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Non-alcoholic fatty liver disease (NAFLD) is a multimorbidity disorder ranging from excess
accumulation of fat in the liver (steatosis) to steatohepatitis (NASH) and end-stage
cirrhosis, and the development of hepatocellular carcinoma (HCC) in a subset of
patients. The defining features of NASH are inflammation and progressive fibrosis.
Currently, no pharmaceutical therapies are available for NAFLD, NASH and HCC;
therefore, developing novel treatment strategies is desperately needed. Reversion
Inducing Cysteine Rich Protein with Kazal motifs (RECK) is a well-known modifier of the
extracellular matrix in hepatic remodeling and transition to HCC. More recently, its role in
regulating inflammatory and fibrogenic processes has emerged. Here, we summarize the
most relevant findings that extend our current understanding of RECK as a regulator of
inflammation and fibrosis, and its induction as a potential strategy to blunt the
development and progression of NASH and HCC.

Keywords: RECK, non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, extracellular matrix,
inflammation, fibrosis, hepatocellular carcinoma
INTRODUCTION

The extracellular matrix (ECM) is a complex and dynamic component of multicellular organisms,
regulating crucial cellular processes such as proliferation, differentiation, migration, adhesion, and
tissue remodeling (1). As such, dysregulation of the ECM has been linked to several pathological
conditions, including cancer and fibrosis (1, 2). Therefore, regulators of the ECM play pivotal roles
in these conditions and have been explored as potential therapeutic targets in a variety of diseases.
One such regulator is Reversion Inducing Cysteine Rich Protein with Kazal Motifs (RECK), a
membrane-anchored glycoprotein (3). At the NH3-terminal, there are five cysteine repeats followed
by two epidermal growth factor (EGF)-like repeats that are hypothesized to be required for proper
interaction between RECK and its targets (4, 5). Moreover, at the COOH terminus, there exists three
serine protease inhibitor (SPI)-like domains, that play a role in inhibiting target peptides through
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‘physical trapping’ or ‘reversible tight binding’ (4). RECK itself is
anchored to the cell membrane via the GPI-anchor located at the
COOH-terminal (4).

RECK primarily regulates the activity of several matrix
metalloproteinases (MMPs) that play a role ECM remodeling
(6). This regulation of ECM components, combined with the
observation that RECK is downregulated in cancers that
metastasize, prompted several studies aimed at understanding
RECK’s potential as a metastasis-suppressor (5, 7–9). However, it
is not known how RECK regulates inflammation and the
fibrogenic pathways.

Both inflammation and fibrosis contribute to the progression
of nonalcoholic steatohepatitis (NASH), a clinical condition
characterized by the excess accumulation of fat in the liver. It
affects a subset of patients with NAFLD (non-alcoholic fatty liver
disease) and can ultimately lead to liver fibrosis (cirrhosis) and
transition to HCC (hepatocellular carcinoma). NAFLD affects
approximately a third of the adult population in developed
countries, and NASH is expected to become the leading
indicator of liver-related mortality within a few years (10).
Unfortunately, to date, no specific pharmacological therapies
exist for NASH or HCC. Reduced RECK is a characteristic
feature of many cancers, including HCC (11), promoting
progression and metastasis. Interestingly, reduced RECK may
also be a component of NASH as reported by Peng, et al. (12),
where the authors reported that RECK expression is
downregulated in mice fed a methionine-choline-deficient diet
(12). Furthermore, they found that RECK is a novel target of
Farsenoid X Receptor (FXR), and that FXR activation induced
RECK mRNA and protein expression (12). In fact, FXR agonists
have been identified to inhibit NASH by reducing hepatic
gluconeogenesis, lipogenesis, and steatosis (13, 14). The use of
therapeutic bile acids as FXR agonists appear promising in
human clinical trials, but additional studies related to their
long-term safety are warranted (15–17). It is plausible that
FXR agonists may improve NASH outcomes, in part, through
upregulation of hepatic RECK expression, as hepatic RECK
knock-down appears to worsen hepatic inflammation and
fibrosis in animal models of Western diet-induced NASH (our
unpublished data). Here we seek to describe reduced RECK in
the context of hepatocellular inflammation, fibrosis, NASH,
and HCC.
RECK AND CANCER

The ECM plays a critical role in the development and progression
of cancer. Dysregulated ECM remodeling by tumor cells alters cell
signaling, angiogenesis, and tissue biomechanics (18). These
changes in the tumor microenvironment allow for local tissue
invasion as well as distal metastasis of cancer cells (18). Therefore,
regulators of the ECM have drawn much interest in the
oncological realm, and RECK, a key player in ECM remodeling,
is no exception.

Reduced RECK is a characteristic feature of many cancers
(19). In fact, interest in regulators of the gelatinases, MMP2 and
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MMP9, stems from their identification as prognostic indicators
in a number of tumors, including liposarcoma (20), breast cancer
(21), oral squamous cell carcinoma (22), and ovarian cancer (23).
Tumors expressing higher concentrations of these gelatinases are
in general linked to poorer prognosis and overall survival (1, 24,
25). Furthermore, RECK is known to complex with MT1-MMP,
and inhibit its proteolytic activity at the cell membrane and
internalization (26). Increased expression of MT1-MMP in
tumors has also been linked to poorer prognosis and reduced
overall survival, independent of other gelatinases (27). The
underlying theory is that sustained activation of these
gelatinases promotes excess ECM degradation allowing for
local and distant tumor invasion, as well as allow for
angiogenesis. For example, MMP9 is known to promote the
release of vascular endothelial growth factor (VEGF), a pro-
angiogenic mediator (4, 19, 28). Interestingly, RECK was first
identified as a gelatinase inhibitor, reducing ECM breakdown
and promoting angiogenesis in several tumor types (29–32),
including colorectal, gastric, and HCC. Across all tumor
categories, preserving RECK expression was shown to inhibit
MMP2 and MMP9 activity, and improve prognosis by
decreasing invasion and metastasis (5).

As mentioned above, RECK expression is either downregulated
or undetected in various invasive cancers (4). By contrast, tumors
that expressed normal or elevated RECK levels show reduced
tissue invasion and metastasis (4). The mechanisms underlying
RECK downregulation in cancer are hypothesized to be
multifactorial and tumor specific; however, the general
mechanism appears to involve increased Sp1 binding to the
RECK promoter, resulting in its reduced transcription (5). It is,
however, unclear whether RECK downregulation occurs prior to,
concurrently, or following tumor metastasis. Regardless, reduced
RECK expression appears to worsen prognosis (7, 9, 33). RECK
has also been shown to interact and inhibit other cellular pathways
involved in cancer progression and metastasis, such as Notch and
EGFR/RAS. Both Notch (34) and EGFR/RAS (22, 23) are
implicated in inflammation and fibrosis, which we will explore
further below.
RECK AND LIVER-RELATED
TUMORIGENESIS

Within the context of the liver, RECK’s role was assessed in the
pathogenesis of HCC and cholangiocarcinoma (CCA). In line
with other oncological studies, several groups have found that
overall prognosis and survival were significantly improved when
tumors – either HCC or CCA – expressed relatively greater
amounts of RECK (11, 29, 33, 35). What remains unanswered,
however, is how and when RECK expression is altered in these
individuals – i.e., does RECK suppression precede tumorigenesis,
or occurs during progression and metastasis?

Several mechanisms are implicated in RECK downregulation.
For example, several single nucleotide polymorphisms (SNPs)
are identified in the RECK gene within given populations (36–38).
These SNPs appeared more frequently in patients diagnosed
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with HCC versus healthy controls (36, 39), with Chung et al.
outlining specific SNPs in RECK that are relevant to liver cancer
in humans. Their group identified two SNPs of interest in the
development of HCC; individuals with the RECK promoter
rs10814325 polymorphism saw increased risk of developing
HCC compared to wild-type carriers, while HCC patients
carrying the rs11788747 had higher risk of developing distant
metastasis than wild-type carriers (36). This leads to the
hypothesis that singular changes within the RECK protein
structure itself or promoter polymorphisms could have a
significant impact on its activity and ultimately on tumor
progression. Hypermethylation of its promoter has also been
shown to downregulate RECK expression (33). In addition,
hypermethylation of RECK promoter led to poorer prognosis
in individuals with HCC (33).

Several micro-RNAs (miRs) are also shown to target RECK in
HCC. For example, miR-135b, upregulated in HCC tissues, not
only targets RECK post-transcriptionally (40), but also promotes
HCC cell motility and invasiveness in vitro (41). Huang, et al.
reported increased miR-21 and reduced RECK expression in
CCA patients with lymph node metastasis or perineural invasion
(42). In that study, silencing miR-21 dramatically decreased CCA
cell invasion and metastasis, which was rescued by the forced
expression of RECK.

These studies suggest a direct link between reduced RECK
expression and invasion and metastasis of liver cancers.
However, several questions remain unanswered. For example,
what other mechanisms play a role in RECK regulation, and
when RECK expression is altered, i.e., is this a dynamic process
that can change over time or is activity static and only serves as a
predisposing factor in these cases? It is also unclear whether
RECK expression is altered prior to the formation of HCC in
situations of NAFLD or cirrhosis. Of note, Furumoto et al. found
that approximately half of individuals with HCC recruited into
the study had reduced RECK expression. However, they did not
delineate cases based on predisposing factors leading up to HCC,
such as which patient had NASH prior to recruitment into the
study (11).

It is unknown whether RECK is already downregulated or
silenced in NAFLD, causing exacerbation of symptoms,
including development and progression towards NASH,
cirrhosis, and HCC. Individual heterogeneity in RECK
expression due to various genetic and environmental factors
may govern the development of each, or even all these processes.
Therefore, we further examined the literature to determine
whether RECK was found to be involved in pathways and
physiological processes leading up to and including
progression of NASH and liver fibrosis.
RECK AND INFLAMMATION

RECK regulation of the ECM also modulates inflammation. For
example, RECK/MMP-mediated ECM remodeling plays a role
not only in tumor cell spread, but also leukocyte infiltration into
tissues. RECK-mediated inhibition of MMP2 and MMP9
Frontiers in Endocrinology | www.frontiersin.org 3
expression and activity (19, 43, 44) has been shown to regulate
inflammation in a variety of tissues and models. In models of
experimental autoimmune encephalomyelitis (EAE), CD4+T
cell invasion requires local MMP2 and MMP9-mediated
parenchymal basement membrane breakdown (45, 46). MMP2
and MMP9 knock-out (KO) mice have reduced inflammatory
cell influx into bronchoalveolar lavage fluid in experimental
asthma models (47, 48). In models of acute pyelonephritis, it is
known that there is a direct correlation between levels of MMP2
and MMP9 in the kidney and the severity of inflammation (49).
Nascimento et al. found that MMP9 was involved in the early
phases of temporomandibular joint inflammation in a rodent
model, while MMP2 was involved in later phases of
inflammation of the joint capsule. Additionally, they found
that using doxycycline, a non-specific MMP inhibitor,
diminished the inflammatory response (50). Furthermore,
MMP9 was established as a mediator of inflammation within
the intestinal muscularis in rodent models of post-operative
ileus; inhibition of MMP9 activity reduced immune cell
infiltration into intestinal muscularis, and MMP9-KO mice
were protected from the inflammation and dysmotility
associated with post-operative ileus (51). Finally, Ries, et al.
found that inflammatory cytokines upregulate MMP2 and
MMP9 in cultured human mesenchymal stem cells, which in
turn allowed for chemotactic migration through reconstituted
basement membranes (52), suggesting a complex interplay
between inflammatory cytokines, MMP activity, and immune
cell infiltration through a basement membrane. Given such,
RECK may be a central regulator in controlling leukocyte
extravasation into other tissues as well, such as liver in NASH.

Chronic inflammation in obesity has been shown to closely
associate with metabolic syndromes, such as NASH. In the
context of obesity and inflammation, elevated MMP2
expression and MMP9 activity are found in a mouse model of
obesity and positively correlated with inflammatory cytokine
expression (53). Even more compelling is that MMP9 has already
been shown to be involved in the active recruitment of CD11b+
leukocytes (54) and migration of neutrophils (55) in the post-
ischemic liver. Lingwal, et al. examined swine islet cell
transplantation into the liver of C57Bl/6 mice via the portal
vein and found that the transplantation drove an increase in
MMP9 activity, which corresponded with massive inflammation
in the liver (56). Using MMP9-KO mice, they found hepatic
inflammatory infiltrates were significantly lower. More
specifically, a positive correlation was observed between
hepatic MMP9 expression and activity and CD11b+ leukocyte
infiltration. Further, using pharmacological gelatinase inhibitors
in vitro and in vivo, they reported a significant decrease in
Kupffer cell migration towards TNF-a or IL-1b expressing loci
(56). These results suggest that the gelatinases, MMP2 and
MMP9, are critical in the inflammatory processes of the liver,
and, through inhibiting the activity of these matrixins, reduction
in inflammatory infiltrates could be achieved. As the
downregulation of RECK clearly disrupts ECM integrity in the
liver through dysregulation of MMP activity – as evidenced by
the spread and invasiveness of HCC and CCA when RECK
October 2021 | Volume 12 | Article 770740
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concentrations are lowered, as well as in the Lingwal, et al. study
(56) – we could ask two critical questions that need further
investigation: (i) would RECK downregulation lends itself to
increased invasion of inflammatory cells into the liver in cases of
NAFLD and NASH? and (ii) could restoring RECK reduces the
amount of inflammation in these patients?

Beyond MMPs, RECK is also a known inhibitor of ADAM17
(A Disintegrin and Metalloproteinase Domain-containing protein
17) (57). Known also as TNFa-Converting Enzyme (TACE),
ADAM17 plays a pivotal role in inflammation (58, 59). Of note,
TNF-a expression has been shown to be upregulated in NASH
(60), and plays a role in the development and progression of
NAFLD (61). Therefore, regulating TNF-a release by targeting
ADAM17 may be an effective strategy to blunt hepatic
inflammation. However, identifying a pharmaceutical inhibitor
of this enzyme has remained a challenge. It is therefore plausible
that sustaining or inducing RECK has the therapeutic potential to
target ADAM17 and overt inflammation in the liver as a result of
metabolic dysregulation.

In addition to ADAM17, RECK has also been shown to
inhibit ADAM10, though both ADAMs are critical and play a
role in the activation of the pro-inflammatory Notch signaling
cascade (34, 57). In fact, RECK has been shown to inhibit Notch
signaling in neural tissues (34) and during angiogenesis (62). An
increases in the Notch signaling pathway has been implicated in
several proinflammatory conditions, such as rheumatoid
arthritis (63) and uveitis (64). Increased Notch activity,
specifically Notch2, is known to regulate monocyte cell fate
and inflammation in response to Toll Like Receptor (TLR)
signaling (65). Both canonical and non-canonical Notch
activity have been found to be increased in response to
inflammatory mediators (66), thereby creating a positive
feedback loop of Notch➔inflammation➔Notch signaling. In
the realm of NAFLD, the number of hepatocytes expressing a
major Notch outcome product – Hes Family BHLH
Transcription Factor 1 (Hes1) – is significantly elevated in
patients with severe NASH (67), suggesting overt activation of
this pathway. Since RECK modulates the Notch pathway via
direct regulation of ADAM17 and ADAM10, strategies that
sustain or induce RECK expression have the therapeutic
potential in NASH.

In addition to Notch signaling, both ADAM10 and ADAM17
are shown to be crucial in regulating the epidermal growth factor
receptor (EGFR) signaling cascade. For example, RECK’s
inhibition of the ADAMs could prevent the release of
membrane-anchored EGFR ligands, such as amphiregulin, and
suppress EGFR activation. Indeed, RECK ’s ability to
downregulate EGFR activity has already been reported (68, 69).
This is of particular interest in the context of NASH, as EGFR has
been implicated in hepatocyte and liver regeneration, and HCC
development. EGFR signaling is also implicated in mitochondrial
dysfunction, apoptosis of hepatocytes and hepatic stellate cells
(HSCs), and liver necrosis (70–72). Pharmacological inhibition
of EGFR has shown to reduce high-fat diet-induced liver injury
in mouse models of NAFLD (73, 74), suggesting that targeting
EGFR signaling may prove to have therapeutic potential in
Frontiers in Endocrinology | www.frontiersin.org 4
human NASH. Sustaining or inducing RECK may be a strategy
to modulate EGFR activity and inhibit NASH.
RECK AND FIBROGENESIS

Fibrosis results from excess accumulation of ECM components.
The downregulation of RECK has been linked to fibrosis in
several tissues. In a mouse model of Western diet-induced
obesity, RECK protein levels were found to be decreased in the
kidney and correlated positively with renal fibrosis (75). We
previously reported reduced RECK expression in the fibrotic
heart. We also reported reduced RECK expression and increased
angiotensin-II-induced fibroblast migration and proliferation,
and their reversal by ectopic RECK overexpression (76–78).

As previously reported by us, RECK regulates fibrosis in part
by inhibiting activation of MMP2 and MMP9 (76–78). These
gelatinases perform a much wider range of functions than the
cleavage of ECM components, and can have more of a
‘processing’ than ‘degradation’ role in maintaining the ECM
(79). MMPs have been studied extensively in the context of
hepatic fibrosis (80–83). During hepatic fibrogenesis, collagen
deposition from HSCs is markedly increased, and paradoxically
both MMP2 and MMP9 are highly upregulated in these cells
(84). For example, MMP2 is an autocrine proliferator and
activator of HSCs (85), promoting further ECM deposition. In
an animal model of CCA where RECK was found to be
decreased, increased MMP2 was associated with periductal
fibrosis (29). Importantly, it was suggested that serum MMP2
levels could serve as a diagnostic marker to assess the level of
liver fibrosis in patients with NASH (86). Furthermore, a positive
correlation was reported between serum MMP2 concentrations
and liver function as assessed via bilirubin and albumin
production, and prothrombin time (87). While both gelatinases
are upregulated in the context of fibrogenesis, paradoxically
hepatic fibrosis was exacerbated in MMP2-KO mice (88). This
suggests not only a complex relationship between gelatinase
function and activity in the context of hepatic fibrosis, but also
activation of compensatory mechanisms. Therefore, rather than
ablating their expression, inhibiting MMP activity sequentially
could blunt progression of fibrosis. As such, sustained RECK
expression may have the therapeutic potential in NASH by
targeting time-dependent or sequential activation of MMPs.

Notch signaling, and RECK’s modulation of this pathway, may
further serve to alter fibrogenesis. Activation of HSCs, classically,
is mediated through TGF-b signaling (89), promoting Notch
activity and fibrosis. Importantly, pharmaceutical Notch
inhibitors prevent TGF-b-mediated HSC activation in vitro (90)
and limit HSC activation and hepatic fibrosis in an animal model
of fibrosis (91). In fibroblasts, Hes1 was shown to promote
Col1A1 and Col1A2 transcription, and type I collagen
deposition (92); however, it is unclear whether this holds true
in HSCs as well. As has already been outlined above, RECK
inhibits the Notch pathway by targeting ADAM10 and ADAM17
activity; whether this is sufficient to alter fibrosis in NASH
patients is unknown.
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EGFR signaling is also involved in tissue fibrosis. Its increased
activity positively correlated with several pulmonary pathologies;
individuals affected by the SARS outbreak of 2003 saw extensive
lung fibrosis, which was suggested to be induced by a hyperactive
host response to EGFR-mediated lung injury (93). More
specifically, in a review by Stolarczyke and Scholte examining
chronic obstructive pulmonary disease and cystic fibrosis,
extensive evidence was found linking hyperactivity of the EGFR/
ADAM17 signaling axis to ADAM17-cleavage of amphiregulin,
an EGFR ligand (94). In a rodent model of lung injury resulting
from chronic allergies, Morimoto et al. found that amphiregulin/
EGFR signaling activated eosinophils to an inflammatory state
with enhanced production of osteopontin, an important
profibrotic protein. Furthermore, they found that amphiregulin
was produced by memory Th cells, further contributing to
pulmonary fibrosis (95). Chronic kidney disease (CKD) is
Frontiers in Endocrinology | www.frontiersin.org 5
associated with fibrosis (96); EGFR is activated following renal
injury, and studies have suggested its potential inhibition as a
treatment for CKD (97).

In the context of NASH, it has been found that treatment of
isolated Kupffer cells, the resident liver macrophages, with
CXCL6 increases EGFR phosphorylation and TGF-b induction
(98). These results were confirmed by the same authors
in vivo using a carbon tetrachloride (CCl4) model of NASH
(98). Increases in EGFR phosphorylation was observed in
hepatocytes, activated HSCs, and macrophages in fibrotic livers
in response to CCl4. Furthermore, Egfr gene ablation (EGFR-KO)
markedly reduced hepatic fibrosis and a-SMA expression in livers
in response to CCl4 (99). EGF and EGFR are also upregulated in
humans with chronic liver injury. However, in rodent models, it was
shown that EGF was downregulated in liver fibrosis, but
amphiregulin and EGFR were significantly increased (100).
FIGURE 1 | Possible mechanism through which RECK influences NAFLD/NASH development and pathogenesis. RECK’s inhibition of the gelatinases MMP2 and
MMP9 may in turn reduce leukocyte invasion into the hepatic parenchyma and hepatic stellate cell activation. In addition, RECK inhibits the sheddases ADAM10 and
ADAM17, which consequently may inhibit the release of proinflammatory cytokines from hepatic cells, as well as reduce activation of EGFR and Notch pathways,
both of which contribute to inflammation and fibrosis of liver. © Copyright 2021 by The Curators of the University of Missouri, a public corporation.
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Overall, these reports indicate that overactivation of the EGFR
signaling pathway may be linked to overt ADAM17 activity and
NASH progression. Due to RECK’s inhibition of ADAM17 and
consequent downregulation in EGFR signaling, it is plausible
that sustaining or inducing RECK has the potential to prevent
or even reverse hepatic fibrosis seen in NASH. A more
comprehensive analysis of potential signaling pathway is
necessary to better understand the protective role of RECK in
NAFLD, NASH and HCC.
FUTURE DIRECTIONS

RECK plays a central role in modulating ECM components
involved in the progression of inflammation and fibrosis.
Therefore, examining the activity of RECK in the context of
inflammatory and fibrotic conditions, such as NASH, is
paramount. Currently, RECK inducers are being explored in
the context of cancer treatment (101, 102), thus expansion of this
research into the area of liver disease could prove fruitful and
should be considered. Furthermore, there is considerable
variation in the context of RECK activity within the individual
cell types of the liver. For example, would RECK activity in HSCs
prevent activation and collagen deposition? Can RECK activity
in Kupffer cells prevent TGF-b release and mobilization through
MMP inhibition? Does RECK alter hepatic inflammation and
Frontiers in Endocrinology | www.frontiersin.org 6
fibrosis through other mechanisms? Further, is RECK expression
altered in livers of patients with NASH? Does downregulation
predispose individuals towards developing cirrhosis and/or
HCC? Further investigations will elucidate RECK’s central role
and therapeutic potential in NASH and HCC.
CONCLUSION

RECK is a unique membrane anchored regulator of various
MMPs and ADAMs. Through modulation of MMPs and
ADAMs, RECK could target several key inflammatory and
fibrogenic pathways by modulating ECM, inflammatory
cytokines, and several other cellular processes, which could
influence the outcomes of diseases such as NAFLD and NASH
(Figure 1; key cellular targets listed in Table 1). Further studies
are necessary to better understand the regulation and protective
role of RECK in the diseased liver. Examination of these
pathways may help us develop novel RECK inducers as
therapeutics in NAFLD, NASH and HCC.
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