Ponzoni et al., 2019), cocaine pretreatment heightens THC-
induced anxiogenic behaviors (Panlilio et al., 2007). Cannabis
and alcohol polydrug use is relatively common in humans, and
individuals report reduced alcohol consumption when cannabis
is available (Mello and Mendelson, 1978), suggesting a role for
cannabinoids in alcohol intake. However, drug-induced cognitive
and physical impairments in humans, as assessed in a driving
simulation, were found to be more severe after use of THC and
alcohol compared to either drug alone (Downey et al., 2013).
Conducting polydrug studies of combinations of THC or CBD
with other drug classes is therefore necessary to understand the
differential effects resulting from these drugs.

Unfortunately, due to long-term restrictions on cannabis
research in the US and past difficulties in modeling cannabis
use with self-administration models in rodents (Panlilio et al.,
2015), much less is known about the impact of cannabis relative to
other drugs. The development of novel methods of cannabis self-
administration in animals, including oral self-administration of
19-tetrahydrocannabinol (THC)-containing gelatin (Kruse et al.,
2019), self-administration of vaporized THC and cannabidiol
(CBD) (Freels et al., 2020), and intravenous self-administration
of THC and CBD (Neuhofer et al., 2019) will help facilitate
the preclinical study of cannabis use disorder, as well as enable
us to better understand the consequences of polydrug use
involving cannabis.

Alcohol
Polydrug use of alcohol and nicotine produce mixed phenotypes
in relation to addiction behaviors. For example, pre-exposure
to alcohol or simultaneous access to both alcohol and nicotine
increases alcohol self-administration, but not when nicotine is
administered prior to alcohol each day (Lê et al., 2010, 2014).
Chronic nicotine treatment also enhances alcohol preference, an
effect that persists through nicotine withdrawal (Blomqvist et al.,
1996). However, although access to nicotine impairs extinction
learning to alcohol responding, it has no effect on reinstatement
of drug-seeking, as rats respond similarly on alcohol and
nicotine-associated levers following a priming injection of
nicotine (Lê et al., 2010). Nonetheless, another study found
that priming doses of alcohol, but not nicotine, were capable
of reinstating alcohol-seeking following self-administration of
both nicotine and alcohol (Sentir et al., 2020). Studies have not
systematically examined the effects of other drugs on alcohol
use and addiction.

NEUROBIOLOGY OF ADDICTION

The development and maintenance of addiction behaviors
arises in part from maladaptive neuroplasticity within the
neural circuits responsible for decision-making, learning,
motivation, and reward processing. In particular, alterations
in the cortico-basal ganglia-thalamic (C-BG-T) network are
known to contribute to drug-taking and drug-seeking behaviors,

as well as the persistence of SUDs (Koob and Volkow, 2016).
The C-BG-T is a heavily interconnected network that integrates
sensory and interoceptive cues to drive motivated behavioral
output. The striatum, which serves as an interface of the
C-BG-T, receives extensive glutamatergic input from cortical
(e.g. prefrontal) and subcortical (e.g. amygdala, hippocampus,
thalamus) regions, along with dopaminergic input from the
midbrain [substantia nigra (SN)/ventral tegmental area (VTA)]
(Gerfen and Surmeier, 2011; Calabresi et al., 2014). Integration
of glutamatergic and dopaminergic inputs with local inhibition
in the striatum contributes to the initiation or suppression of
behavioral output, and imbalanced signaling between the two
striatal output pathways (i.e. the direct and indirect) can drive
addictive behaviors (Kravitz et al., 2010; Ferguson et al., 2011;
O’Neal et al., 2019). It is beyond the scope of the current review to
fully explore all of the neurobiological changes that occur in the
C-BG-T with drug use. We will instead focus on one microcircuit
within the C-BG-T that is central to the acute effects of drugs
with addictive potential, and in some of the persistent changes
that develop following long-term drug use: The prefrontal cortex
(PFC) – nucleus accumbens (NAc) – VTA network (Figure 3).
Following a review of the microcircuitry and connectivity of
these regions, we will discuss disruptions that occur within
this network following both acute and long-term exposure to
different classes of drugs, with emphasis on the similarities
and/or differences of effects relative to polydrug combinations.

Prefrontal Cortex
The PFC is centrally involved in reward learning, decision-
making, and outcome valuation (Garcia et al., 2018). It is a
highly heterogenous structure, which adds to the complexity
in understanding its role in cognition, as well as how its
dysregulation contributes to drug use and addiction. In general,
the medial prefrontal cortex (mPFC) – encompassing the anterior
cingulate (ACC), prelimbic (PrL), and infralimbic (IL) cortices –
regulates motivation and seeking of both natural and drug
rewards via excitatory glutamatergic projections to the NAc
and VTA (Koob and Volkow, 2016). Notably, projections from
the mPFC to the NAc are topographically organized, with the
PrL innervating the NAc core and the IL innervating the NAc
shell (Brog et al., 1993). In contrast, the orbitofrontal cortex
projects more heavily to the dorsal striatum and SN and is
primarily involved in outcome and probability valuation (Padoa-
Schioppa and Conen, 2017). Hypoactivity in the PFC contributes
to drug craving and seeking despite negative consequences in
preoccupation stages of addiction, with dysregulated connectivity
to the striatum and VTA contributing to cue sensitivity and
motivated drug-taking (Volkow and Boyle, 2018). The PFC is
comprised of six layers, each with unique connectivity patterns
and distinct cell types. Specifically, a majority of PFC neurons
are large pyramidal output cells (75%), as well as several
subtypes of interneurons (∼25%) (Santana and Artigas, 2017).
Pyramidal cells in layers II/III send local projections within
cortex, while those in layers V-VI send projections throughout
the C-BG-T, including to the striatum, midbrain, amygdala,
hippocampus, and thalamus (Gabbott et al., 2005; Santana and
Artigas, 2017). Pyramidal cells can be further subdivided based on
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FIGURE 3 | Neural circuitry targeted by potentially addictive drugs. Simplified
schematic emphasizing local and distal connections between the PFC, NAc,
and VTA that are targeted by potentially addictive drugs. Left: NAcMSNs

receive excitatory glutamatergic inputs from PFCGLU neurons, dopaminergic
inputs from VTADA neurons, and inhibitory GABAergic inputs from other
NAcMSNs. Right: VTADA neurons are maintained under tonic inhibition by local
VTAGABA interneurons and NAcMSNs and receive excitatory inputs from
PFCGLU neurons. DA: dopamine; GLU: glutamate; MSN: medium spiny
neuron; NAc: nucleus accumbens; PFC: prefrontal cortex; VTA: ventral
tegmental area.

physiology and connectivity (Morishima and Kawaguchi, 2006;
Brown and Hestrin, 2009; Reiner et al., 2010; Shepherd, 2013;
Kim E. J. et al., 2015). Recent studies have begun to characterize
the anatomical, electrophysiological, and molecular profiles of
each of these cell types (Kalmbach et al., 2015; Kim E. J. et al.,
2015; Saiki et al., 2018; Chen et al., 2019; Winnubst et al.,
2019), though how they each regulate behavior remains poorly
understood. Finally, the PFC contains multiple populations of
interneurons that heavily regulate cortical output via projections
to both pyramidal neurons and interneurons (van Versendaal
and Levelt, 2016; Batista-Brito et al., 2017).

Nucleus Accumbens
The striatum is a heterogeneous structure comprised primarily
of two interspersed populations of GABAergic medium spiny
neurons (MSNs) that can bidirectionally regulate behavioral
output. Direct pathway MSNs (dMSNs) express dopamine D1-
like (D1) receptors and the neuropeptides dynorphin and
substance P, project directly to the midbrain, and can promote
behavioral output by serving as a “go” signal. Conversely,

indirect pathway MSNs (iMSNs) express dopamine D2-like (D2)
receptors and the neuropeptide enkephalin, project indirectly
to the midbrain via the pallidum (GPe and VP), and can
suppress behavioral actions by serving as a “stop” signal (Kravitz
et al., 2010; Gerfen and Surmeier, 2011). Drug use promotes
increased phasic dopamine from D1 activation, prompting
reward attribution to drug use during binge/intoxication phases
of the addiction cycle, conditioning, and incentive salience
attribution to drug-taking contexts (Volkow et al., 2011; Koob
and Volkow, 2016). The striatum contains dorsal and ventral
compartments, with further subdivisions based on connectivity
and function. The ventral striatum – comprised of the olfactory
tubercule, NAc core, and NAc shell – receives dopaminergic
modulation from the VTA and glutamatergic input from the
PFC, as well as thalamic, hippocampal, and amygdala nuclei (Li
et al., 2018). In general, the ventral striatum regulates motivated
behavior and reward learning. However, it has been hypothesized
that an ascending loop between the ventral and the dorsal
striatum facilitates information consolidation during learning,
whereby habitual behaviors transition from the ventral striatum
to the dorsal striatum, contributing to compulsive drug-seeking
(Dobbs et al., 2016; Koob and Volkow, 2016; Burke et al.,
2017). Importantly, while dMSNs and iMSNs have historically
been differentiated by downstream targets and expression of
dopamine receptors, ventral striatal dMSNs send collaterals
to the VP (Cazorla et al., 2014; Kupchik et al., 2015), and
D1 and D2 receptors are co-expressed to some degree in the
NAc core (6–7%), and NAc shell (12–15%) (Bertran-Gonzalez
et al., 2008; Gagnon et al., 2017). In addition to MSNs, the
striatum contains large, tonically active cholinergic interneurons
and multiple subtypes of GABAergic interneurons with distinct
electrophysiological properties and peptide expression patterns
(Burke et al., 2017). MSNs also receive cholinergic modulation
from other projections (Dautan et al., 2014), though the
relevance of these inputs to local or network dynamics and
the role of cholinergic striatal neurons in the addiction cycle
remains uncertain. Interestingly, each MSN receives ∼5000–
15000 excitatory inputs in addition to ∼1200–1800 GABAergic
inputs from other MSNs, therefore, modulation of MSN activity
via cholinergic and dopaminergic inputs appears necessary for
signal integration and effective synaptic plasticity (Moyer et al.,
2007; Burke et al., 2017). Indeed, MSNs exhibit bi-stability,
residing almost exclusively in either a down-state (−80 mV)
or an up-state (−50 mV, near threshold) in the absence of
external input. In addition, the maintenance of bi-stability and
intrinsic excitability relies on the activity of cation channels
that are under robust dopaminergic and cholinergic modulation
(Plenz and Kitai, 1998; Moyer et al., 2007). Maintenance
of intrinsic excitability within MSNs is critical for normal
regulation of behavioral output, and dysregulation of striatal
microcircuitry contributes to the development and expression
of addiction behaviors (Bock et al., 2013; Stefanik et al., 2013;
O’Neal et al., 2019).

Ventral Tegmental Area
The VTA sends dopaminergic projections to cortical, striatal,
and subcortical (e.g. hippocampus, amygdala, thalamus) areas
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FIGURE 4 | Primary mechanisms of action of potentially addictive drugs.
Potentially addictive drugs increase DA release into the NAc, but different
drugs act via distinct mechanisms. Top: Opioids and cannabinoids disinhibit
VTADA neurons via presynaptic inhibition of VTAGABA and NAcMSN inputs
through four notable mechanisms: Inhibition of VG Ca2+ channels, activation
of GIRKs, inactivation of AC, and inhibition of GABA release. Nicotine
activates VTADA neurons via direct activation of somatodendritic nAChRs and

(Continued)

FIGURE 4 | Continued
activation of presynaptic PFCGLU inputs. Alcohol directly activates VTADA cell
bodies, but the mechanism is not understood. Bottom: Psychostimulants
impair DA reuptake by blocking DAT (cocaine) or reversing the activity of DAT
and facilitating DA release (amphetamine), leading to increased dopaminergic
tone in the NAc. Alcohol also targets PFCGLU inputs to the NAc, but the net
effect on PFCGLU activity is unknown. AC: adenylyl cyclase; ATP: adenosine
triphosphate; cAMP: cyclic adenosine monophosphate; CB1R: cannabinoid 1
receptor; DA: dopamine; DAT: dopamine transporter; D1R: dopamine D1

receptor; GABA: gamma- aminobutyric acid; GIRK: G protein-coupled
inwardly rectifying K+ channel; GLU: glutamate; mGluR: metabotropic
glutamate receptor; µOR: mu opioid receptor; NAc: nucleus accumbens;
nACh: nicotinic acetylcholine receptor; NMDA: N-methyl-D-aspartate
receptor; PFC: prefrontal cortex; SNARE: soluble N-ethylmaleimide-sensitive
factor attachment protein receptor; VG Ca2+: voltage-gated Ca2+ channel;
VTA: ventral tegmental area.

to modulate C-BG-T network activity (Koob and Volkow,
2010). Dopaminergic projections from the VTA to the NAc
regulate goal-directed behaviors and have been heavily implicated
in the binge/intoxication phase of SUDs (Koob and Volkow,
2016). Recently identified subtypes of VTADA neurons with
unique molecular profiles preferentially project to the NAc
core or NAc shell, and regulate reward learning or motivation,
respectively. However, co-activation of both populations appears
to be necessary for robust reinforcement (Heymann et al., 2019).
VTADA neurons receive dense glutamatergic input from the
PFC and several midbrain structures, as well as GABAergic
input from a variety of sources (reviewed in Morales and
Margolis, 2017), including the NAc and local VTAGABA neurons.
VTAGABA neurons maintain tonic DA levels via inhibition of
VTADA neurons, and brief disinhibition of VTADA neurons
results in phasic DA release into the NAc. VTAGABA neurons
receive glutamatergic input from the PFC and a number of
subcortical nuclei, as well as GABAergic input from throughout
the brain, including the NAc (Morales and Margolis, 2017).
The VTA also contains glutamatergic neurons that project
to striatal interneurons (Brown et al., 2012; Qi et al., 2016),
though the inputs to and behavioral relevance of these neurons
is unknown. Notably, the VTA contains subpopulations of
DA neurons that can release glutamate and/or GABA (Kim
J. I. et al., 2015; Berrios et al., 2016; Morales and Margolis,
2017), allowing the VTA to modulate local C-BG-T activity
at multiple levels and time scales. Within the NAc, the
activity of VTADA neurons is modulated by dopamine D2
autoreceptors on VTADA terminals and cholinergic interneurons
(Morales and Margolis, 2017).

Mechanisms of Addiction: Acute
Drug Effects
A unique feature of all potentially addictive drugs is the ability
to reinforce the binge/intoxication phase of the addiction cycle
via evoked phasic DA release into the NAc, yet the underlying
mechanisms vary across drugs (Figure 4; Volkow and Boyle,
2018). Psychostimulants disrupt DA reuptake into VTADA

terminals (Pontieri et al., 1995), nicotine and alcohol directly
activate VTADA neurons (Pidoplichko et al., 1997; Brodie et al.,
1999), and opioids and cannabinoids disinhibit VTADA neurons
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(Pidoplichko et al., 1997; Cheer et al., 2000). The synergistic
and antagonistic interactions between different drugs within the
C-BG-T lends complexity to the study of polydrug use, and little
is known about the mechanisms underlying the acute effects of
specific polydrug combinations. However, in vivo extracellular
recordings in rats that alternatively self-administered cocaine and
heroin in the same session found that only∼20% of PFC and NAc
neurons responded similarly to both drugs (Chang et al., 1998),
indicating divergent engagement of the C-BG-T by these drugs.
Thus, examining the synergistic and antagonistic mechanisms
of different drugs can guide our understanding of how specific
polydrug combinations may disrupt C-BG-T network dynamics
and contribute to the manifestation of addiction behaviors.

Psychostimulants
All psychostimulants directly enhance striatal DA release via
disruption of dopamine transporter (DAT) activity (Pontieri
et al., 1995), though they do so via distinct mechanisms.
Cocaine blocks DAT-mediated reuptake of DA, while
amphetamine reverses DAT activity and induces DA release
from VTADA terminals (Hyman et al., 2006; Kelly et al., 2008).
Psychostimulants also acutely increase glutamate transmission
in the PFC, NAc, and VTA (Reid and Berger, 1996; You et al.,
2007; Shin et al., 2016), indicating broad increases in activity
throughout the C-BG-T network following psychostimulant use.
The combination of enhanced glutamatergic and dopaminergic
input to the NAc facilitates the transition of MSNs to the up- state,
and activation of DA-dependent signaling cascades (McFarland
and Kalivas, 2001; Feltenstein and See, 2008). For example,
psychostimulants acutely increase activation of the immediate
early gene Fos in striatal dMSNs and iMSNs (Badiani et al., 1999;
Uslaner et al., 2001; Ferguson and Robinson, 2004). Fos encodes
a number of proteins, including 1FosB, that have been widely
implicated in addiction pathology, and enhanced activation in the
NAc is thought to contribute to long-term disruptions in normal
C-BG-T activity (Nestler et al., 2001). Co-administration of
nicotine, alcohol, or heroin enhances psychostimulant-induced
DA release into the NAc (Bunney et al., 2001; Mello et al., 2014;
Pattison et al., 2014), though specific combinations do so via
divergent mechanisms. For example, administration of cocaine
and nicotine simultaneously activates VTADA neurons and
disrupts DA reuptake (Mello et al., 2014; De Moura et al., 2019),
resulting in a greater magnitude of DA release into the NAc than
that evoked from either drug alone. Notably, some polydrug
combinations that include psychostimulants have divergent and
opposing effects on the C-BG-T circuit. Co-administration of
alcohol with cocaine induces hepatic production of cocaethylene,
which can target DAT and presynaptic D2 autoreceptors to
amplify DA release (Bunney et al., 2001). However, alcohol
also prevents cocaine-induced glutamate transmission in the
NAc core (Stennett et al., 2020). Lastly, polydrug studies with
psychostimulants have identified an exacerbation of drug-
induced cellular toxicity compared to psychostimulant use alone.
Specifically, co-administration of heroin with cocaine decreases
metabolic activity, increases intracellular Ca2+ signaling, and
decreases mitochondrial membrane potential (Cunha-Oliveira
et al., 2008). Collectively, these effects contribute to enhanced

caspase 3-dependent apoptotic activity and subsequent cell death
compared to either drug alone (Cunha-Oliveira et al., 2008).

Nicotine
Unlike psychostimulants, nicotine enhances DA release via
activation of nicotinic acetylcholine (nACh) receptors within
the VTA. nACh receptors are non-selective cation channels,
with permeability to Na+, K+, and Ca2+, and their activation
leads to depolarization and enhanced neurotransmitter release
(Benowitz, 2009). The reinforcing effects of nicotine are primarily
due to nicotine’s activity on somatodendritic nACh receptors
located on VTADA neurons and on presynaptic nACh receptors
located on PFCGLU inputs (Nisell et al., 1994). Acute nicotine
exposure activates both presynaptic PFC inputs (Fu et al., 2000;
Picciotto and Kenny, 2013) and VTADA cell bodies (Calabresi
et al., 1989; Pidoplichko et al., 1997), triggering phasic DA
release into the NAc (Dani and De Biasi, 2001; Picciotto and
Mineur, 2014). Notably, nicotine-evoked DA release is occluded
with blockade of glutamate receptors or activation of GABAB
receptors (Fadda et al., 2003; Kosowski et al., 2004), highlighting
the extensive regulation of VTADA neuron activity by local VTA
microcircuitry. Studies have not examined how the acute effects
of nicotine are changed by polydrug use.

Opioids
Although opioids are differentiated by their origin, potency, and
receptor bias factor (Schmid et al., 2017), all opioids exert their
rewarding effects via activation of mu opioid (µO) receptors. µO
receptors are expressed both somatodendritically and axonally
(Arvidsson et al., 1995), but the primary mechanism of opioid-
induced DA release relies on presynaptic inhibition of VTAGABA

neurons. µO receptors are inhibitory G protein-coupled
receptors (GPCRs), and their activation reduces neuronal
excitability via four mechanisms: (1) Gα-mediated inhibition
of cAMP-dependent signaling cascades (e.g. PKA, CREB),
(2) Gβγ-mediated activation of G protein-coupled inwardly
rectifying K+ (GIRK) channels, (3) Gβγ-mediated inactivation of
voltage-gated Ca2+ channels, and (4) Gβγ-mediated inhibition
of SNARE-dependent vesicle release (Bourinet et al., 1996;
Blanchet and Lüscher, 2002; Blackmer et al., 2005; Al-Hasani
and Bruchas, 2011; Zamponi and Currie, 2013). Acute exposure
to opioids inhibits VTAGABA neurons (Johnson and North,
1992; Corre et al., 2018), resulting in subsequent disinhibition
of VTADA neurons and phasic DA release into the NAc
(Hemby et al., 1995; Pontieri et al., 1995). Nonetheless, although
opioids facilitate DA release into the striatum, whether this
DA transmission is necessary for opioid reward remains a
point of debate (Badiani et al., 2011). Opioids activate VTADA

neurons in vivo and increase DA in the NAc (Di Chiara
and Imperato, 1988; Johnson and North, 1992), but neither
lesions of the NAc nor systemic antagonism of DA receptor
blockades have an effect on opioid reward (Ettenberg et al.,
1982; Van Ree and Ramsey, 1987; Olmstead and Franklin, 1997;
Sellings and Clarke, 2003). Given the divergent mechanism of
action for opioids compared to psychostimulants and nicotine,
it is not surprising that co-administration of these drugs
augments the acute effects of opioids. Indeed, simultaneous

Frontiers in Neuroscience | www.frontiersin.org 12 June 2020 | Volume 14 | Article 569

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00569 June 14, 2020 Time: 20:52 # 13

Crummy et al. Understanding and Modeling Polysubstance Use

administration of opioids and psychostimulants produces an
additive increase in DA release in the NAc, and prolongs
elevated levels of DA and its metabolites, DOPAC and HVA
(Zernig et al., 1997). Similarly, simultaneous administration
of opioids and nicotine enhances opioid-evoked DA release
in the NAc and dorsal striatum (Vihavainen et al., 2008).
Cross-tolerance to opioid-mediated analgesia has also been
shown following pre-exposure to nicotine and cannabis (Schmidt
et al., 2001), and chronic nicotine treatment dose-dependently
reduces analgesic tolerance to opioids in a nACh receptor-
dependent manner (Haghparast et al., 2008; De Moura et al.,
2019). Interestingly, pretreatment with Ca2+ channel blockers
or naloxone prevents this tolerance, suggesting a complex
pharmacological interaction between opioids and nicotine (Biala
and Weglinska, 2006). Notably, cross-tolerance to opioid
analgesia is mediated via divergent mechanisms for different
polydrug combinations. Nicotine and opioid cross-tolerance is
mediated by µO and nACh receptors (Haghparast et al., 2008; De
Moura et al., 2019) while cannabinoid and opioid cross-tolerance
is mediated by µO receptors and cannabinoid 1 (CB1) receptors
(Pugh et al., 1994, 1996).

Cannabinoids
Cannabis contains two principal cannabinoids with varying
affinity for cannabinoid (CB) receptors: THC is a partial
agonist with moderate affinity for both CB1 and CB2 receptors
whereas CBD has extremely low affinity for CB1 and CB2
receptors and signals through an unknown mechanism (Pertwee,
2008). Interestingly, pretreatment with a range of CBD doses
has no effect on THC self-administration (Wakeford et al.,
2017), indicating non-overlapping signaling pathways for each
cannabinoid. CB1 receptors are expressed on presynaptic
terminals throughout the CNS and are responsible for the
psychoactive effects of cannabis, while CB2 receptors are
primarily expressed on immune cells of the CNS and PNS
and are primarily responsible for the antinociceptive and
anti-inflammatory effects of cannabis (Pertwee, 2008). Both
subtypes signal through inhibitory GPCR signaling pathways
(similar to opioids), and activation of the receptors results
in presynaptic inhibition (via activation of GIRK channels
and inhibition of VG Ca2+ channels) and downregulation of
cAMP-dependent signaling cascades. CB1 receptors are heavily
expressed on presynaptic terminals of VTAGABA neurons as
well as NAc dMSNs that target VTADA neurons (Szabo et al.,
2002; Lupica et al., 2004), and activation of CB1 receptors
reduces GABA-mediated inhibitory postsynaptic currents in
VTA slices (Cheer et al., 2000). CB1-mediated disinhibition of
VTADA neurons results in an increase in burst firing (French
et al., 1997; Diana et al., 1998) and subsequent release of
DA into the NAc (Ton et al., 1988; Chen et al., 1990; Fadda
et al., 2006), and these effects are blocked by systemic or
intra-VTA naloxone (Chen et al., 1990; Tanda et al., 1997).
Similar to other drugs, the acute effects of cannabinoids
on C-BG-T network activity are broad and engage multiple
neurotransmitter systems. For example, acute THC increases
both DA and glutamate signaling in the NAc and PFC (Pistis
et al., 2002a,b), but decreases GABA signaling in the VTA and

PFC (Cheer et al., 2000; Pistis et al., 2002a). Collectively, these
alterations in signaling reduce inhibitory feedback within the
C-BG-T and facilitate behavioral output. Alcohol consumption
prior to cannabis use enhances plasma THC levels and
increases self-reported euphoria in humans (Lukas and Orozco,
2001), indicating synergistic effects between the two drugs.
Moreover, simultaneous administration of cannabinoids with
psychostimulants or opioids enhances activation of VTADA

neurons (Pistis et al., 2004), and simultaneous administration
of THC and nicotine increases cFos activation throughout the
C-BG-T (Valjent et al., 2002).

Alcohol
Despite its widespread use, much less is known about the
mechanisms underlying the acute effects of alcohol. Alcohol
activates dissociated VTADA neurons (Brodie et al., 1999) and
induces DA release into the NAc (Weiss et al., 1993; Pontieri et al.,
1996; Lecca et al., 2006), similar to other potentially addictive
drugs. However, GABAA receptors are known to play a central
role in the effects of alcohol (Hyytiä and Koob, 1995; Lobo and
Harris, 2008). For example, alcohol potentiates GABAA signaling
both in cortical slices and neuronal cultures (Aguayo, 1990;
Reynolds and Prasad, 1991; Reynolds et al., 1992; Tatebayashi
et al., 1998). Given that NAc dMSNs selectively inhibit VTAGABA

neurons via GABAA-mediated signaling (Edwards et al., 2017),
it is possible that alcohol facilitates phasic DA release from
VTADA neurons via inactivation of local VTAGABA neurons. In
support of this hypothesis, alcohol inhibits VTAGABA neurons
(Steffensen et al., 2009), and intra-VTA infusion of GABAA
agonists dose-dependently increase DA release (Kalivas et al.,
1990). In addition to GABA, the acute effects of alcohol
are dependent on glutamatergic signaling within the C-BG-
T (Grant and Colombo, 1993; Krystal et al., 1994). Alcohol
increases glutamate release in the NAc and VTA via activation
of presynaptic D1 receptors (Nie et al., 1994; Xiao et al.,
2009), suggesting that alcohol engages a feedforward loop
for activation of VTADA neurons. Polydrug use with alcohol
produces synergistic effects throughout the C-BG-T, likely as a
result of alcohol’s unique pharmacological profile. For example,
chronic pretreatment with nicotine enhances acute alcohol-
induced DA release in the NAc (Johnson et al., 1995; Blomqvist
et al., 1996), and elevated levels of DA, DOPAC, and HVA
persist for over an hour (Tizabi et al., 2002, 2007; Ding et al.,
2012). Additionally, alcohol and nicotine co-administration
acutely increase production of BDNF and GDNF in the NAc
(Truitt et al., 2015), along with increases in glutamatergic
signaling in the VTA and PFC (Deehan et al., 2015; Engle
et al., 2015). Notably, this wide activation of the C-BG-T
network is absent following administration of either drug alone,
demonstrating a unique mechanism of action for alcohol and
nicotine polydrug use.

Mechanisms of Addiction: Long-Term
Alterations
Long-term use of psychostimulants, nicotine, opioids,
cannabinoids, and alcohol results in widespread and disparate
changes throughout the C-BG-T network, yet there are
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notable alterations that are shared across drugs (Figure 5).
These long-term adaptations contribute to transitions from
binge/intoxication phases to withdrawal and negative affect,
followed by preoccupation and compulsive drug-seeking (Koob
and Volkow, 2016). For example, acute withdrawal produces a
transient reduction in tonic DA levels in the NAc (Weiss et al.,
1992; Diana et al., 1993, 1998; Hildebrand et al., 1998). This
is followed by a persistent increase in excitability of VTADA

neurons (Mansvelder and McGehee, 2000; Bloomfield et al.,
2016; Creed et al., 2016; Langlois and Nugent, 2017; You et al.,
2018), which contributes to enhanced cue-evoked phasic DA
release during abstinence (Volkow et al., 2011). Conversely,
withdrawal also produces a persistent reduction in long-term
depression (LTD) and intrinsic excitability in NAc MSNs, as
well as a reduction in striatal D2 receptor binding (Trifilieff
and Martinez, 2013). As described earlier, striatal D2 receptors
are primarily expressed on iMSNs, can serve as a “stop” signal
on the C-BG-T circuit, and reduced D2 availability has been
ubiquitously linked to a range of addictive diseases, including
drug addiction and obesity (Volkow and Morales, 2015; Kravitz
et al., 2016; Friend D.M. et al., 2017). Finally, these drugs all
drive a persistent increase in 1FosB expression in cortical
pyramidal cells and NAc dMSNs (Lobo et al., 2013), which has
been linked to drug-seeking during abstinence (Nestler et al.,
2001). Importantly, although chronic use of any of these drugs
results in a multitude of other transient and/or persistent changes
across the C-BG-T network, it is beyond the scope of the current
review to provide an exhaustive summary. Rather, the focus
will be on changes in plasticity, morphology, and connectivity
within the VTA, NAc, and PFC following both single and
polydrug use, with an emphasis on how the antagonistic and
synergistic effects of these drugs can differentially disrupt
C-BG-T network dynamics.

Psychostimulants
Psychostimulants produce long-term disruptions in glutamate
homeostasis and alterations in neuronal morphology throughout
the C-BG-T network (Kalivas, 2009; Badiani et al., 2011).
Repeated cocaine administration weakens GABAA-mediated
inhibition of prelimbic (PrL) pyramidal neurons, increasing
their excitability and augmenting excitatory drive to the NAc
(Nasif et al., 2005; Huang et al., 2007). Similarly, chronic
cocaine increases glutamatergic input to the VTA (Saal et al.,
2003; Bowers et al., 2010) and weakens GABAB-mediated
inhibition of VTADA neurons (Bonci and Williams, 1996;
Edwards et al., 2017), leading to a facilitation of VTADA neuron
activity. Additionally, psychostimulants generate silent synapses
on dMSNs via synaptogenesis (Boudreau et al., 2007; Graziane
et al., 2016) and depress glutamate release from PrL inputs to
the NAc core (Bamford and Wang, 2019), weakening striatal
output. Importantly, cocaine-silenced synapses on dMSNs can
be unsilenced during withdrawal via recruitment of AMPA
receptors (Boudreau et al., 2007; Graziane et al., 2016), and a
low dose psychostimulant challenge restores glutamate release
into the NAc core (Boudreau et al., 2007; Bamford and Wang,
2019), suggesting the promotion of allostasis. Finally, repeated
psychostimulant exposure increases expression of 1FosB in

PFC pyramidal neurons and NAc dMSNs (Perrotti et al.,
2005), which contributes to an increase in dendritic branching
that persists for at least 30 days of abstinence (Robinson
and Kolb, 1997, 2004; Russo et al., 2010). Studies have not
examined how these effects of psychostimulants are changed
by polydrug use.

Nicotine
Similar to psychostimulants, long-term nicotine administration
reduces GABAB-mediated signaling in the mPFC and NAc
(Amantea et al., 2004), dampening inhibitory drive onto the C-
BG-T network. Additionally, nicotine enhances glutamatergic
input to VTADA neurons (Mansvelder and McGehee, 2000;
Saal et al., 2003), and sensitizes evoked DA release into the
NAc (Benwell et al., 1995). Repeated nicotine use also leads to
an upregulation of nicotinic acetylcholine receptors throughout
the C-BG-T, including the PFC and midbrain (Marks et al.,
1983; Benwell et al., 1988; Breese et al., 1997). Conversely,
chronic nicotine exposure weakens both glutamatergic and
GABAergic inputs to the NAc during abstinence, potentially
via enhanced sensitivity of NAc D2 receptors (Morud et al.,
2016). Because NAc output is heavily regulated via local
GABAergic microcircuitry, increased activity of iMSNs would
likely dampen overall NAc output. This is supported by
the upregulation of Ca2+-permeable AMPA receptors in the
NAc that are capable of conducting Ca2+ in the absence
of NMDA receptor activation (Ponzoni et al., 2019). Long-
term nicotine use also produces a persistent increase in
mPFC pyramidal cell and NAc MSN dendritic branching
(Brown and Kolb, 2001; Hamilton and Kolb, 2005; Ehlinger
et al., 2016), similar to psychostimulants. Moreover, adolescent
nicotine use enhances synaptic pruning, microglial activation,
and inflammatory cytokine expression throughout the C-BG-
T via a D2 receptor-mediated mechanism (Linker et al.,
2020). Repeated co-administration of psychostimulants and
nicotine augments long-term potentiation (LTP) induction and
1FosB in the NAc core (Levine et al., 2011; Mello et al.,
2014). Interestingly, these effects are absent following sequential
administration of these drugs (Levine et al., 2011), indicating
a unique pharmacological profile for concurrent nicotine and
psychostimulant administration.

Opioids
Similar to psychostimulants and nicotine, long-term exposure
to opioids strengthens glutamatergic input to VTADA neurons
(Bonci and Williams, 1996; Saal et al., 2003). They also weaken
GABAergic inhibition of VTADA neurons (Mansvelder and
McGehee, 2000; Niehaus et al., 2010; Dacher and Nugent, 2011)
via a reduction of dMSN-mediated GABAB inhibition (Bonci
and Williams, 1996). This effect is largely driven by MSNs in
the NAc (Yang et al., 2018), indicating a persistent disruption
in NAc output. Unlike psychostimulants and nicotine, however,
long-term exposure to opioids decreases dendritic branching
and spine density in NAc MSNs and mPFC pyramidal cells
(Badiani et al., 1999; Robinson et al., 2002; Van Den Oever
et al., 2008). Within the NAc, long-term opioid exposure weakens
glutamatergic input to NAc shell iMSNs (Hearing et al., 2016;
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FIGURE 5 | Persistent disruptions in synaptic and structural plasticity caused by long-term use of potentially addictive drugs. Studies are organized by cell type
(columns) and type of disruption (rows), with symbols depicting the net change in plasticity and color depicting which drug was tested. Data from Bonci and Williams
(1996), Kang et al. (1996, 1998), Robinson and Kolb (1997), Robinson and Kolb (2004), Badiani et al. (1999), Mansvelder and McGehee (2000), Dahchour and De
Witte (2000), Uslaner et al. (2001), Brown and Kolb (2001), Robinson et al. (2002), Saal et al. (2003), Amantea et al. (2004), Hamilton and Kolb (2005), Nasif et al.
(2005), Kolb et al. (2006), Kolb et al. (2018), Huang et al. (2007), Zhou et al. (2007), Van Den Oever et al. (2008), Kalivas et al. (2009), Niehaus et al. (2010), Russo
et al. (2010), Bowers et al. (2010), Spiga et al. (2010), Levine et al. (2011), Dacher and Nugent (2011), Kroener et al. (2012), Lobo et al. (2013), Trifilieff and Martinez
(2013), Mello et al. (2014), Peterson et al. (2015), Bloomfield et al. (2016), Creed et al. (2016), Ehlinger et al. (2016), Hearing et al. (2016), Morud et al. (2016), Friend
L. et al., 2017), Langlois and Nugent (2017), Edwards et al. (2017), Spencer et al. (2018), You et al. (2018), Hwang and Lupica (2019), Kruse et al. (2019), McDevitt
et al. (2019), Neuhofer et al. (2019), Pickel et al. (2019), and Ponzoni et al. (2019).

McDevitt et al., 2019) and induces silent synapses on iMSNs
via AMPA internalization (Graziane et al., 2016). Moreover,
during withdrawal, opioid-generated silent synapses on iMSNs
are eliminated (Graziane et al., 2016), and the intrinsic excitability
of iMSNs is weakened (McDevitt et al., 2019). Given that
MSNs create a dense network of lateral inhibition within
the NAc, with ∼30% of iMSNs synapsing onto other iMSNs
or dMSNs (Taverna et al., 2008), it is possible that opioid-
induced disruptions in iMSN signaling could disrupt local NAc
microcircuitry and facilitate aberrant C-BG-T network dynamics.
Studies have not examined how these effects of opioids are
changed by polydrug use.

Cannabinoids
Repeated THC administration weakens glutamatergic signaling
from the mPFC to the NAc (Spencer et al., 2018; Hwang and
Lupica, 2019; Neuhofer et al., 2019) but strengthens input
from the basolateral amygdala and ventral hippocampus
to the NAc shell (Hwang and Lupica, 2019), suggesting a
rewiring of excitatory input to the NAc following long-term
cannabinoid exposure. Notably, repeated THC administration
also occludes CB1-mediated LTD on VTAGABA neurons
(Friend L. et al., 2017), indicating a loss of local inhibitory

drive on VTADA neurons. Additionally, adolescent THC
administration followed by abstinence reduces intrinsic
excitability of PrL neurons (Pickel et al., 2019) and weakens
glutamatergic input to the VTA (Kruse et al., 2019), indicating
the presence of a hypoglutamatergic state induced by
cannabinoids. THC exposure also produces long-lasting
changes in morphology throughout the C-BG-T, increasing
dendritic spine length and branching in the mPFC and
NAc shell (Kolb et al., 2006) and dendritic spine density
in the NAc shell (Kolb et al., 2018), but reducing the size
of VTADA neurons (Spiga et al., 2010; Behan et al., 2012).
Repeated co-administration of THC and nicotine enhances
expression of 1FosB in the NAc, and acute withdrawal
dysregulates glutamatergic input to the NAc and PFC
(Ponzoni et al., 2019).

Alcohol
Similar to opioids, extended alcohol exposure decreases dendritic
branching and spine density in the NAc shell and mPFC (Zhou
et al., 2007; Peterson et al., 2015), and withdrawal from alcohol
reduces tonic DA levels in the NAc (Rossetti et al., 1992;
Diana et al., 1993). However, alcohol withdrawal also causes
distinct changes throughout the C-BG-T network, including
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reduced GABAergic signaling in the NAc and hippocampus
(Kang et al., 1996, 1998; Dahchour and De Witte, 2000) and
increased glutamatergic signaling in the NAc and PFC (Dahchour
and De Witte, 2000; Kroener et al., 2012). Notably, this increased
glutamatergic signaling is due to disrupted glutamate reuptake,
rather than enhanced glutamate release (Pati et al., 2016).
In vitro polydrug exposure to alcohol and nicotine induces
a 2.5-fold increase in caspase-3 activation, elevating apoptotic
cascades and driving cell death (Ramlochansingh et al., 2011).
Interestingly, however, alcohol or nicotine withdrawal-induced
neurodegeneration is less severe following co-administration of
both drugs (Oliveira-da-Silva et al., 2010), indicating a unique
molecular pathology following nicotine and alcohol polydrug use.

CONCLUSION
Improving the translatability and mapping of behavioral
measures in preclinical models to accurately reflect polysubstance
history and dependency in clinical populations is essential. This
is particularly true, as human imaging studies are limited by
an inability to control for intake history, making behavioral
models in other species advantageous for assessing polydrug
history under controlled intake conditions. However, these
models are limited in their capacity to fully encompass the
complex social and environmental contexts that contribute to
the unique use patterns for multiple substances with addiction
potential. Nevertheless, when designing experiments in clinical
or preclinical populations, factors such as time of day of intake,
temporal proximity of intake, and environmental preferences for
administration must be consideredfor each substance class. For
instance, cocaine use is predominantly favored outside of home
environments, whereas heroin use is greater in “home” contexts
in both humans and rodents (Caprioli et al., 2009; Badiani and
Spagnolo, 2013; De Pirro et al., 2018; De Luca et al., 2019).
In addition, route of drug administration (e.g. oral ingestion,
injection, and inhalation) is especially important to factor into
studies, as it leads to unique patterns of polysubstance history that
may impact the developmentand severity of addiction behaviors
(Roy et al., 2013).

Accounting for temporal patterns of drug use is also essential.
Although many studies have focused on simultaneous drug
combinations, sequential patterns of polydrug consumption
are more frequently reported (Leri et al., 2004; Roy et al.,
2013) and produce unique circuit adaptations following acute
and repeated drug exposure (Cunha-Oliveira et al., 2008).
Understanding sex differences in frequency and pattern of
polydrug use (McClure et al., 2017), drug discrimination
(Spence et al., 2016), and circuit alterations (Canterberry
et al., 2016; Manwell et al., 2019) is also necessary to fully
understand the interactions and impacts of polydrug use in
clinical populations. Furthermore, although powerful behavioral
economic models allow comparisons across drug classes, these
experiments must be designed with consideration of different
scales of intake and indifference points for drug valuation
in order to accurately model parameters and interpret data
(Newman and Ferrario, 2019). As these factors, coupled with the
interplay of socioeconomic background, social environment, and

access strategies, affect frequency and susceptibility to polydrug
use (Gjersing et al., 2013; Hernández-Serrano et al., 2018),
encompassing these influences in preclinical models is crucial
for translational relevance of findings.

It is important to appreciate that novel preclinical paradigms
are continuously being developed to model different routes
of drug administration and to study relapse under clinically
relevant conditions. For instance, recently established models
allow for voluntary control over self-administration of vaporized
ethanol (de Guglielmo et al., 2017; Kimbrough et al., 2017),
cannabis (McLaughlin, 2018; Freels et al., 2020), and nicotine
(Marusich et al., 2019). In addition, multiple models for
inducing drug abstinence are being introduced. For instance,
voluntary abstinence is achieved via pairing of drug-taking
with adverse consequences such as shock-lever pairings or
electrified barriers placed in front of levers (Krasnova et al.,
2014; Venniro et al., 2016), andthrough choice procedures
involving a drug versus an alternative reinforcer (e.g. palatable
food or social interaction) (Venniro et al., 2016, 2017, 2019).
These paradigms are notable for their high translational
value and may be powerful for understanding the neural
basis of therapies such as contingency management, in
which abstinence from drug use results in a monetary
reward. Combining these models with behavioral economic
paradigms could clarify how the relative value of drugs
and alternative reinforcers changes with polydrug use to
improve treatment efficacy. Addiction is a complex disease
with multiple, highly variable factors contributing to the
initiation and maintenance of drug use, as well as relapse.
Given the widespread prevalence of polydrug use among
drug users, it is critical that we incorporate this variablility
into human studies and animal models. This will help to
determine if polysubstance use exacerbates SUD severity, if
increased SUD severity drives polysubstance use, or if there is a
bidirectional relationship between the two. Though challenging,
understanding the behavioral, genetic, and environmental
contributions to polysubstance use and addiction, as well as the
mechanisms that underlie addiction-severity and relapse, will
aid in developing efficacious treatment and policy strategies to
combat this ongoing public health crisis.
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