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Influential research on the negative effects of living in a disad-
vantaged neighborhood assumes that its residents are socially
isolated from nonpoor or “mainstream” neighborhoods, but the
extent and nature of such isolation remain in question. We de-
velop a test of neighborhood isolation that improves on static
measures derived from commonly used census reports by leverag-
ing fine-grained dynamic data on the everyday movement of resi-
dents in America’s 50 largest cities. We analyze 650 million geocoded
Twitter messages to estimate the home locations and travel pat-
terns of almost 400,000 residents over 18 mo. We find surprisingly
high consistency across neighborhoods of different race and in-
come characteristics in the average travel distance (radius) and
number of neighborhoods traveled to (spread) in the metropolitan
region; however, we uncover notable differences in the composi-
tion of the neighborhoods visited. Residents of primarily black and
Hispanic neighborhoods—whether poor or not—are far less ex-
posed to either nonpoor or white middle-class neighborhoods
than residents of primarily white neighborhoods. These large ra-
cial differences are notable given recent declines in segregation
and the increasing diversity of American cities. We also find that
white poor neighborhoods are substantially isolated from non-
poor white neighborhoods. The results suggest that even though
residents of disadvantaged neighborhoods travel far and wide,
their relative isolation and segregation persist.
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Alarge and diverse literature based on longitudinal surveys,
randomized control trials, and millions of administrative tax

records has produced increasingly convincing evidence that
growing up or living in a poor neighborhood undermines life
chances (1–4). A major explanation for this effect is that resi-
dents of poor neighborhoods, especially predominantly black
and Hispanic poor neighborhoods, are geographically isolated
from middle-class environments of opportunity (5–8). As one
influential theorist put it, residents of such neighborhoods have
limited contact or sustained interactions with the individuals and
institutions of “mainstream society” (5). Among other factors,
social isolation in poor black neighborhoods can potentially limit
young people’s access to middle-class role models, safe envi-
ronments, and institutional resources, as well as adults’ access to
people with information about jobs (9, 10).
Nevertheless, the neighborhood isolation explanation has relied

on the implicit assumption that social interactions are limited to
one’s neighborhood of residence (11, 12). In an increasingly
interconnected and mobile society, this assumption is questionable
(13). Indeed, although we know that few people spend all of their
waking hours within their neighborhoods, we know little about
how many neighborhoods they visit on an everyday basis or how
far they travel. Furthermore, such dynamics may depend on
the poverty or race of their own or the receiving neighborhoods
in ways not yet understood. Thus, whether low-income blacks
and Hispanics are, in fact, socially or geographically isolated
depends on the opportunities provided by largely unknown as-
pects of their urban mobility (14, 15).
To date, studies relevant to this fundamental question have

relied on three types of data. First, studies have examined

commuting ties, which focuses on adults’ travel between home
and work (12, 16). However, commuting does not include
neighborhoods experienced through leisure, errand activities, or
visits to friends and family, all of which affect the extent of iso-
lation. Second, several studies have used travel diaries collected
by volunteers (15, 17, 18). While such methods produce rich data
on the multiple locations visited by respondents, they are typi-
cally limited to one city and constrained by sample size limita-
tions, given the onerous demands placed on study participants.
These constraints are especially important given potential dif-
ferences between cities. For example, travel patterns in cities
with expansive public transit systems (e.g., New York City or
Chicago) may differ from those in cities where driving is the
primary mode of transportation (e.g., Houston or Los Angeles).
These differences may also exacerbate inequalities in neighbor-
hood isolation across race and class lines. Third, a few studies
have examined the differences in mobility patterns among dif-
ferent social groups (19, 20), as well as their geographical in-
teractions (21), using geolocation records from cell phones and
social media platforms. However, only a few of these studies
have examined race or class differences in mobility and none
have done so across a large sample of cities.
Traditional studies that examined neighborhood isolation us-

ing surveys, field experiments, or tax records do not track ev-
eryday mobility for large populations with sufficient detail for
statistical analyses. These data are intrinsically static, and sub-
sequently they do not capture dynamic phenomena well. Data
from travel diaries as well as the burgeoning use of social media
are qualitatively different, as they capture the dynamism of
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mobility patterns. However, these studies (particularly the former)
have been limited in scope, inhibiting comparisons across cities
when accounting for demographic characteristics (18). Our study
builds upon prior research by analyzing large-scale social media
data from the 50 most populous American cities to estimate urban
travel patterns for large populations and by examining travel to all
locations in the region, thereby capturing exposure patterns for all
groups (22, 23). We focus particular attention on exposure to
nonpoor and white neighborhoods among residents of poor and
minority neighborhoods (24, 25).

Data and Methods
We use unique, publicly available Twitter data across the 50
largest population centers in the United States. Building on
existing literature (26, 27), we collect more than 650 million
geotagged micromessages, called tweets, from October 1, 2013,
to March 31, 2015, for each of the 50 cities to conduct this study.
Twitter users have the choice of opting into a function that
publicly identifies the location, recorded in latitude and longi-
tude coordinates, from where their messages are sent. These
geotagged tweets create the initial dataset for our analysis. The
high granularity and scale of the data provide an unprecedented
level of detail in understanding how people move across space
over 500 d.
Our analyses require knowing the neighborhood individuals

live in, the neighborhoods they travel to, and the distances and
frequencies of those journeys; none of which is directly reported
by Twitter. We use density-based spatial clustering of applica-
tions with noise (DBSCAN*) to estimate the block group where
individuals live due to its efficiency in handling a large dataset,
accuracy in identifying clusters, and controllability of cluster sizes
(28, 29). For Twitter data, this controllability is particularly im-
portant. We improve upon previous research that used clustering
algorithms by implementing several additional data processing
rules (SI Appendix, section 2.1). Although Twitter data use the
Global Positioning System (GPS) for generating geographical
information with a relatively high resolution, with the worst-case
accuracy of 7.8 m with 95% confidence (30), the precision of the
data can be affected by atmospheric effects, receiver quality and
sky blockage, and noise caused by weather or device factors, such
that two tweets sent from the exact location could be reported as
slightly different locations. DBSCAN* helps address this issue
(31, 32). Using DBSCAN*, we determine the distance between
pairs of locations in a cluster and thus control which locations
should be included in a cluster and which should be treated as
noise. We use the DBSCAN package in R to estimate the block
group of each user’s home location, a process that merges pre-
cision while restricting the ability to pinpoint any individual’s
home address.
Complete details on the process of identifying a Twitter user’s

home location in New York City are presented in SI Appendix,

section 2.1. Fig. 1 shows a representation of the underlying data
for the New York City commuting zone once we estimated home
residences, with boundaries of the city in red. Fig. 1A shows the
density of estimated residences of Twitter users for the area
around New York City, and thus coverage of individuals, which is
distinct from the raw number of tweets. Our theoretical interest
is in the mobility of residents of the central city, in this case New
York City, and their travel within the city as well as the wider
commuting zone, a larger area that captures geographies closer
to metropolitan areas including the suburbs. As an example, Fig.
1B shows the travel pattern of one resident of New York City in
this region; again, the city boundary is red. One can see the
spread of mobility, but in this case clustered in lower Manhattan
and with more visits to locations in New Jersey than the Bronx,
Queens, and Staten Island combined. Given our substantive fo-
cus, we leave for future research the analysis of mobility patterns
of suburban and exurban users.
Although geotagged Twitter data have been used in recent

years to understand the movement of people across space (33–
35), neither Twitter users in general nor those who geotag their
tweets are fully representative of the local population (36). To
help address this issue, we use a weighting mechanism based on
the ratio of Twitter users to the true population in the block
group (SI Appendix, section 2.2). We also estimate a fixed-effects
regression model that takes into account that Twitter use varies
by gender and age and that accounts for all unobserved differ-
ences among cities (32). Both methods leverage the large num-
ber of data points and the fact that the estimated residence block
groups of the Twitter users include 34,641 of the 36,252 block
groups with at least 300 residents in the 50 largest cities. In the
commuting zones, geotagged tweets are in 105,160 of the 105,767
block groups (more statistics are presented in SI Appendix, sec-
tion 2.2 and Fig. S2). For the regression-based results, we re-
trieved median ages and the percentages of males from all block
groups in the 50 cities.
Results from unweighted, weighted, and regression-based data

are highly consistent. For exposition, we report unweighted,
weighted, and only the key regression-based results. All analyses
reported here are the results from the neighborhoods in the
entire commuting zones. We separately analyzed travel within
the central city boundaries only and obtained substantively
similar results (SI Appendix, Figs. S3–S6). Also, robustness as-
sessments of the results are discussed in SI Appendix, section 2.5.

Homogeneity in Travel Radius
Our first measure of mobility is the travel radius, which is the
average of number of meters individuals traveled within the city’s
commuting zone over the course of 18 mo. Each individual ra-
dius (rg) is calculated using the following formula:

Fig. 1. Example of underlying data in New York
City. (A) Estimated residences (blue) in commuting
zone, with New York City boundaries in red. (B) One
representative New York City resident’s mobility
based on tweets (black points) outside home cluster
(blue box). The home location symbol is enlarged to
the approximate size of a census block group to
prevent individual identifiability.
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where n is the total number of recorded locations for an individ-
ual, t is each visited location, ϕ is the latitude, φ is the longitude,
c is the individual’s estimated home geographical coordinate,
and g is the radius of the earth in meters. While home locations
are only within cities’ boundaries, the visited locations may be
anywhere within cities’ commuting zones. We exclude the top
1% of individuals’ travel distances to eliminate the possible bias
resulting from anomalous long-distance travels. The mobility ra-
dius is the median of the weighted travel distances from the
home location to all of the traveled locations not within the
home cluster.
There is a high degree of uniformity in travel distances at the

aggregate level (Fig. 2). We mapped the distributions of the radii
of mobility among residents in the 50 cities; Fig. 2 A–F show the
distributions in six cities; Fig. 2G shows the aggregated distri-
butions. The average travel radius within commuting zones is
5,292.0 m, with an SD of 1,003.6 m. When limited to the city
boundaries, the average travel radius is 3,142.2 m, with an SD of
1,281.3 m. Car-dependent cities such as Los Angeles are typically
argued to have different mobility profiles than those with strong
public transportation, such as New York City. However, the re-
sults show high homogeneity in the distributions across the cities,
while the differences are in the average distances. For example,
Los Angeles and New York City differ in their average distances,
as previously noted (37), but not in their aggregated city distri-
butions. Their travel radii are 7,214.1 m and 4,642.8 m, re-
spectively, and their distributions are both long-tailed. In fact,
the radii from all individuals across the 50 commuting zones

follow Burr distributions. This finding supports general theories
on the regularity of urban dwellers’ mobility patterns and the
evolution of a small set of basic urban principles that operate
locally (38, 39).

Group Differences: Radius and Spread
To compare residents of different neighborhoods, we classify
block groups into poor and nonpoor based on whether the
proportion of residents living under the federal poverty line was
greater than 30% (a threshold of 40% produced similar results).
We similarly classified block groups as majority non-Hispanic
white, non-Hispanic black, or Hispanic using a threshold of 50%
(a threshold of 70% produced similar results). There are too few
block groups with majority Asian populations to permit reliable
analyses for that group. Our first comparison examines class and
race differences in the travel radius. Results are shown in Fig. 2H.
The radii were normalized to facilitate comparisons since

cities have different sizes of commuting zones. For each city, we
divided the median travel distance by the average distance from
the centroid of the city to the centroids of the farthest five block
groups in the city’s commuting zone. The weighted normalized
radius is ∼0.046 for residents of poor neighborhoods and roughly
0.051 for nonpoor neighborhoods. Under both specifications,
radii from black neighborhoods are the highest, a finding that
aligns with reports based on survey data of the size of activity
spaces in Los Angeles (40). For residents of nonpoor neighbor-
hoods, the weighted radius is 0.056 for the black neighborhoods,
higher than the 0.051 for white neighborhoods. For poor
neighborhoods, it is 0.049 for black neighborhoods compared
with 0.045 for white neighborhoods. The true difference in me-
ters between the average radii of poor black neighborhoods and
nonpoor whites is surprisingly small; it is 235.3 m across all
commuting zones. Similar travel patterns were observed if travels

Fig. 2. Travel distances. (A–F) The distributions of radii for individuals’ everyday mobility patterns in the six largest cities. Median radii for New York City:
4,642.8 m; Los Angeles: 7,214.1 m; Chicago: 4,916.0 m; Houston: 6,929.7 m; Philadelphia: 3,397.7 m; and Phoenix: 6,589.9 m. (G) The distributions of the 50
largest cities in the United States. (H) Comparison of the kernel density estimations of the underlying distributions of normalized weighted and unweighted
results (SI Appendix, section 2.3).
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are limited to cities’ boundaries (SI Appendix, Fig. S3), where the
average radius of poor black neighborhoods is almost the same
as nonpoor white neighborhoods’ average radius.
Since isolation entails which neighborhoods individuals visit,

we also examine the number of different neighborhoods that city
residents traveled to within the 50 cities and the larger com-
muting zones. We label this value the “spread.” Although the
poor generally have travel radii comparable to those of other
groups, they may nonetheless travel to far fewer neighborhoods
(and be more isolated as a result). We examine every geotagged
message location over the 18-mo period and overlay the coor-
dinates with the American Community Survey 5-y data on the
block-group level, thereby identifying the block groups visited by
each individual. For each city, we count the numbers of block
groups visited by residents of poor and nonpoor white, black, and
Hispanic majority groups. The results for spread within com-
muting zones are shown in Fig. 3.
The numbers of neighborhoods traveled to in the commuting

zones are 18.2 ± 4.47 (unweighted results) and 17.8 ± 2.47
(weighted results). The average number of days to the median
number of the visited neighborhoods is 304.1. Residents of black
neighborhoods, whether poor or nonpoor, tend to visit a slightly
greater number of neighborhoods than all other groups. Class or
economic differences overall are negligible for travel throughout
the commuting zone or the city proper—people in poor neigh-
borhoods are not especially likely to experience fewer neigh-
borhoods than those in nonpoor neighborhoods. For visits within
cities, the numbers of neighborhoods traveled to are 13.00 ± 3.99
(unweighted results) and 14.66 ± 4.21 (weighted results) across
all types of neighborhoods (shown in SI Appendix, Fig. S4).

Group Differences: Composition
To test prominent accounts regarding isolation among residents
of poor minority neighborhoods (5), we estimate the rates of
exposure to white neighborhoods (pw), to nonpoor neighbor-
hoods (pn), and to nonpoor white neighborhoods (pnw). Similar
to spread, the rates of exposure to different types of neighbor-
hoods are the proportions of each type of neighborhood visited
over all neighborhoods visited (analyses using frequencies pro-
duced similar results; see SI Appendix, section 2.5). Fig. 4 dis-
plays the rates for different race and class groups relative to the
commuting zones’ baseline expectations, which are the propor-
tions of all neighborhoods in the commuting zone that encom-
pass the three types that researchers have named “mainstream”
(SI Appendix, section 2.4). We note that the literature’s use of
“mainstream” does not imply normative judgment; it denotes the
types that are most prevalent in US society and that provide
resources (5).

Fig. 4 shows clear discrepancies in residents’ exposure to main-
stream neighborhoods based on the demographics of their home
neighborhoods (see SI Appendix, Fig. S5 for results within city
boundaries). Across Fig. 4, residents from predominantly nonpoor
white (nw) neighborhoods have the highest proportion of their
visited neighborhoods as white (pw), nonpoor (pn), and nonpoor
white (pnw) neighborhoods. The weighted pw(nw) is 11.2% points
above the baseline expectations; pn(nw) is 9.49% points below and
pnw(nw) is 8.95% points above them, respectively. In contrast,
residents from predominantly minority neighborhoods are more
socially isolated from “mainstream neighborhoods” defined by race
and class, often significantly falling below the baselines. The pro-
portion of “mainstream” neighborhoods over all visited neighbor-
hoods by residents from poor black (pb) neighborhoods are
pw(pb) −29.1%, pn(pb) −35.6%, and pnw(pb) −29.5% points, re-
spectively. In addition, residents from Hispanic neighborhoods are
also relatively isolated from nonpoor and white neighborhoods
outside their home locations. Notably, residents of nonpoor black
and Hispanic neighborhoods experience less exposure to either
nonpoor white neighborhoods or white neighborhoods than resi-
dents of poor white neighborhoods. Moreover, their rates of ex-
posure to nonpoor neighborhoods are only marginally higher than
those of residents of poor white neighborhoods.
Overall, the results indicate that race contributes more to dif-

ferences in exposure rates to nonpoor white neighborhoods than
economic background. An examination of weighted exposure to
nonpoor white neighborhoods (Fig. 4C) illustrates that the dif-
ferences between white and minority neighborhoods of the same
economic class range from 15.0% to 37.3% points, while the dif-
ferences between poor and nonpoor neighborhoods of the same
race are between 0.56% and 16.7% points. However, residents of
poor white neighborhoods are still highly divergent in urban mo-
bility patterns from nonpoor white neighborhoods—the latter are
the outlier in the data and consistent with the pulling away of
upper-income neighborhoods from the rest of society (41). These
findings underscore the continued primacy of racial and economic
segregation in the social structure of American cities, but in this
case well beyond the borders of local neighborhoods (8).
Our final analysis combines all of the largest cities’ block

groups to estimate a fixed-effects regression model of exposure.
We only considered exposure to white nonpoor (or “middle
class”) neighborhoods because it differs the most in composition
from the segregated urban poor and it has been a core focus in
theories of urban poverty. We use the model from our main
specification to predict the exposure of residents from each of
the six types of neighborhoods (race by class) to nonpoor white
neighborhoods, adjusting for neighborhoods’ age and sex com-
positions. In this model, block groups are nested within cities.
The exposure is estimated within each city as the deviation from
the baseline exposure possible given the number of white non-
poor neighborhoods in the city. We estimate robust SEs clus-
tered on cities and adjust for the median age and percentage of
male residents in each neighborhood (grand mean centered).
The fixed effects model controls for any unobserved city char-
acteristics that could potentially affect the results.
Formally, for block group i in city j, the model takes the form

Adjusted  Proportion  of  Visited Nonpoor White Neighborhoodsij

= β0 + β1
pNONPOOR Bij + β2

pNONPOOR Hij

+ β3
pPOOR Wij + β4

pPOOR Bij + β5
pPOOR Hij

+ β6
p%MALEij + β7

pMEDIAN AGEij + αj + uij,

where β1 to β7 reflect coefficients of the independent variables
for nonpoor black, nonpoor Hispanic, poor white, poor black,
and poor Hispanic neighborhoods, respectively (with white non-
poor the reference category) as well as the block groups’ pro-
portion of male residents and median age, and where αj is the
unobserved city-invariant effect and uij is the error term. We also

Fig. 3. Urban mobility spread in commuting zones. Residents from black
neighborhoods visit a marginally greater number of block groups based on
both weighted and unweighted results.
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estimated mixed effects models of the unweighted and weighted
results for robustness checks, with similar results.
The race and class predictions from our model (shown in Fig.

5) are consistent with the results in Fig. 4C, after accounting for
age and gender composition and unique city effects. Namely,
racial differences are more important than the poor versus
nonpoor distinction in the exposure of urban dwellers to non-
poor, predominantly white neighborhoods in the commuting
zone. For example, the predicted probabilities that residents of
poor black and poor Hispanic neighborhoods visit nonpoor white
neighborhoods are 0.32 and 0.29 below the expected baseline.
Conversely, it is only 0.05 below the baseline for residents from poor
white neighborhoods, a difference of 0.27 and 0.24, respectively.
Notably, however, the gaps are even greater between nonpoor

neighborhoods. The predicted probabilities for residents from
nonpoor black and nonpoor Hispanic neighborhoods visiting
nonpoor white neighborhoods are 0.29 and 0.24 below the
baseline. In contrast, the predicted probability for nonpoor white
neighborhoods is 0.14 above the baseline, which yields differ-
ences of 0.43 and 0.38, respectively. While we find minimal dif-
ferences between black and Hispanic neighborhoods by class, we
find a large difference (0.19) by class for white neighborhoods.
However, residents from poor white neighborhoods still have a
higher predicted probability of exposure to nonpoor white
neighborhoods than residents from nonpoor black and Hispanic
neighborhoods. Race thus trumps class in mobility patterns
compositionally despite the fact that there are minimal to no
differences in distances traveled and the numbers of neighbor-
hoods visited by race. Although there are small but significant
differences between poor white and nonpoor white neighbor-
hoods, the lack of meaningful or significant differences in radii
and spread between nonpoor white neighborhoods and black
neighborhoods (poor or not) holds up when we adjust for age
and gender composition in similar analyses. Additionally, the
results for travel across neighborhoods within a city show a
similar but even stronger trend (SI Appendix, Fig. S6).

Conclusion
Our study does not make claims about individuals’ travel patterns
based on their particular race or class. While we use data on in-
dividuals’ tweets, our findings pertain to data at the block group
(or neighborhood) level, a focal interest in research on concentrated
poverty. In addition, although our results are based on almost
400,000 users who posted geocoded tweets, sample representative-
ness is a potential limitation. Our approach to this challenge was
to compare weighted and unweighted results, and to adjust key
results by age and sex composition. These approaches have
complementary strengths and weaknesses and yield strongly con-
sistent results. At a minimum, our results are valid for the large
population of Twitter users that enable geotagging. Prior research

suggests that these individuals are generally younger and more
affluent and that this demographic has larger activity spaces (40,
42). We therefore would expect that differences in mobility
patterns would be even greater for the general population.
Another limitation is that individuals may have different

tweeting habits based on where they travel (43). While an option
might have been to attempt to predict from which of their loca-
tions people are most likely to tweet, researchers have not yet
developed methods, based on either multiple combined data
sources or natural language processing, to accurately predict such
locations (44), a limitation currently faced by users of not only
Twitter data but also other large-scale data resources, such as cell
phone records or GPS. Consequently, the potential heterogeneity
in tweeting habits cannot be taken into consideration in a way that
fully addresses the representativeness of locations. Finally, our
study assesses the potential for contact (i.e., physical copresence)
through exposure rather than an observed interaction; note,
however, that the former is unequivocally the prerequisite for the
latter. These and other issues should be addressed in future re-
search with alternative data sources that provide a ground truth of
the distribution of representative locations and durations of ex-
posure to social environments (SI Appendix, section 3).
Our analyses suggest several important conclusions. Residents

of poor minority neighborhoods do not limit their lives to those
neighborhoods. In addition, they appear to travel about as widely
across their cities and to as many neighborhoods as those of other

Fig. 4. Urban mobility composition adjusted by the proportions of block groups in cities’ commuting zones of that demographic type. (A) The adjusted,
expected proportions of individuals traveling to white neighborhoods. (B) The proportions of individuals traveling to nonpoor neighborhoods. (C) The
proportions of individuals traveling to nonpoor white neighborhoods.

Fig. 5. Predicted proportions of visits, relative to baselines in cities’ com-
muting zones, to nonpoor white neighborhoods by race and class of home
neighborhoods, adjusted for the age and gender composition of home block
groups and cities’ fixed effects.
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groups. Nevertheless, they seem much less exposed to middle-class
or white neighborhoods than those living in middle-class neigh-
borhoods, supporting the “mainstream” underexposure hypotheses,
perhaps in ways more far-reaching than initially intended (5). It is
notable that residents of minority neighborhoods, regardless of
class, are less exposed to nonpoor or white neighborhoods than
even those of poor white neighborhoods. The finding aligns with
other smaller-scale studies based on surveys and GPS data (14, 45,
46), suggesting that heterogeneity across race mediates the effects
of neighborhood poverty (7, 8, 47). We also find that residents of
poor white neighborhoods are less exposed to mainstream areas
than those in nonpoor white ones. Importantly, these results hold
even after accounting for differences in cities’ demographics, in-
dicating broader trends across the 50 most populous cities. An
exposition of these trends would not have been possible without
large-scale, dynamic data.
Although racial segregation and racial income inequality in the

United States may have decreased (48), we find race still matters
more than poverty for relative exposure to middle-class neigh-
borhoods. These findings, among a population that by definition
is technologically connected, imply that racial segregation is

operating at a higher-order level than typically recognized: Racial
segregation is manifest not only where people live but also where
they travel throughout a city and whom they are exposed to (49,
50). Our research thus provides evidence that although the United
States is becoming increasingly diverse, the interactions across
race and class groups that ultimately contribute to societal in-
tegration are not taking place (22). Racial segregation reaches well
beyond one’s home, indicating the importance of considering
mobility interactions across neighborhoods.
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