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Seizure activity in EEG recordings can persist for hours with seizure dynamics changing rapidly over time and
space. To characterise the spatiotemporal evolution of seizure activity, large data sets often need to be analysed.
Dynamic causal modelling (DCM) can be used to estimate the synaptic drivers of cortical dynamics during a
seizure; however, the requisite (Bayesian) inversion procedure is computationally expensive. In this note, we
describe a straightforward procedure, within the DCM framework, that provides efficient inversion of seizure
activity measured with non-invasive and invasive physiological recordings; namely, EEG/ECoG. We describe
the theoretical background behind a Bayesian belief updating scheme for DCM. The scheme is tested on simulated
and empirical seizure activity (recorded both invasively and non-invasively) and compared with standard
Bayesian inversion. We show that the Bayesian belief updating scheme provides similar estimates of time-varying
synaptic parameters, compared to standard schemes, indicating no significant qualitative change in accuracy. The
difference in variance explained was small (less than 5%). The updating method was substantially more efficient,
taking approximately 5–10 min compared to approximately 1–2 h. Moreover, the setup of the model under the
updating scheme allows for a clear specification of how neuronal variables fluctuate over separable timescales.
This method now allows us to investigate the effect of fast (neuronal) activity on slow fluctuations in (synaptic)
parameters, paving a way forward to understand how seizure activity is generated.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction

One of the hallmarks of clinical electroencephalography is the
identification of patients with epileptic seizures, where electrographic
seizure activity remains one of the most specific and sensitive find-
ings in electroencephalogram (EEG) recordings (Ebersole et al.,
2013). Except for a few highly technical applications for source
localisation of epileptic activity, clinical EEG recordings are, in essence,
still analysed in the same way that they were first analysed by Hans
Bergermore than a century ago (Ebersole et al., 2013). Themain advan-
tage of EEG (andMEG) – compared to othermethods of neuroimaging –
is the high temporal resolution, allowing for the detection of the rapid
neuronal dynamics; including the generation, spread and termina-
tion of electrographic seizure activity. However, full use of the infor-
mation inherent in EEG data requires accurate quantitative methods.
This sort of modelling was introduced when the average activities of
neuronal populations were first estimated by Wilson and Cowan,
using methods from statistical physics, in which individual cells were
euroimaging at UCL, 12 Queen
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assumed to follow Hodgkin–Huxley dynamics (Wilson and Cowan,
1972, 1973). The ensuing neuralmassmodels provide a computational-
ly tractable way of modelling coupled neuronal populations; especially,
in the form exemplified by Jansen and Rit (Jansen and Rit, 1995). Neural
massmodels have been used extensively to characterise the physiology
of seizure generation; either in the form of bifurcations (Blenkinsop
et al., 2012; Breakspear et al., 2006; Grimbert and Faugeras, 2006;
Jirsa et al., 2014; Nevado-Holgado et al., 2012) or multi-stability
(Benjamin et al., 2012; Lopes da Silva et al., 2003). In contrast, variation
of the model parameters has also been used to model seizures, where
inference about these variations calls on Bayesian filtering techniques
or genetic algorithms (Blenkinsop et al., 2012; Freestone et al., 2013,
2014; Nevado-Holgado et al., 2012; Schiff and Sauer, 2008; Ullah and
Schiff, 2010; Wendling et al., 2005).

Dynamic causal modelling (DCM) is a very general method which
allows for analysis of neural mass models where inferences can be
made about the neuronal architectures that underlie measured time
series, such as EEG (Stephan et al., 2007). DCM has been widely used
in neuroscience in modelling fMRI and EEG activity (David et al., 2006,
2008; Friston et al., 2012; Moran et al., 2008, 2011a,b,c). DCM rests
upon the variational Bayesian inversion of biophysical generative
models. Crucially, several models can be inverted for any given data;
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1
(Free) Parameters estimated by dynamic causal modelling. The second column describes
the prior values and the third the log variances.

Parameters estimated

Constant parameters Notation Prior mean Log prior
variance

Time constants (Hz) Ti , i = 1, …,
4

[0.25 0.17 0.08 0.07] *
1000

0.0625

Connectivity constants (Hz) gi, i = 1, 2, 7,
10

[0.8, …, 0.2] * 1000 0.0625

Slope of sigmoid function γ 0.67 0.03125
Time delay for connections
(ms)

d 1 0.03125

Time dependent parameters
Connectivity parameters
Inhibitory (Hz) g3(t) 1.6 * 1000 0.0625
Inhibitory (Hz) g4(t) 0.8 * 1000 0.0625
Inhibitory (Hz) g9(t) 0.4 * 1000 0.0625
Excitatory (Hz) g5(t) 0.8 * 1000 0.0625
Excitatory (Hz) g6(t) 0.4 * 1000 0.0625
Excitatory (Hz) g8(t) 0.8 * 1000 0.0625

Endogenous spectral input
Amplitude of spectral
density of input

a1(t) 1 0.0078125

Power law exponent of
spectral density of input

a2(t) 1 0.0078125

Amplitude of spectral density of
measurement noise

b1(t) 1 0.0078125

Power law exponent of
spectral density of
measurement noise

b1(t) 1 0.0078125

Spectral innovation of input di(t), i = 1,
…, 8

1 0.0078125
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enabling the evidence for competing models or hypotheses to be
evaluated (with Bayesian model comparison). Posterior estimates of
the parameters of the winning models then provide a quantitative and
physiologically grounded explanation for the observed data.

A phenomenological neural mass model of seizure activity (the
Epileptor) has been recently suggested together with a thorough de-
scription of bifurcations that give rise to seizures (Jirsa et al., 2014;
Proix et al., 2014). Seizure onset and offset are described as saddle
node and homoclinic bifurcations, respectively. These sorts of models
allow for coupling between dynamics of different time scales, allowing
for the transition between ictal and inter-ictal states. From a physiolog-
ical perspective the coupling between different time scales can be seen
as slow fluctuations in synaptic efficacy inducing fast dynamics, and
where fast dynamics couple back to synaptic efficacy (Friston, 2014).
Pursuing similar ideas – using neural mass models – focal seizure
activity was recently modelled using electrocorticography (ECoG) data
(Papadopoulou et al., 2015). This dynamic causal modelling study
found that changes in intrinsic (within-source) connectivity were
required to explain seizure onset and that these slow changesmediated
a transient loss of excitatory–inhibitory balance.

Focal epileptic seizures usually evolve through three phases: initia-
tion, propagation and termination (Schiff et al., 2000). During the evolu-
tion of the seizure, the spatial dynamics increase in complexity as it is
mediated through an increasing cover of an epileptic network, particu-
larly in the propagation and termination phases. Furthermore, seizure
activity on EEG recordings is usually in the time scale of minutes or
hours. As a result of this, characterising the spatial and temporal evolu-
tion of the seizure requires large multiple channel time series. In the
context of DCM, this is modelled using large networks of nodes
interacting over relatively long periods of time. However, although
DCM can be used to model seizure activity over a few minutes, the in-
version procedure is computationally expensive and efficient methods
formodel inversion are required, especially when realistic epileptic net-
works are inferred. At present batch inversion schemes are used for in-
version in DCMand changes in parameters aremodelled usingmixtures
of temporal basis functions. Crucially, all the data are inverted at once,
creating a large inverse problem that is relatively expensive to solve.
Bayesian belief updating schemes represent an alternative approach
that is computationally less intense. Furthermore, it speaks to the phys-
iological context of seizure activity, namely, where the dynamics of fast
neuronal activity can be assumed to attain steady state within short
epochs of data –while the parameters mediating fast dynamics change
slowly from epoch to epoch. This technical note introduces a Bayesian
belief updating scheme for the inversion of DCMs of extended time
series data that rests upon a separation of fast (neuronal) and slow (syn-
aptic) changes. We test the scheme on simulated as well as real data,
and for the latter case compare its accuracy and efficiencywith standard
Bayesian inversion previously used for DCMs.

Dynamic causal modelling

In the following DCM analyses, we used a neural mass model to
predict electrographic seizure activity. This model represented a modi-
fication of the Jansen and Rit model (Jansen and Rit, 1995) and is
based on the canonical cortical microcircuit (CMC). It is composed of
four subpopulations of neurons corresponding to superficial and deep
pyramidal, excitatory, and inhibitory cells (Moran et al., 2013). The sub-
populations were interconnected using ten inhibitory and excitatory
connections. Afferent connections drove the excitatory granular cells
and efferent connections derive from the superficial pyramidal cells.
The measurements (ECoG and EEG data) were modelled as a weighted
average of the postsynaptic potential of the pyramidal cells. This partic-
ular model has been used extensively to model condition-specific
changes in synaptic efficacy (in terms of within and between source
connectivity) in a number of event related potential studies:
e.g., Fogelson et al., 2013, Brown and Friston 2013, Bastos et al., 2015).
Here, we used it to explain the evolution of complex-valued cross spec-
tra produced by seizure activity.

In what follows, we will describe the dynamic causal modelling of
successive epochs of data, where neuronal activity is summarised in
terms of its spectral density (for a single source) or cross spectral densi-
ty (for multiple sources). In this paper, we investigate the inferences
that can be made on the dynamics of seizure activity when modelling
the activity of the seizure onset zone with afferent input from a wider
epileptic network. In brief, standard DCM procedures analyse all epochs
together, modelling changes in parameters as mixtures of temporal
basis functions. This allows one to specify a family of trajectories for
slow (epoch to epoch) fluctuations in themodel parameters underlying
changes in spectral activity that are characteristic of seizure activity. The
disadvantage of this approach is that one has to invert a model of mul-
tiple epochs, which is computationally very expensive. The alternative is
to use Bayesian belief updating, where certain parameters are allowed
to change between epochs and others are held constant. Bayesian belief
updating essentially updates the priors over parameters for any given
epoch based on posterior beliefs, having inverted the previous epoch.
We first describe the generic inversion of a single epoch and then con-
sider Bayesian belief updating between epochs.
Model inversion of a single epoch

In each epoch, the free (synaptic and connectivity) parameters of the
neural mass were estimated using DCM for spectral density (Friston
et al., 2012; Moran et al., 2011a). This scheme uses variational Bayesian
inference under the Laplace approximation (Friston et al., 2007); see
Appendix A for a detailed description. Effectively, the model inversion
optimises model parameters to maximise Bayesian model evidence,
using variational free energy as a proxy for (log) model evidence
(Friston et al., 2007). Model evidence (or its lower bound, the free
energy) enables the comparison of different models through Bayesian
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model comparison (Stephan et al., 2010). A difference in log model
evidence or free energy of about three constitutes strong evidence for
the winning model (with an odds ratio of about 20 to 1). The free
parameters togetherwith their priormeans and variances are displayed
in Table 1.

Bayesian belief updating

In DCM for cross spectral density (CSD), linear systems theory
is used to model the spectral behaviour of seizure activity within each
epoch or window. Linear systems theory simplifies the inversion of
the model – because the hidden states of the neural mass (state
space) model need not be estimated to predict spectral data features –
enabling an efficient Bayesian inversion. In brief, the likelihood of the
spectral response for a given epoch is computed from the expected
spectra for any given model parameters. These neuronal parameters
define the system's Jacobian and thereby its implicit transfer functions.
These transfer functions are then applied to the (parameterised) spec-
tral density of endogenous neuronal fluctuations. Finally, the expected
spectra are generated by adding (parameterised) observation noise.
This generative procedure can be expressed formally in terms of a like-
lihood model for observed sample spectra from the ith epoch:

gi ¼ Η θið Þ þ ξ ð1Þ

where Η(θi) returns the expected spectra for any set of parameters θi
specifying the transfer functions of the neural mass model – and the
spectral density of endogenous fluctuations. This provides the likeli-
hood p(gi|θi) under Gaussian assumptions about sampling error ξ.

The variation of time dependent parameters (inhibitory, excitatory
connectivity and afferent input) between epochs can now be modelled
as a random walk, reminiscent of Markov Chain Monte Carlo (MCMC)
samplers (Sengupta et al., 2015a,b). In this setting the parameters be-
come the hidden states of amodel of (slow) epoch to epochfluctuations
(Särkkä, 2013) and the parametric model can be expressed as an
autoregressive (AR) process.

θi ¼ θi−1 þ εi−1 ð2Þ

Here, εi � Nð0;RiÞ represents a zero mean Gaussian fluctuation
with covariance R i (which is parameterised and estimated in each
epoch, see Appendix A). This parametric model entails priors about
changes in parameters p(θi|θi − 1). An alternative update scheme
would rest on stochastic-approximations (Robbins–Monro or Kiefer–
Wolfowitz), where the mean and the covariance matrix are updated
based on theMetropolis acceptance criterion (Sengupta et al., 2015a,b).

This hierarchical (between epoch) extension of conventional (with-
in epoch) DCM allows us to interpret the implicit Bayesian belief
updating as a prediction step, where the priors for the current epoch
are updated using posteriors over parameters from the previous epoch
– and the priors about their changes in Eq. (2):

p θijgi−1;…; g1ð Þ ¼
Z

p θijθi−1ð Þ � p θi−1jgi−1;…; g1ð Þdθi−1 ð3Þ

The subsequent variational inversion using a conventional (within
epoch) DCM can be regarded as an update step, which uses new data
features to provide a new posterior based on the likelihood model in
Eq. (1) and the updated priors:

p θijgi;…; g1ð Þ∝p gijθið Þ � p θijgi−1;…; g1ð Þ ð4Þ

In practice, thismeans that the priors for the current epoch are taken
from the posteriors of the previous epoch.

p θijgi−1;…; g1ð Þ∼ N μ i−1;Qi−1 þ Rið Þ ð5Þ
where the previous posteriors are given by pðθi−1jgi−1;…; g1Þ∼ Nðμ i−1;

Qi−1Þ. This simple form of updating follows because of the Laplace as-
sumption and the form of the autoregressive model above.

The covariancematricesRi determinewhich parameters change and
which do not. If a parameter (θj) does not change over time, then the
corresponding variance is zero: {Ri}jj = 0. In this instance, the update
scheme reduces to standard Bayesian belief updating and the posterior
will, usually, converge quickly on the posterior expectation. Heuris-
tically, large prior variances over the parameter fluctuations prevent
this convergence and allow for some parameters to perform a random
walk over epochs, with varying degrees of smoothness determined by
R i. At each epoch, we estimated the Bayes optimal value of R i by
parameterising it usingRi = (1+ ηi)R0 and optimising ηi with respect
to free energy (this new parameter is a volatility parameter): see
Appendix A for details. A simpler scheme would assume a fixed volatil-
ity Ri = R0 however, optimising the volatility allows one to quantify
periods of greater fluctuations, at little computational expense – as we
will illustrate below.

The corresponding smoothness of fluctuations in time-varying or
volatile parameters in standard schemes is enforced by using temporal
basis functions. This affords a more constrained model of parametric
fluctuations that may or may not be appropriate, for example, when
there are large transitions around seizure onset. In this sense, the stan-
dard approach ismore constrainedwith fewer free parameters; namely,
the coefficients of the temporal basis set (in what follows, a set of 8
discrete cosine functions for each volatile parameter). In contrast, the
number of free parameters for the Bayesian update scheme corresponds
to the number of epochs for each parameter; however, priors on
their transitions suppress their effective degrees of freedom. Any tem-
poral basis set could be used, however, for simplicity and their well-
behaved boundary conditions, we used a set of cosine functions. For
the data modelled in this study using a larger set (N8) of discrete cosine
functions did not change the estimated parameters substantially.

In summary, the Bayesian belief updating scheme estimates slowly
varying parameters as follows:

• Window the data into suitable epochs.
• Estimate the posteriors of the parameters in the first epoch.
• Replace the priors over the parameters in the next epoch with the
posteriors of the previous.

• Estimate the posteriors of the parameters in the next epoch.
• Continue recursively for all epochs.

The standard update system estimates volatile parameters as
follows:

• Window the data into suitable epochs.
• The trajectory of each parameter is parameterised using a set of
smooth temporal basis functions (e.g. discrete cosine set).

• Estimate the posteriors over the coefficients of the basis set that de-
scribe the smooth variation of the original parameters (i.e., estimate
the parameterised trajectory of the neuronal parameters).

Model inversion

Simulated EEG data set

In this section, we will compare the inferences about changes of in-
trinsic connectivity and endogenous input for simulated data with the
actual drifts of these parameters. We simulated data that represented
local field potentials close to a region of the cortex undergoing slow
changes (b0.5 Hz) in the intrinsic (excitatory and inhibitory) connectiv-
ity or endogenous input. The data consisted of 14 s of activity recorded
with one channel. Three simulations were performed with drifts of in-
hibitory, excitatory or endogenous input. The parameters were changed
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using a sigmoid function of time, increasing from 0 to 1 during the 14-s
time period. The simulated data was inverted using the Bayesian belief
updating scheme described above. Reassuringly, wewere able to recov-
er parametricfluctuations very similar to the true changes for all (three)
types of parameters. Please see Fig. 1.

Empirical EEG/ECoG data set

To establish validity of the Bayesian belief updating, we compared
the belief updating and temporal basis functions schemes,when applied
to real data. In brief, we usedmodel comparison to optimise prior beliefs
parametric fluctuations and compared the Bayesian updating scheme
with the standard (basis functions) approach. We examined inference
about models and parameters, qualitatively and quantitatively. Given
that the priors on parametric fluctuations are formally distinct between
the two schemes (a mixture of temporal basis functions versus a
Fig. 1. The panels to the left (A, B, C) show the known and predicted changes in inhibitory, excita
inferred changes). The fields in the middle (D, E, F) and right (G, H, I) column represent the ob
random walk), we hoped to establish construct validity between the
two schemes in terms of the preferred models and their physiological
implications.

Model comparisonwasperformed for each data set, comparing eight
models which allowed for different combinations of the three different
types of neuronal parameters (inhibitory, excitatory connectivity and
the parameters of the power law spectral density of endogenous affer-
ent input) to change over time. This was compared for both types of
inversion schemes – (Bayesian belief) updating and standard (basis
function) inversion.

Electrocorticogram (ECoG) data were collected retrospectively from
the database at Clinical Neurophysiology at Karolinska University Hos-
pital, Stockholm, Sweden and comprised invasive ECoG from a patient
with focal temporal lobe epilepsy. Data was registered using 32 elec-
trodes placed over the temporal lobes bilaterally. The seizure onset
zone was located to the lateral temporal lobe on the right side, where
tory and endogenous input to a simulated cortical source (blue simulated changes and red
served and predicted time frequency response of the simulated data.



Fig. 2. A) Seizure activity recorded using ECoG. Note the focal start of seizure with relatively rapid spreading between electrodes. Electrodes in black are located on the right temporal lobe
and blue electrodes over the left temporal lobe. B) Seizure activity recorded using EEG from two patients. Note the focal start of seizurewith relatively quick spreading between electrodes.
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we identified the onset of electrographic seizure activity, see Fig. 2A.We
modelled the activity of the seizure onset zone during seizure
onset, spread and termination. We used eleven seizures that were free
of artefacts for modelling the averaged induced spectral activity. After
acquisition, the data was filtered using a bandpass filter (Butterworth
5th order filter) between 0.5 and 70 Hz. Line activity was removed
using a notchfilter at 50Hz. The time series for each seizurewas divided
into 2000 ms epochs without overlap. The size of the window was
chosen as themaximumduration over which spectral activity remained
approximately constant. More specifically, we used the maximum
window length that retained 90% of the spectral power (as estimated
using a complex Gaussian wavelet).

EEG recordings were obtained retrospectively from two patients
(EEG data set 1 and 2) with recurrent partial seizures from the
database at Clinical Neurophysiology at Karolinska University Hospi-
tal, Stockholm, Sweden. These patients were clinically determined to
have anti-N-methyl-D-aspartate receptor (NMDA-R) antibody enceph-
alitis. The EEG recording comprised nine scalp electrodes positioned ac-
cording to the 10–20 system (F3, F4, C3, C4, Cz, P3, P4, T3 and T4)
together with a reference electrode placed over Fz. Seizure activity
from both patients started with fast activity in the beta and alpha
band, which increased in amplitude and was accompanied by a reduc-
tion of oscillatory frequency, before terminating, see Fig. 2B. The dura-
tion of the seizures was approximately 15 and 60 s respectively in
EEG data set 1 and 2. A total of 55 seizures free of artefactswere selected
for modelling from EEG data set 1 and two seizures were selected from
EEG data set 2. After acquisition, the data was re-referenced to a com-
mon average and filtered using a bandpass filter (Butterworth 5th
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order filter) between 0.5 and 70 Hz. Line activity was removed using a
notch filter at 50 Hz. We used an empirical Bayes beamformer to locate
the source with the greatest spectral power during the first second of
seizure activity in each patient (Belardinelli et al., 2012). We then
used the reconstructed source activity at this location for further analy-
sis. The time series for each seizure was divided into 2000mswindows
without overlap, for both patients. The size of the epoch was chosen
using the same criteria applied to the invasive data described above.
Based upon the resulting spectral density of seizure activity for both
ECoG and EEG data, we modelled fluctuations in spectral power be-
tween 1 Hz and 40 Hz with DCM.
Model comparison

We compared eight models that allowed for different combinations
of the three different sets of parameters to fluctuate: inhibitory, excit-
atory and the parameters of (the power law) spectral density of afferent
input. Furthermore, we parameterised the noise process and estimated
it by maximising the free energy (using an autoregressive process of
order 1). The model with volatile inhibitory and excitatory connectivity
and spectral input showed highest evidence for all of the three data sets.
The best model explainedmore than 98% of the variation of the data for
both types of seizure recordings, invasive and non-invasive. We obtain-
ed the same results with the standard inversion of seizure data, giving
similar inferences on the causal dependence of modelled seizure activi-
ty to afferent input from un-modelled parts of a wider epileptic net-
work. The free energy for each model inversion is shown in Table 2
with respect to the free energy of the winning model.
Variation in synaptic efficacy

The winning model showed similar changes in both inhibitory and
excitatory connectivity between the two inversion schemes for all
three sets of seizure data. See Figs. 3 and 4 for the observed data and
posterior estimates for the two types of data. To further characterize
the effect of these changes on the four populations of neurons in the
epileptogenic source, we estimated the spectral activity of each popula-
tion, under the expected parameters of the best model. This reconstruc-
tion of hidden neuronal activity revealed similar changes for both
inversion schemes, although the smoothness of the requisite inversion
was not always as evident for the updating scheme, see Fig. 5. In
Table 3,we compare thefits of themodel to the data using the two inver-
sion schemes. It was clear that both inversions manage to explain more
than 95% of the variance in all three sets of data. Furthermore, in all
three cases the volatility of the parametric fluctuations increased prior
to seizure onset, at the point of changes in spectral activity, see Fig. 6.
SeeAppendixA for a detailed description of how this volatility parameter
was updated.
Table 2
The variance explained and the free energy for the differentmodels inverted for the different typ
the best fit. The free energies are expressed relative to the null model.

Model ECoG data 1

Variance explained Free energy

Inhibitory + excitatory + endogenous 0.99745 2.33E+04
Inhibitory + excitatory 0.99212 2.20E+04
Inhibitory + endogenous 0.99621 2.26E+04
Excitatory + endogenous 0.98931 2.16E+04
Inhibitory 0.28691 3.02E+02
Excitatory 0.95 1.69E+04
Endogenous 0.98875 2.13E+04
Null 0.28658 0.00E+00
Computational efficiency

The inversion schemes were computed on a Dell Precision T3610
(3.5 × 4 GHz; 16 GB random access memory). The updating schemes
were computationally less expensive, being 10 to 20 times faster. Inver-
sion of the winningmodel for both invasive and non-invasive data took
approximately 5min compared to approximately 1–2 hwhen using the
standard inversion scheme.
Discussion

This technical note presents a computationally efficient scheme
within which the cortical physiology of epileptic seizure activity
can be inferred using invasive or non-invasive electrophysiological
recordings. The method rests upon the assumption that the physiology
of epileptic seizures takes place on at least two time scales. This has
been verified analytically, numerically, in vitro and in vivo (including
humans) in several studies (Bernard et al., 2014; Friston, 2014; Jirsa
et al., 2014; Papadopoulou et al., 2015; Proix et al., 2014; Wendling
et al., 2002; Terry et al, 2012), where the transition between inter-
ictal and ictal states can be viewed as a coupling between slow and
fast dynamics. This coupling can be modelled using parameters that
generate fast activity but vary themselves on a slower time scale, the
fast part describing the spectral output of the electrographic seizure
and the second its waxing and waning over time. From an inference
point of view, this leads to a (adiabatic) simplification in the estimation
of the parameters, where efficient updating techniques can be used to
estimate slow variables. In the present study, we used a Gaussian ran-
dom walk for the slowly varying or volatile parameters. By estimating
the covariance (i.e., volatility) of the parameter fluctuations, we were
able to estimate their fluctuations over time using Bayesianmodel com-
parison. This is similar to sampling based adaptive-MCMC schemes,
where the parameter variation is learnt online based on an acceptance
criterion (Sengupta et al., 2015a).

The inference scheme described above assumes that the cortex
reaches a quasi-steady state before the synaptic parameters or the
external input changes significantly. A long window of observation of
the steady state will allow for an accurate estimation of the underlying
parameters governing the dynamics. However, often the window
length of observation will need to be relatively short due to the drift
of the parameters (quasi-steady state and not true steady state) but
averaging the spectral activity over several instances of seizure activity
should give reliable estimates of the underlying parameters. This aver-
aging of spectral activity over several identical seizures furnishes a
robust method for estimating the parameter trajectories underlying a
specific seizure type. The identification of similar (clinical) seizures
can be based on the clinical analysis of the EEG or ECoG data and the
clinical symptoms. However, the inference scheme also provides confi-
dence bounds on the estimated parameters, which provides
es of invertedmodels. Note that thewinningmodel (highest free energy, in bold) also had

EEG data 1 EEG data 2

Variance explained Free energy Variance explained Free energy

0.98425 4.11E+03 0.9949 1.50E+04
0.94117 3.31E+03 0.9705 1.30E+04
0.94503 3.41E+03 0.99312 1.45E+04
0.97685 3.69E+03 0.98529 1.40E+04
0.22256 -4.29E+02 0.65903 1.49E+03
0.86233 2.47E+03 0.90751 9.93E+03
0.92813 3.04E+03 0.98418 1.38E+04
0.36074 0.00E+00 0.5915 0.00E+00



Fig. 3. The panels to the left (A, B) show the observed and predicted time frequency activity of the seizures recorded using ECoG. Top right (C) shows estimated changes in red using the
updating scheme and the corresponding changes estimated using the standard scheme in blue. The (~95%) confidence interval of estimated parameters (± 2 standard deviations) is in-
dicated by the grey area encompassing the posterior expectation (red curves). Bottom right (D) shows the inferred spectral input to the modelled cortical source using the updating
scheme.
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information on the uncertainty of the inversion. In Figs. 3 and 4 confi-
dence bounds are shown around the mean parameter trajectory. We
have also included the parameter variations estimated using the stan-
dard DCM inversion scheme for comparison.

Similarmethods using randomwalks to infer parameter fluctuations
have been described previously, using different filtering schemes
(Freestone et al., 2013, 2014; Schiff and Sauer, 2008; Ullah and Schiff,
2010). These methods invert signals in the time domain, in contrast
to the frequency (spectral) domain used in the present approach.
Inverting spectral activity generally leads to a simplification
(e.g., linearization) of the model, which might be valid in certain
cases. Regarding seizures, there are instances when the phase of the
signal is of less importance than the amplitude of oscillatory activity.
Indeed amplitude differences or variation in oscillatory frequency gen-
erally constitute the clinical criteria that define electrographic seizure
activity (Young et al., 1996). However, in other cases, the phase of the
signal may play an important role in characterising seizure activity;
e.g., 3 Hz spike and wave, poly-spike and wave, spike and slow wave
activity. For these cases, the method presented here may miss impor-
tant features of the electrographic seizure activity, while inference in
the time domain would retain these features. Moreover, parameter
estimation in the spectral domain, using the method we describe,
assumes linearity (i.e. the non-linear ordinary differential equation
representing the neural mass model is approximated by its lineariza-
tion). Themainmotivation for this approximation is the ensuing simpli-
fication of the inversion scheme, resulting in relatively quick inversions,
compared to more accurate inversion schemes that include the non-
linearities. The non-linearity of the neural mass models we used lies
in the sigmoidal function that relates membrane potential to average
firing rate: see Freestone for a description of how this sigmoidal func-
tion affects Bayesian inversions schemes (Freestone et al., 2014). It is in-
teresting to compare the (spectral) scheme presented here with time
domain methods: this distinction determines which types of seizures
could be inverted under the assumption of stationarity and mild non-
linearity (present model) by comparing with results obtained from
models where these assumptions are relaxed (see Freestone et al.,
2013, 2014; Schiff and Sauer, 2008; Ullah and Schiff, 2010). In future
studies, we will compare (spectral and filtering) DCM schemes with
related methods (Freestone et al., 2014; Schiff and Sauer, 2008; Ullah
and Schiff, 2010).

In the current model, we did not consider any coupling of the fast
activity to the slowly varying parameters, the variation was completely
data driven; however, inclusion of this coupling (i.e. activity dependent
plasticity) may improve our estimates of the slow parameters – and
allow us to predict their future values.

Interestingly, such coupling between slow and fast fluctuations is a
feature of gradient-basedMCMC sampling schemes,where the scale de-
pendence is used to boost computational efficiency (Sengupta et al.,
2015b). The combination of the updating method presented in this
paper, together with a suitable forward model could provide an
efficient variational scheme for more precise inference on seizures
dynamics. A phenomenological model was presented in the Epileptor
model, where a slow parameter was introduced with a reciprocal cou-
pling to fast dynamics (Jirsa et al., 2014). We will, in future, introduce
a biologically plausible forward model for the slow parameters, similar
in form to the forwardmodel in the Epileptor, whichmight allow for im-
proved estimation of slow parameters.

One advantage of using a biologically plausible model for prediction
of seizure dynamics is the possibility of implementing directed thera-
peutic interventions. In the dynamic causal models used for this study,
the equations governing thedynamics describe, to some approximation,
neurobiological quantities. The hidden states of the model represent
population averages of postsynaptic potentials and currents, while the
parameters represent the synaptic connectivity between neuronal pop-
ulations. The slowvariation of the parameters can be seen as variation of
synaptic gain. This could be due to various biophysical and biochemical
causes such as membrane potential dependent conductivity of ion
channels or changes in ion concentrations. As epileptic seizures are
sometimes prolonged – and can last for minutes or hours – this opens
the possibility formetabolic changes in receptors. Furthermore, seizures



Fig. 4. Panels to the left (A, B, C, D) show results from EEG data set 1. Panels to the right show results from EEG data set 2 (E, F, G, H). Top row (A, E) shows observed data. Second row
(B, F) shows the predicted activity after model inversion. Third row (C, G) shows the inferred changes in intrinsic connectivity where red is used for inferences from the updating scheme
and blue reports the corresponding changes estimated using the standard scheme. The (~95%) confidence interval of estimated parameters (±2 standard deviations) is indicated by the
grey area encompassing the posterior expectation (red curves). The bottom row (D, H) shows the inferred spectral input to the modelled cortical region using the updating scheme.
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are not physiological events and as such may affect the dynamics by
more deleterious effects such as energy or oxygen depletion (Sengupta
and Stemmler, 2014). All of the changes in synaptic connectivity
described above could affect the way the slow parameters change and
are candidates for a forward model.

The accuracy of the Bayesian belief updating scheme proved in gen-
eral to be robust – giving similar results to standard DCM schemes – but
also correctly inferring variations in parameters in simulated data. In-
spection of the results from both inversion schemes led to similar con-
clusions but the quantitative descriptions were slightly different. This
indicates that some predictions may only confer qualitative and not
quantitative information. The updating scheme only considers data
sampled prior to the estimation of the current parameter (technically,
a filtering scheme), which is a less constrained inverse problem than
conditioning the parameters on all the data (a smoothing scheme),
which is also a feature of the standard DCM inversion scheme. However,
the similarity between the inversions using the two schemes presented
in this note indicates that convergence and local minima problems
might not be much greater for the updating scheme, relative to the
standard scheme. Moreover, combining these schemes (belief updating



Fig. 5. The top row shows the inferred time frequency activity of the four subpopulations (excitatory cells, superficial pyramidal cells, inhibitory cells and deep pyramidal cells) using ECoG
data and the updating scheme (ECoG up.). The second row shows the same results but using the standard scheme (ECoG st.). The third row shows inferred time frequency activity of the
four subpopulations using EEG data set 1 and the updating scheme (EEG1 up.). Fourth row shows the same but using the standard scheme of inversion (EEG1 st.). The fifth row shows the
inferred time frequency activity of the four subpopulations using EEGdata set 2 and the updating scheme (EEG2up.). Sixth row shows the same but using the standard scheme of inversion
(EEG2 st.).
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and the standard scheme) may also address issues pertaining to local
minima – where multiple re-starts are generally assumed to be the
only solution.

We studied both invasive and non-invasive data, inferring changes
in both synaptic efficacy and afferent input to the cortical source. It is in-
teresting that we were able to infer these changes using non-invasive
data. This required localising the seizure activity first – for which we
used a beamformer approach. However, the non-invasive recordings
are confounded by several unknown physical properties of the head
and also measured at several orders of magnitude away from the sei-
zure activity zone compared to the invasive recordings. The source
localisation used to accommodate these unknownsmay itself introduce
errors into the modelling, especially if the region generating seizure
activity consists of extended or multiple sources. If spatial dynamics
were included in our model we would have most probably seen a
greater difference between the type of inferences that we make using
the two types of data. In the presentmodel, the spatial dynamics are col-
lapsed into the afferent input to the modelled source. The inversion
scheme did allow us to estimate which part of the seizure activity was
due to afferent input; however, we cannot say anything regarding the
physiology of the endogenous inputs using the current model.
Table 3
The variance explained of the data for the optimal full model with two schemes of data
inversion, differences less than 0.05.

Model ECoG data 1 EEG data 1 EEG data 2

Updating Time
basis

Updating Time
basis

Updating Time
basis

Inhibitory + excitatory +
endogenous

0.997 0.987 0.984 0.981 0.995 0.957
At present, we have not been able to validate our scheme using
e.g. more invasive methods, where the intrinsic dynamics can be mea-
sured; however, the DCM used for this study has been validated in pre-
vious studies using local field potential recordings, together with
pharmacological manipulations or with micro-dialysis measurements
of extracellular glutamate levels (Moran et al., 2011a,c).Moreover, inva-
sive measurement of subpopulation activity could be used for partial
validation, as we can infer these values from the data. Further studies,
with the possibility of validating the method and model presented in
this study would be useful for future application of DCM in epilepsy
research and might have clinical implications.

The parametric model used in belief updating allows synaptic
efficacy (and afferent input) to perform a random walk during seizure
activity. The rate of change of these parameters over time is governed
by the underlying noise process. Physiologically this would describe
the effects of un-modelled processes on the parameters. A volatile
noise process would represent large influences on the synaptic efficacy
and afferent input, whereas a small amplitude noise process would rep-
resent a small random influence on the parameters. To summarise, the
noise process does not model a specific physiological process but in-
stead estimates the size of un-modelled physiological processes,
which can be estimated by maximising the free energy of the problem
(see Appendix A). In the present model we did see an increase in vola-
tility when the spectral features of the seizure changed, whichmight in-
dicate that – at seizure onset – there is an unknown effect on parametric
fluctuations, which is itself volatile. Future investigation using more
elaborate (e.g., hierarchical) models could be of value, as they might
explain changes in volatility and hence furnish a better understanding
of the dynamical pathophysiology of seizure activity.

We have considered the waxing and waning of seizure activity, and
modelled two time scales over which the dynamics evolved. However,



Fig. 6. (A) Estimated noise process for EEG data set 1 and (B) results for EEG data set 2. (C) Estimated noise process for the ECoG data. The mean of the volatility parameter is depicted in
blue and its variance in green.
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epileptic seizures cluster over time (Osorio et al., 2009; Tauboll et al.,
1991). The inter-seizure interval has been described as a power law,
as has the probability of seizure intensity (Osorio et al., 2009). These
behaviours indicate that seizures may have scale free features. Events
with scale free behaviour are known to occur close to transition points
of dynamical systems – and are associated with the notion of self-
organised criticality (Bak et al., 1987). It might be that the cortical
dynamics generating epileptic seizures have many characteristics of a
dynamical system close to a bifurcation, as is implemented explicitly
in the Epileptor model (Jirsa et al., 2014). The interaction between
two time scales involved in seizure dynamics might be a feature of a
more widespread interaction between multitudes of timescales. The
model described in this study can, with somemodifications, accommo-
date several interacting timescales. This can be done by including a
hierarchy of parameters eachwith its own timescale, aswith the volatil-
ity parameter. The timing between seizures (inter-seizure interval)
might be governed by parameters changing at an even slower time
scale than the synaptic gains. Several Bayesian methods could be used
for estimating dynamic parameters in hierarchical systems such as
hierarchical Gaussian filtering and switching mesostate space models
(SMSM) (Mathys et al., 2011; Olier et al., 2013). Furthermore, SMSM
would also resolve the spatial dynamics of electrographic seizure activ-
ity recorded non-invasively.

The updating scheme proved very efficient compared to the stan-
dard DCM inversion as computation times improved approximately
10–20 fold. This increase in efficiency might be due to the decoupling
of epochs, together with a computationally cheap estimation of the
transition of means and covariances. This form of inversion may be
useful when modelling realistic epileptic networks with large numbers
of nodes. Augmented with efficient gradient/curvature estimators
(Sengupta et al., 2014), model comparison (an important aspect of
DCM analysis) could then be entertained over relatively large model
spaces, as each inversion could be completed fairly quickly.

In conclusion, we have implemented a Bayesian belief updating
scheme, by splitting the dynamics of seizures into fast and slow parts,
to make inferences about the slow changes in synaptic efficacy and
afferent input causing epileptic seizure activity. There are two benefits
of this implementation compared to standard DCM inversion schemes.
First, the set of equations modelling neuronal dynamics is separated
into two physiological components with fast (neuronal) and slow (syn-
aptic) hidden variables. In this setting, it is easier to understand the
coupling of variables fluctuating over separable timescales, which is a
key feature of seizure activity (Friston, 2014). Secondly, there is a clear
reduction in computational cost in performing the inference, which
may be important when applying these methods to large data sets
from patients with seizures.

Funding

This work was supported by the Wellcome Trust (B.S. and K.J.F;
088130/Z/09/Z) and a postdoctoral scholarship from the Swedish
Brain Foundation (Hjarnfonden) to G.K.C. P.D. was supported by the
Klingenstein Foundation, and the Keck Foundation.

Appendix A

A.1. Variational Laplace

A.1.1. Summary
The detailed derivations below provide the mathematical back-

ground to the algorithms used in this study. They describe how varia-
tional free energy is used as a proxy for model evidence – and it is
estimated, for any generative model. When the parameters of the
model are changed, the free energy will change accordingly. See details
below.

A.1.2. Variational Laplace
Formore details, see Friston et al. (2007) andMathys (201)). A (dynamic

causal) generative model can be characterised with the joint probability dis-
tributionof theparameters/states of themodel anddata,p(y, θ). Theevidence
for the data given the model can be expressed as follows:

lnp yð Þ ¼
Z

dθ q θð Þ lnp y; θð Þ−q θð Þ lnq θð Þ½ � þ DKL q θð Þjjp θjyð Þð Þ ðA:1Þ

• θ is the set of parameters of the generative model,
• q(θ) is an approximate posterior probability distribution,

• DKLðqðθÞjjpðθjyÞÞ ¼ ∫qðθÞ log qðθÞ
pðθjyÞ is a Kulback–Leibler divergence,

• p(θ|y) is the posterior distribution of the parameters.

We optimise q(θ) to approximate the posterior of the parameters of
the model given the data, p(θ|y). As the LHS of Eq. (A.1) is constant and
the last term DKL(q(θ)||p(θ|y)) is greater than 0 and equal to 0 when
q(θ) = p(θ|y), maximising the integral will bring the approximate dis-
tribution as close as possible to the true posterior (as defined by the
KL-divergence, DKL). The variational free energy, F, is defined as the in-
tegral on the right side. Note that it is equal to the difference between
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the expected energy of the approximate distribution and the entropy of
the approximate distribution.

F ¼
Z

dθ q θð Þ lnp y; θð Þ−q θð Þ lnq θð Þ½ � ðA:2Þ

We minimise Eq. (A.2) under the assumption of n independent

Gaussian parameter distributions.

q θð Þ ¼ ∏n
i¼1qi θið Þ ðA:3Þ

qi θið Þ ¼ 2πð Þ−
pi
2 Σθ;i
�� ��−1

2 expð−1
2

θi−μ ið ÞTΣ−1
θ;i θi−μ ið Þ ðA:4Þ

• θi is a subset of the set of parameters θ consisting of pi parameters.

Define the following (energy) function,

L θð Þ ¼ lnp y; θð Þ ¼ lnp yjθð Þ þ lnp θð Þ ðA:5Þ

The variational free energy can be written as follows,

F ¼
Z

dθ q θð Þ L θð Þ− lnq θð Þð Þ½ � ðA:6Þ

Expand Eq. (A.5) in a Taylor series around themean of q(θ) up to the
second derivatives (Laplace approximation), and calculate its expecta-
tion over q(θ) (which are Gaussian distributions).

L θð Þ ¼ L μð Þ þ ∂θLð Þ θ−μð Þ þ 1
2

θ−μð ÞT ∂2θL
� �

θ−μð Þ þ O θ−μð Þ3
� �

ðA:7Þ
Z

dθ q θð ÞL θð Þ½ � ¼ L μð Þ þ 1
2

Xn
i

tr ∂2θi L
� �

Σθ;i

� �
ðA:8Þ

The entropy of q(θ) is given by,Z
dθ q θð Þ lnq θð Þ½ � ¼ −

p
2

ln 2πð Þ−
Xn
i

1
2

ln Σθ;i
�� ��− p

2
ðA:9Þ

• p is the dimension of the parameter space.

This gives a relatively simple expression for the free energy,
parameterised by a set of Gaussian distributions.

F μ1;…; μn;Σ1;…;Σn
� �
¼ L μð Þ þ 1

2

X
i

tr ∂2θi L
� �

Σθ;i

� �
þ p

2
ln 2πð Þ þ

X
i

1
2

ln Σθ;i
�� ��" #

þ p
2

ðA:10Þ
At any local maxima of F the derivative of all variables will be zero. The

2nd and 4th term cancel when the above function is maximised over μi and
Σθ,i. Note that the same formula is usually derived by extremising F over the
space of continuous differentiable functions using variational calculus and
then reducing the space of approximating functions toGaussiandistributions.
However, as the latter space isoffinitedimension it is simpler toparameterise
the variational free energy and maximise it over the parameterising scalar
variables without needing to use variational calculus. At maxima:

0 ¼ ∂F
∂μ j

¼ ∂L μð Þ
∂μ j

þ 1
2

X
i

tr
∂
∂μ j

∂2θi L
� �" #

Σθ;i

 !
ðA:11Þ

L(θ) is given by the following, under the assumption of Gaussian
parameter priors and likelihood distribution:

L θð Þ ¼ −
1
2
εTΣm

−1ε−
d
2

ln2π−
1
2

ln Σmj j − 1
2
εθ

T
Pθ

−1εθ−
p
2

ln2π−
1
2

ln Pθj j
ðA:12Þ
• ε = y − G(θ) is the prediction error.
• G(θ) is the function that maps parameters onto measurements (a lin-
ear approximation of which is derived from the Jacobian of the neural
mass model).

• Σm is the covariance of the sampling errors.
• d is the dimension of the measurement space.
• εθ = μ − ϑθ is the difference between the posterior and prior mean.
• Pθ is the covariance of the prior distribution.

The first three terms on the RHS denote the log likelihood of the data
given the parameters and the last three terms denote the log prior
parameter distribution. The derivatives of L(θ) are given by (no summa-
tion over i in Eq. (A.14)):

∂μ i
L μð Þ ¼ −

1
2

∂
∂μ i

G μð Þ
� �T

Σm
−1ε−

1
2
εTΣm

−1 ∂
∂μ i

G μ!
� �� �

−
1
2
εθ j Pθ

−1
n o

ji

−
1
2

Pθf gi jεθ j ðA:13Þ

∂2μ i
L μð Þ ¼ ∂

∂μ i
G μð Þ

� �T
Σm

−1 ∂
∂μ i

G μð Þ
� �

− Pθ
−1

n o
ii

ðA:14Þ

Further, assuming that G is a linear mapping simplifies the estimate
of the maxima of the free energy. The derivatives of L(θ) then take the
form (no summation over i in Eq. (A.16)):

∂μ i
L μð Þ ¼ − Gf g ji Σm

−1
n o

jk
Gμ−yf gk − Pθ

−1
n o

i j
μ−ϑθ	 


j ðA:15Þ

∂2μ i
L μð Þ ¼ − Gf g ji Σm

−1
n o

jk
Gf gki− Pθ

−1
n o

ii
ðA:16Þ

Substituting these equations into Eq. (A.11) gives the following
equation for the value of μi at the maximum of the free energy.

0 ¼ − Gf g ji Σm
−1

n o
jk

Gμ−yf gk − Pθ
−1

n o
i j

μ−ϑθ	 

j ðA:17Þ

This will consist of a set of p linear equations determining the posi-
tion of themaxima of F and thus finding themeans of the Gaussian dis-
tributions which optimally approximate the true posterior. The
covariance can be estimated in exactly the same way.

0 ¼ ∂F
∂Σθ;i

¼ ∂
∂Σθ;i

L μð Þ þ 1
2

∂2μ i
L

� �
þ 1

2
Σθ;i

−1 ðA:18Þ

Σθ;i ¼ − ∂2μ i
L

� �−1
ðA:19Þ

Eq. (A.17) can then be rearranged as follows:

− GTΣm
−1Gþ Pθ

−1
� �

μ þ GTΣm
−1yþ Pθ

−1ϑθ ¼ 0 ðA:20Þ

μ ¼ GTΣm
−1Gþ Pθ

−1
� �−1

GTΣm
−1yþ GTΣm

−1Gþ Pθ
−1

� �−1
Pθ

−1ϑθ

ðA:21Þ

This equation gives the posterior means as a linear function of the
data and the prior means. It is interesting to note that this equation
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has the same form as the equation for estimating hidden states in
Kalman filtering:

μ ¼ Kyþ I−KGð Þϑθ ðA:22Þ

• K = PθGT(GPθGT + Σm) is the Kalman gain.

The covariance of the posteriors is updated using Eq. (A.19) which
can be shown to be identical to the update of the covariance for Kalman
filtering:

Σ ¼ I−KGð ÞPθ−1

The same relations hold for non-linearG (if the 2nd and higher order
terms are small compared to thefirst order termof the Taylor expansion
of G) with the posterior mean and covariance given by

μ ¼ ϑθ þ ∂GTΣ−1∂Gþ Pθ
−1

� �−1
∂GTΣ−1 y−G μθ� �� � ðA:23Þ

Σ ¼ ∂GTΣm
−1∂Gþ Pθ

−1
� �−1

ðA:24Þ

A.2. Bayesian belief updating

A.2.1. Summary
Parameters vary slowly for seizures, allowing us to approximate

them with stepwise constant functions. The algorithm described
estimates the parameters in each window and then uses a model of
how the parameters change from window to window. Here, this
model was based on a random walk. This random walk might be itself
governed by parameters; e.g., the amplitude of random fluctuations.
These parameters can be estimated by maximising the free energy
over individual windows and their trajectory (by supplementing the
free energy to include the probability of any trajectory under a random
walk model). See details below.

A.2.2. Bayesian belief updating
It is possible to infer the parameters of a system governed by slowly

drifting parameters by repeatedmeasurements if it can be assumed that
the parameters are constant within the period of each measurement –
known as an adiabatic approximation. The generative model will have
a forward model describing how the parameters/states change over
time and a measurement model describing how the parameters gener-
ate the data. The update equations described above can –with the pre-
diction equations described in the main text – be used for updating
slowly drifting parameters.

It is also possible to estimate the volatility Rk (see main text) from
the data: new parameters, ηk, can be introduced which parameterise
Rk as follows.

Ri ¼ 1þ ηið ÞΣθ;0

where Σθ,0 is the prior covariance of the parameters before observing
the first epoch. The predicted prior covariance of the parameters in
epoch i is then given by,

Pθ;i ¼ g ηi;Σθ;i−1
� � ¼ Σθ;i−1 þ 1þ ηið ÞΣθ;0 ðA:26Þ

The energy, L(θ, η), is given by the following augmentation of
Eq. (A.12):

L θ;ηð Þ ¼ Lold;i θð Þ− 1
2
εηTPη;i

−1εη−
1
2

ln2π−
1
2

ln Pη;i
�� �� ðA:27Þ

• εη= εη− ε0η is the difference between the posterior and priormean of
the volatility parameters.
• Pη,i is the covariance of the prior distribution of the volatility
parameters.

The corresponding free energy at time i is then given by:

F ¼ Fold −
1
2
εηTPη;i

−1εη−
1
2

ln2π−
1
2

ln Pη;i
�� ��

þ 1
2
tr ∂2ηi L
h i

Ση;i

� �
þ 1
2

ln2πeþ 1
2

ln Ση;i
�� �� ðA:28Þ

with derivatives:

∂F
∂ηi

¼ − ηi−η0i
� �

Pη;i
−1

þ 1
2

θi−μ1
i−1

� �T
g−1Σθ;0g

−1 θi−μ1
i−1

� �
−

1
2
tr g−1Σθ;0
� �

þ 1
2
tr g−1Σθ;0g

−1Σθ;i
� �

þ 3
2
Ση;i θi−μ1

i−1

� �T
g−1Σθ;0g

−1Σθ;0g
−1Σθ;0g

−1 θi−μ1
i−1

� �h

−
1
2
tr g−1Σθ;0g

−1Σθ;0g
−1Σθ;0

� ��

ðA:29Þ

This last equation is non-linear in ηi and can be difficult to solve. One
way of estimating ηi is to keep ηi and Ση,i constant, perform the inver-
sion of the non-volatility parameters and estimate the first and second
derivative of the free energy over ηi. One can then use the Newton–
Raphson method to estimate the solution (roots) to the above equation
and finally estimate the covariance. Formerly, define f(ηi) as

f ηi
� � ¼ ∂F

∂ηi

One can then find the root of the above equation using the Newton–
Raphson method, giving an iterative sequence of updates for ηi.

η0i ¼ ηi−
f ηi
� �

f 0 ηi
� �

where:

f 0 ηi
� � ¼ −Pη;i

−1

− θi−μ1
i−1

� �T
g−1Σθ;0g

−1Σθ;0g
−1 θi−μ1

i−1

� �þ 1
2
tr g−1Σθ;0g

−1Σθ;0
� �

− tr g−1Σθ;0g
−1Σθ;0g

−1Σθ;i
� �

− 6Ση;i θi−μ1
i−1

� �T
g−1Σθ;0g

−1Σθ;0g
−1Σθ;0g

−1Σθ;0g
−1 θi −μ1

i−1

� �
þ 9

4
Ση;itr g−1Σθ;0g

−1Σθ;0g
−1Σθ;0g

−1Σθ;0
� �

ðA:30Þ

at maxima

Ση;i ¼ −
∂2

∂η2i
L

" #−1

This can be inserted into Eq. (A.28) to estimate the free energy for
the posterior probability distributions with the estimated means,
(μ, η) and covariances (Σθ,i, Ση,i).

Note that we have only maximised the free energy of a reduced
model comprising the transition between epoch i− 1 and i. The approx-
imate log evidence for anymodel can now be obtained by summing the
free energy over all epochs.
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A.3. Practical aspects of Bayesian belief updating

A.3.1. Initialisation of the parameters of the model
A total of 30 parameters were included in the model and require

initialisation prior to sequential inversion. This initialization was based
on the first window of baseline activity. The spectral distribution of
this window was used to estimate the values of the parameters using
variational Laplace (Moran et al, 2008, 2011c). For the sequential inver-
sion of seizure activity all but two parameters governing excitatory and
inhibitory activity and 10 parameters governing the spectral input to
the cortical region were kept constant. Moreover, the noise process
(the volatility) of the inference scheme was optimised to maximise
model evidence (i.e., variational free energy).
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