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Abstract

Although inspiratory muscle training (IMT) is reported to improve inspiratory muscle strength

in humans little has been reported for horses. We tested the hypothesis that IMT would

maintain and/or improve inspiratory muscle strength variables measured in Thoroughbreds

during detraining. Thoroughbreds from one training yard were placed into a control (Con,

n = 3 males n = 7 females; median age 2.2±0.4 years) or treatment group (Tr, n = 5 males,

n = 5 females; median age 2.1±0.3 years) as they entered a detraining period at the end of

the racing/training season. The Tr group underwent eight weeks of IMT twice a day, five days

per week using custom-made training masks with resistance valves and an incremental thresh-

old of breath-loading protocol. An inspiratory muscle strength test to fatigue using an incremen-

tal threshold of breath-loading was performed in duplicate before (T0) and after four (T1) and

eight weeks (T2) of IMT/no IMT using a custom-made testing mask and a commercial testing

device. Inspiratory measurements included the total number of breaths achieved during the

test, average load, peak power, peak volume, peak flow, energy and the mean peak inspiratory

muscle strength index (IMSi). Data were analysed using a linear mixed effects model, P�0.05

significant. There were no differences for inspiratory measurements between groups at T0.

Compared to T0, the total number of breaths achieved (P = 0.02), load (P = 0.003) and IMSi

(P = 0.01) at T2 had decreased for the Con group while the total number of breaths achieved

(P<0.001), load (P = 0.03), volume (P = 0.004), flow (P = 0.006), energy (P = 0.01) and IMSi

(P = 0.002) had increased for the Tr group. At T2 the total number of breaths achieved

(P<0.0001), load (P<0.0001), volume (P = 0.02), energy (P = 0.03) and IMSi (P<0.0001) were

greater for the Tr than Con group. In conclusion, our results support that IMT can maintain and/

or increase aspects of inspiratory muscle strength for horses in a detraining programme.

Introduction

Resistance training is a versatile form of exercise training with a large range of adaptations

occurring including improved muscular strength, power, shortening velocity and endurance
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[1]. Respiratory muscle training (RMT) is a resistance training technique aimed towards

improving the strength and function of the respiratory muscles using the general training prin-

cipals of overload. It is claimed to be the most efficient way of improving respiratory muscle

function in human athletes [1].

RMT involves breathing against an increasing amount of resistance for a short period of

time to overload the respiratory muscles, requiring them to work at a higher intensity and/or

longer duration than normal [1]. RMT was first developed to assist people with breathing diffi-

culties and alleviate symptoms of respiratory diseases such as chronic obstructive pulmonary

disease (COPD) and asthma [2,3]. RMT has been reported to cause hypertrophy of upper and

lower ventilatory muscles with subsequent improvements in respiratory strength in both

healthy people [4,5] and patients suffering from illnesses such as heart failure [6,7], COPD

[8,9] and exercise-induced laryngeal obstruction (EILO) [1].

The use of RMT in training and performance in humans has been extensively researched,

with RMT theorised to strengthen respiratory muscles, making them more resistant to fatigue

by slowing down and/or removing the negative influence of breathing on exercise tolerance

[1]. RMT has been evaluated in several human sports including cycling [10–12], running [13]

swimming [14] and rowing [15,16]. All studies found that only inspiratory muscle training

(IMT) improves performance, with expiratory muscle training having little effect [1].

IMT has been found to benefit sprint performance in human athletes [1]. Human athletes

who undergo a specific IMT programme before interval training have been reported to have

an enhanced ability to train at a significantly harder level with greater improvements in their

sprint performance when compared to a group who did not undergo IMT [17]. Furthermore,

IMT has been shown to help sustain an athlete’s ability to repeatedly sprint [1]. Increased

sprint speed and shortened active recovery breaks in-between sprint efforts have also been

reported for athletes following IMT [18], with improvements identified after five to six weeks

of IMT [19,20].

IMT has potential use in the equine athlete, especially given the obligate nasal breathing

and large minute ventilation generated to support the metabolic demand during exercise [21–

25]. Furthermore, since IMT has been used to treat both upper (e.g., EILO) [1,26] and lower

airway disorders (e.g., COPD) [8,9] in humans and given the relatively high prevalence of

these types of diseases in horses, IMT may represent a viable treatment option for some of

these disorders in the equine athlete. To date, there is only one publication on IMT in horses

[27]. Using customised equine face masks and commercially-available human IMT equipment,

IMT and an incremental loading inspiratory muscle strength test (IMST) was reported to be

well tolerated in a group of ten Thoroughbred (Tb) National Hunt racehorses, with higher val-

ues measured when horses were well acclimated to wearing the face masks [27]. The research-

ers reported that following eight weeks of IMT, the mean peak inspiratory muscle strength

index (IMSi), an index representing the highest load at which a horse is able open the valve to

complete a breath during the IMST, increased from 27 to 41 cmH2O [27].

The aim of the present study was thus to test the hypothesis that IMT could be used to

maintain and/or improve measured inspiratory muscle strength variables in a group of race-fit

Tb Flat racehorses during a period of detraining.

Materials and methods

Sample population

The study was approved by University College Dublin Animal Research Ethics Committee

with owner consent obtained for all procedures. Twenty Tb Flat racehorses from one training

yard were selected for inclusion at the end of the 2017 racing season and/or training period.
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Horses were excluded if any abnormalities were identified from a physical and rebreathing

examination and basic hematology and serum biochemistry measurements. Horses were also

excluded if they had been out of exercise training under saddle for>6 weeks, were >4 years of

age and/or were doing more than walking and/or trotting on an automated horse walker as

exercise at the beginning of the study.

Study groups

Horses were placed as equally as possible into either a treatment (Tr) or control (Con) group

based on the date they finished exercise training, their exercise workload (box rest, walking,

trotting [both using an automated horse walker]) at the time of entering the study, age and sex.

Where a horse could not be fully sex- and age-matched between groups, the priority for distri-

bution of horses between study groups was based on the amount of time out of exercise train-

ing and the exercise workload being undertaken when entering the study. The duration (days)

and type of exercise (box rest, walking, trotting) was recorded for each horse for the duration

of the study.

Experimental protocol

Inspiratory muscle strength testing. Once placed into groups, all horses underwent a

period of acclimatisation to the IMT and IMST equipment followed by an IMST performed

before (T0) and after four (T1) and eight weeks (T2) of either IMT (Tr group) or no IMT (Con

group). All IMT and IMST were performed by the same three people and occurred with each

horse standing in a stable. Custom-made airtight masks covering the entire nose and held in

place with a strap placed around the poll behind the ears were used for IMST (Fig 1) and IMT

(Figs 2 and 3). Acclimatisation consisted of initially having an unfastened mask placed over

the nose multiple times followed by the mask remaining fastened in place for two to four min-

utes; this was performed on multiple separate occasions over two to four days depending on

each individual horse’s temperament. After at least two acclimatisation sessions with a mask

alone, a training mask was fastened in place with a training valve set at the lowest resistance

level inserted for a duration of four to eight breaths; this was to allow horses to become com-

fortable with the sensation of restricted breathing and the sound of air moving through the

valve. Horses who reacted negatively during any of the acclimatisation sessions were removed

from the study.

After the acclimatisation period, all horses underwent a baseline IMST in duplicate using a

custom-made airtight testing mask and the POWERbreathe K5 (POWERbreathe International

Ltd, UK), an electronic inspiratory loading device designed and validated for humans [28] and

previously evaluated for use in horses [27]. The POWERbreathe K5 generates a pressure

threshold which is required to be overcome for flow to occur. During the IMST, the total num-

ber of breaths achieved during the test, average load (i.e., inspiratory pressure, cmH2O), peak

power (watts [W]), inspiratory volume (L), peak flow (L/sec) and energy (i.e., work of breath-

ing, joules [J]) were continuously recorded at 500 Hz for each breath. The mean peak IMSi

(cmH2O) was also recorded for each IMST. Customised software (Breathe-Link software, UK)

was used for post-testing analysis of each testing session.

An incremental threshold of breath-loading protocol adapted from the human literature

and developed for horses was used for the IMST [27] (Fig 4), in which the peak inspiratory

pressure generated when breathing against an increasing amount of resistance is measured.

The protocol consisted of an initial low threshold opening pressure, allowing the horse to

become accustomed to the test, followed by an incremental loading protocol consisting of a

ramp of increasing resistance to breathing by 2 cmH2O for each increment up to a potential
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Fig 1. Inspiratory muscle strength testing to fatigue on a study subject.

https://doi.org/10.1371/journal.pone.0225559.g001
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maximum of 60 breaths in total. Each loaded breath was followed by two minimally loaded

breaths (3 cmH2O), allowing the horse to recover before moving on to the next loaded breath.

A loaded breath had to be completed to progress; if a horse failed twice to progress then the

test ended.

Inspiratory muscle strength training. After baseline testing (T0), both groups of animals

entered an eight-week long study period with the Tr group receiving IMT twice a day, five

days per week with a two to four-minute break between the two duplicate daily sessions. Dur-

ing this time, the Con group underwent weekly acclimatisation to the mask with a training

valve as described previously to ensure similar familiarity and comfort with the mask as the Tr

group during the study.

Each IMT session took between three to four minutes to complete, with the total daily IMT

training (consisting of two duplicate IMT sessions) taking between 10─15 minutes each day to

complete. Each IMT session consisted of 30 breaths against a pre-determined resistance to

inhalation (i.e., loaded breaths) with the level of resistance at which a horse breathed against

progressively increased over the training period. Resistance was created by using adjustable

PEEP valves (Intersurgical, UK) that were inserted into one of two different custom-designed

training masks (training mask 1 and training mask 2). Training mask 1 held wider diameter

valves while training mask 2 was fitted to narrower diameter valves. The eight-week training

protocol used had been previously established for use in horses [27], starting with a low resis-

tance breathing load of 5 cmH2O followed by gradual increases in resistance every three to

Fig 2. Training mask with a resistance valve inserted.

https://doi.org/10.1371/journal.pone.0225559.g002
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Fig 3. Training mask on a study subject with a resistance valve in place.

https://doi.org/10.1371/journal.pone.0225559.g003
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four days (10, 12.5, 15 and 20 cmH2O using training mask 1 followed by incremental increases

of 2.5 cmH2O using training mask 2) until reaching a high-resistance breathing load of 40

cmH2O. The valves had been previously evaluated in conjunction with the training masks

using a laboratory-based flow/volume simulator pump [Allen, unpublished] at flows and vol-

umes reported for horses at rest [21,29], confirming that the valves created the prescribed

inspiratory pressures and did not restrict airflow through flow resistance.

Data analysis

All data analysis was conducted using the open source software package R [30]. All duplicate

measures were included in the analysis. Values extracted for analysis included the overall peak

value for a loaded or minimally loaded breath, and the peak value for the last loaded breath

achieved during the IMST. The collected data for each variable of interest were treated as con-

tinuous with this assumption assessed via residual plots and the Shapiro-Wilk test. Where nor-

mality requirements were not satisfied due to skew tailed distributions, log transformations of

the data were used. Categorical predictor data were assigned numerical values for analysis with

exercise type during the study period assigned 0─2 (0 = box rest, 1 = walking, 2 = trotting) and

sex assigned 0 (male) or 1 (female). A linear mixed model with a random effect for each horse

was used to assess the effect of IMT, duration of time out of exercise training (days) and the

intensity (box rest, walking, trotting) and duration (days) of exercise during the study for each

testing period (T0, T1, T2) on each measured respiratory variable (i.e., response variables). A

linear relationship was assumed for the effect of each of the fixed effects on each response vari-

able. A random effect for each horse was included in the model to account for the correlation

in individual horse responses across both days and evaluations within days. Since each horse

was evaluated in duplicate, evaluation order was assessed with no statistically significant differ-

ence identified in the response; evaluation order was thus excluded from the analysis.

Potential outliers for a given response were investigated by excluding them for an initial

analysis and then examining the change in parameter estimates once they were included, using

Fig 4. Incremental breath-loading protocol used for the respiratory muscle strength test to fatigue. Blue bars indicate low-resistance

recovery breaths while red bars represent an increasing load of high-resistance breaths (modified from Allen et al., 2019).

https://doi.org/10.1371/journal.pone.0225559.g004
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Student’s t-tests to assess for significant differences in the slope of each fixed effect. Multi-level

categorical variables were assessed by ANOVA analysis. Results are expressed as the

mean ± SEM with P�0.05 significant.

Results

The study groups are summarised in Table 1. Twenty-four horses were initially recruited with

one horse dropped from the study due to the inability to acclimatise to the mask and three

additional horses dropped from the study due to being sold and leaving the training yard. All

horses tolerated the IMT and IMST well throughout the study period, with all horses in the Tr

group successfully completing the IMT programme. The average days out of exercise training

before entering the study were 14.9±12.8 days for the Tr group (n = 5 males, n = 5 females;

median age 2.2±0.4 years) and 24.3±12.7 days for the Con group (n = 3 males n = 7 females;

median age 2.2±0.4 years). The type of exercise for each group at each of the testing time-

points are summarised in Table 2. The IMST results for each of the testing time-points are

summarised in Table 3. Exercise and sex were not significantly associated with any of the mea-

sured inspiratory variables for either study group.

Intra-horse coefficient of variation (CV) was determined for IMST using one horse that

underwent testing six times over one day (one test per hour, total of six hours): 15.6% for the

number of breaths achieved, 13.3% for IMSi, 14.0% for load, 33.1% for power, 34.6% for

Table 1. Summary of a group of Thoroughbred horses (n = 20) at the time of placement into an inspiratory muscle training treatment (n = 10) or control (n = 10)

group based on when they finished exercise training and their current exercise workload.

Treatment Control

Horse Sex Age

(years)

Days out of exercise

training

Exercise workload at study

entry

Horse Sex Age

(years)

Days out of exercise

training

Exercise workload at study

entry

T01 G 2 27 Walking/trotting C01 C 2 15 Walking/trotting

T02 F 2 27 Walking C02 F 2 25 Walking

T03 C 2 24 Box rest C03 F 2 21 Box rest

T04 F 2 27 Walking C04 C 2 42 Walking

T05 F 2 11 Walking/trotting C05 F 2 15 Walking/trotting

T06 F 2 5 Walking C06 F 2 28 Walking

T07 F 3 0 Walking/trotting C07 F 3 5 Walking/trotting

T08 C 2 0 Trotting C08 C 2 14 Walking/trotting

T09 C 2 0 Trotting C09 F 2 36 Walking/trotting

T10 C 2 28 Walking/trotting C10 C 3 42 Walking/trotting

Abbreviations: C: colt; G: gelding; F: female.

https://doi.org/10.1371/journal.pone.0225559.t001

Table 2. The number of study horses at each exercise level in the inspiratory muscle training (IMT) treatment and control groups for each of the inspiratory muscle

strength testing measurement time-points.

Treatment (n = 10) Control (n = 10)

Time-

points

box rest walking (on an automated

horse walker)

trotting (on an automated

horse walker)

box rest walking (on an automated

horse walker)

trotting (on an automated

horse walker)

T0 2 6 2 2 4 4

T1 1 5 4 0 5 5

T2 1 3 6 0 4 6

Abbreviations: T0, before IMT; T1, after four weeks of IMT; T2, after eight weeks of IMT.

https://doi.org/10.1371/journal.pone.0225559.t002
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volume, 29.6% for flow and 43.0% for energy. Inter-horse CVs were determined from all study

horses at T0: 19.1% for the number of breaths achieved, 17.2% for IMSi, 15.7% for load, 27.6%

for power, 31.8% for volume, 26.2% for flow and 39.9% for energy.

Number of breaths achieved

The number of days since the last day of exercise training had a significant negative effect

on the total number of breaths achieved during the IMST (P<0.001). There was no difference

for the total number of breaths achieved between the Con and Tr groups at T0 (Table 3,

Fig 5). However, there was a significant difference between the Con and Tr groups at T2

(P<0.0001), with the Tr group achieving a greater number of breaths than the Con group. Fur-

thermore, the number of breaths achieved at T2 significantly decreased for the Con horses

(P = 0.02) and increased for the Tr horses (P<0.001) as compared to the T0 measurements

(Table 3, Fig 5).

Inspiratory muscle strength index

The number of days since the last day of exercise training had a significant negative effect on

the peak IMSi achieved during the IMST (P = 0.01). There were no differences for peak IMSi

between the Con and Tr groups at T0 (Table 3, Fig 6). However, there was a significant differ-

ence between the Con and Tr groups at T2 (P<0.0001), with the Tr group able to breathe at a

greater resistance than the Con group. At T2 the peak IMSi had significantly decreased for the

Con group (P = 0.01) and increased for the Tr group (P = 0.002) as compared to T0 (Table 3,

Fig 6).

Load (inspiratory pressure)

The number of days since the last day of exercise training had a significant negative effect

while the duration of IMT training had a significant positive effect on the peak load achieved

during the IMST (P = 0.004). There were no differences for the peak load between the Con

and Tr groups at T0 (Table 3, Fig 7). However, there was a significant difference for the peak

load (P<0.0001) between the Con and Tr groups at T2, with the Tr horses able to achieve a

greater load than the Con horses. The peak load that horses were able to achieve at T2 had sig-

nificantly decreased in the Con group (P = 0.003) and increased in the Tr group (P = 0.03) as

compared to T0 (Table 3, Fig 7).

Table 3. The average peak measured values from the inspiratory muscle strength test to fatigue for each time-point for n = 20 Thoroughbred horses in an inspira-

tory muscle training (IMT) treatment (Tr, n = 10) or control (Con, n = 10) group. Data presented as mean ± SEM and analysed using a mixed linear model with

P�0.05 significant. �significantly different from T0. §significantly different from the Tr group.

Time-

points

Total breath

number/test

IMSi (cmH2O) Load (cmH2O) Power (W) Volume (L) Flow (L/sec) Energy (J) Work of

breathing (J/L)

Tr Con Tr Con Tr Con Tr Con Tr Con Tr Con Tr Con Tr Con

T0 19.4

±1.4

19.7

±1.9

14.6

±0.9

14.8

±1.3

10.5

±0.7

10.6

±0.8

1.0

±0.1

1.1

±0.2

4.6

±0.4

4.5

±0.5

2.1

±0.2

2.2

±0.3

2.2

±0.2

2.4

±0.5

0.5

±0.03

0.5

±0.1

T1 18.4

±1.6

15.6

±1.1

13.9

±1.1

12.1

±0.7

9.4 ±0.8 8.7 ±0.6 0.9

±0.2

1.0

±0.1

5.0

±0.4

4.8

±0.6

2.1

±0.3

2.0

±0.2

2.4

±0.3

2.4

±0.4

0.5

±0.1

0.5

±0.03

T2 29.3

±2.8
�

14.3

±1.0
�§

21.2

±1.9
�

11.2

±0.7
�§

13.5

±0.9
�

7.7

±0.5
�§

1.2

±0.1

0.9

±0.2

6.1

±0.2
�

4.2

±0.7§
2.8

±0.2
�

2.1

±0.3

3.4

±0.5
�

2.0

±0.5§
0.5

±0.1

0.5

±0.02

Abbreviations: T0, before IMT; T1, after four weeks of IMT; T2, after eight weeks of IMT; IMSi, inspiratory muscle strength index.

https://doi.org/10.1371/journal.pone.0225559.t003
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Power

Measurements of the peak power achieved during the IMST were highly variable for both

groups, with multiple extreme outliers identified. A log transformation of the power measure-

ments successfully normalised the residuals after exclusion of observations with a power

greater than 3.5 W. There were no differences for the peak power achieved during the test

between the Con and Tr groups at T0 or at T2 (Table 3, Fig 8).

Volume

Measurements of the inspiratory volume achieved during the IMST were highly variable for

both groups making it difficult to discern any patterns over time. A log transformation of the

volume measurements successfully normalised the residuals. There were no differences for the

peak volume achieved during the test between the Con and Tr groups at T0 (Table 3, Fig 9).

However, there was a significant difference for the peak volume achieved between the Con and

Tr groups at T2 (P = 0.02), with the Tr horses able to achieve a greater volume during the test

than the Con horses. There was no difference in the peak volume that horses in the Con group

were able to achieve at T2 as compared to T0 (Table 3, Fig 9). Comparatively, the peak volume

that horses in the Tr group were able to achieve at T2 had significantly increased as compared

to T0 (P = 0.004; Table 3, Fig 9).

Fig 5. The average total number of inspiratory breaths achieved during inspiratory muscle strength testing to

fatigue for each time-point for n = 20 Thoroughbred horses in an inspiratory muscle training (IMT) treatment

(Tr, n = 10) or control (Con, n = 10) group. Data presented as mean ± SEM and analysed using a mixed linear model

with P�0.05 significant. �significantly different from T0. ��significantly different from the Tr group. T0: baseline, T1:

after four weeks of IMT, T2: after eight weeks of IMT.

https://doi.org/10.1371/journal.pone.0225559.g005
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Flow

Measurements for peak flow achieved during the IMST were highly variable for both groups,

although a log transformation of the data resulted in normalised residuals. There were no dif-

ferences for the peak flow achieved between the Con and Tr groups at T0 (Table 3, Fig 10).

There was no change in the peak flow that horses in the Con group were able to achieve at T2

as compared to T0 (Table 3, Fig 10). Comparatively, the peak flow achieved by Tr horses at T2

had significantly increased above T0 values (P = 0.006; Table 3, Fig 10).

Energy (work of breathing)

Measurements for the peak energy achieved during the IMST were highly variable, but a log

transformation of the data and exclusion of observations greater than 7.5 J resulted in residuals

closer to but not fully normalised, as the Shapiro-Wilk test still indicated non-normality of the

residuals (P = 0.01). There were no differences for the peak energy between the Con and Tr

groups at T0 (Table 3, Fig 11). However, there was a significant difference between the Con

and Tr groups at T2 (P = 0.03), with the Tr group having higher energy measurements than

the Con group. There was no change in the peak energy for the Con group at T2 as compared

Fig 6. The average peak inspiratory muscle strength index (IMSi) measurements from inspiratory muscle

strength testing to fatigue for each time-point for n = 20 Thoroughbred horses in an inspiratory muscle training

(IMT) treatment (Tr, n = 10) or control (Con, n = 10) group. Data presented as mean ± SEM and analysed using a

mixed linear model with P�0.05 significant. �indicates significantly different from T0. ��indicates significantly

different from the Tr group. T0: baseline, T1: after four weeks of IMT, T2: after eight weeks of IMT.

https://doi.org/10.1371/journal.pone.0225559.g006
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to T0 (Table 3, Fig 11). Comparatively, the peak energy for Tr horses at T2 had significantly

increased above T0 values (P = 0.01; Table 3, Fig 11).

Discussion

This study is the first to demonstrate that a period of IMT affects resting inspiratory variables

measured in race-fit Tbs during a period of detraining. IMT and IMST were found to be safe

and easy to perform with minimal training required for people to become familiar with the

procedures and all study horses tolerating IMT and IMST well. Eight-weeks of IMT resulted in

a significant increase above T0 values in the total number of breaths achieved, load, volume,

flow, energy and ISMi variables measured during the IMST. Most of the variables measured

after eight weeks of detraining (the total number of breaths achieved, load, volume, energy and

IMSi) were also significantly greater for horses that had undergone IMT than for those mea-

sured from horses that did not undergo IMT.

Horses were included in the study at the end of a racing/training season as they entered

detraining, a period in which horses typically undertake minimal exercise activity as compared

to their active exercise training programme. Human studies have shown that less fit athletes

benefit more greatly from IMT than highly trained athletes [4,31,32], so the use of IMT as a

training modality in horses during a period of relative inactivity was of interest. Furthermore,

since privately owned horses were evaluated with no control over the training schedule,

Fig 7. The average peak load measurements from inspiratory muscle strength testing to fatigue for each time-

point for n = 20 Thoroughbred horses in an inspiratory muscle training (IMT) treatment (Tr, n = 10) or control

(Con, n = 10) group. Data presented as mean ± SEM and analysed using a mixed linear model with P�0.05

significant. �indicates significantly different from T0. ��indicates significantly different from the Tr group. T0: baseline,

T1: after four weeks of IMT, T2: after eight weeks of IMT.

https://doi.org/10.1371/journal.pone.0225559.g007
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recruiting horses for the study as they entered a detraining period meant that all horses entered

the study at relatively similar levels of fitness (race-fit) with similar levels of exercise (none/

low-level) undertaken during the study. To further reduce the confounding effect of variation

in fitness on the results, horses were primarily matched between study groups based on the

duration of time out of exercise training and the type of exercise being undertaken when enter-

ing the study.

The type of IMT used in the present study was based on the principles of targeted resistance

training of the inspiratory muscles, with horses standing in a stable and breathing against an

increasing amount of flow-dependent resistance. Interestingly, ventilatory parameters mea-

sured during high-intensity exercise in horses have never been shown to improve in response

to exercise training [33–35]. It has been hypothesised in humans that the respiratory muscles

are not taxed in the same way the locomotory muscles are during exercise training, especially

during short bouts of high-intensity training [36]. It is thus possible that this also occurs in

horses, especially since the risk of musculoskeletal injury is quite high for horses exercising at

high intensity with exercise training programmes having evolved to account for this risk. The

typical Flat racehorse training programme uses a combination of lower-intensity exercise

training with intermittent bouts of high-intensity sessions to provide a degree of anaerobic

training while reducing the risk for musculoskeletal injury. As supported by the present

results, IMT may be a way to allow the respiratory system to be overloaded with the horse at

rest, inducing a measurable training response in the respiratory muscles.

Fig 8. The average peak power measurements from inspiratory muscle strength testing to fatigue for each time-

point for n = 20 Thoroughbred horses in an inspiratory muscle training (IMT) treatment (Tr, n = 10) or control

(Con, n = 10) group. Data presented as mean ± SEM and analysed using a mixed linear model with P�0.05

significant. T0: baseline, T1: after four weeks of IMT, T2: after eight weeks of IMT.

https://doi.org/10.1371/journal.pone.0225559.g008
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After eight weeks of detraining, the total number of breaths, peak inspiratory load and IMSi

(e.g., highest load at which a horse could open the test valve) achieved during the IMST signifi-

cantly increased in the IMT group and decreased in the control horses. The total number of

breaths and IMSi achieved during the IMST demonstrates the capability to inspire against an

increasing load, reflected by the inspiratory pressure generated and associated force exerted by

the respiratory muscles during inspiration. Since it is not possible to obtain maximal inspira-

tory efforts voluntarily from horses, a proxy for maximal inspiratory pressure (e.g., IMSi) was

used as previously described [27]. Eight weeks of IMT also significantly increased the peak

inspiratory volume, flow and energy measured during the IMST, with the latter reflecting the

amount of mechanical work (e.g., effort) during inspiration. These results are all of interest

since they may reflect increased strength and/or decreased metabolic demand of the inspira-

tory muscles during a certain level of work which could translate to decreased work of breath-

ing during exercise.

Interestingly, although peak IMSi achieved during the IMST increased after IMT in our

study horses as recently reported by Allen et al. [27], the median pre- (14.7 vs. 27 cmH2O) and

post-IMT IMSi measurements (21.2 vs. 41 cmH2O) differed between the studies. This was

likely due to differences in the study population and experimental design. Our population con-

sisted of young, Flat Tb racehorses (median age 2.2 [range 2–3] years) whereas the report by

Allen et al. [27] evaluated older, National Hunt Tb racehorses (median age 5 [range 5–10]

years). Flat Tb racehorses tend to be smaller and lighter in structure than National Hunt Tb

Fig 9. The average peak volume measurements from inspiratory muscle strength testing to fatigue for each time-

point for n = 20 Thoroughbred horses in an inspiratory muscle training (IMT) treatment (Tr, n = 10) or control

(Con, n = 10) group. Data presented as mean ± SEM and analysed using a mixed linear model with P�0.05

significant. �indicates significantly different from T0. ��indicates significantly different from the Tr group. T0: baseline,

T1: after four weeks of IMT, T2: after eight weeks of IMT.

https://doi.org/10.1371/journal.pone.0225559.g009

PLOS ONE Inspiratory muscle training in Thoroughbred racehorses

PLOS ONE | https://doi.org/10.1371/journal.pone.0225559 April 10, 2020 14 / 22

https://doi.org/10.1371/journal.pone.0225559.g009
https://doi.org/10.1371/journal.pone.0225559


racehorses which likely represents structural and mechanical differences in the upper and

lower airway. The differences in age between the two groups may also reflect differences in

training duration and resulting respiratory muscle strength leading to differences in the peak

IMSi achieved during the IMST. There is also a difference in exercise training and racing

between Flat and National Hunt racehorses, with the latter typically exercising and competing

over longer distances with jumping involved likely resulting in differences in skeletal muscle

training responses. Although both groups initially consisted of race-fit horses, the horses in the

present study were just entering detraining, a period of minimal exercise activity as compared

to their normal training programme. In comparison, the study reported by Allen et al. [27]

evaluated race-fit horses in active exercise training and racing. The effect of exercise on the

responses to IMT has yet to be evaluated, but it is likely that the combination of consistent

high-intensity exercise training with IMT would result in a greater peak IMSi. Further evalua-

tion is warranted.

In humans IMT has been demonstrated to increase the strength and endurance of the inspi-

ratory muscles [1,17], possibly reducing the respiratory metabolic demands during exercise

such that a greater proportion of available oxygen could be used by the locomotory muscles.

This translates to enhanced athletic performance since increased work of breathing during

exercise can reduce performance [37]. This is believed to be due to a greater percentage of the

cardiac output being directed to the respiratory muscles as opposed to the locomotory muscles

in order to meet metabolic demand [38], ultimately reducing energy production for

Fig 10. The average peak flow measurements from inspiratory muscle strength testing to fatigue for each time-

point for n = 20 Thoroughbred horses in an inspiratory muscle training (IMT) treatment (Tr, n = 10) or control

(Con, n = 10) group. Data presented as mean ± SEM and analysed using a mixed linear model with P�0.05

significant. �indicates significantly different from T0. T0: baseline, T1: after four weeks of IMT, T2: after eight weeks of

IMT.

https://doi.org/10.1371/journal.pone.0225559.g010
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locomotion [39]. In horses, the work of breathing is extremely high during high-intensity exer-

cise due to the obligate nasal breathing and large minute ventilation generated to support the

metabolic demand [21–25] with significant redistribution of blood flow from the skeletal loco-

motory muscles to the respiratory muscles [38,40]. It has also been shown that during high-

intensity exercise the work of breathing in horses increases beyond a point (e.g., critical level

of ventilation) [21,23,25,41] at which any additional oxygen made available by increases in

ventilation is solely used for ventilation rather than locomotion. This is supported by the fact

that the respiratory muscles of horses have extremely high oxidative capacities [42,43] and the

ratio of the mechanical work of breathing to the amount of oxygen uptake (e.g., relative respi-

ratory muscle oxygen uptake [21]) exponentially increases in conjunction with changes in

minute ventilation [44].

It is also possible that IMT may improve performance in horses by reducing respiratory

muscle fatigue as observed in humans [45–47]. Although respiratory muscles differ from other

skeletal muscles because of their continuous activity, they have been shown to exhibit fatigue

in humans following strenuous exercise [48,49], with diaphragmatic excitation-contraction

decoupling occurring [50]. This has not yet been determined to occur in horses. Although

there were no demonstratable effects of sex on the measurable outcomes in the present study,

it is interesting to note that in humans the male diaphragm has been shown to be less fatigue

resistant than the female diaphragm [51]. Respiratory muscle fatigue is primarily believed to

Fig 11. The average peak energy measurements from inspiratory muscle strength testing to fatigue for each time-

point for n = 20 Thoroughbred horses in an inspiratory muscle training (IMT) treatment (Tr, n = 10) or control

(Con, n = 10) group. Data presented as mean ± SEM and analysed using a mixed linear model with P�0.05

significant. �indicates significantly different from T0. ��indicates significantly different from the Tr group. T0: baseline,

T1: after four weeks of IMT, T2: after eight weeks of IMT.

https://doi.org/10.1371/journal.pone.0225559.g011
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negatively affect performance due to effects on the metaboreflex [49]. The metaboreflex refers

to an accumulation of metabolites (i.e., lactic acid) within the respiratory muscles which have

been linked with activation of group III and IV nerve afferents [52–54]. Activation of these

nerve afferents have been shown to trigger increases in sympathetic outflow from the brain

leading to vasoconstriction in the exercising limbs [55,56] and increased muscular limb fatigue

[57,58].

Moderately high intra- and inter-horse variability for measurements obtained during the

IMST support a degree of variation in how horses respond to IMT and IMST. Unlike IMT, the

IMST is a test to fatigue with no way to ensure that each horse completes the test to fatigue ver-

sus just ‘giving up’, likely contributing to some of the observed variability. Since this was a

pilot study with strict inclusion criteria used to standardise the study groups, the sample size

was small as compared to IMT studies in humans. To fully evaluate the measured inspiratory

variables and overcome the inherent intra- and inter-horse variability observed for the IMST,

a larger sample population may be required.

It is relevant to note that highly variable baseline measures of inspiratory muscle strength

between human individuals have been well documented [59,60]. None of the average baseline

measurements in the present study significantly differed between the study groups but there

was a degree of variation between individual horses within both study groups. The reason(s)

behind these inter-subject variabilities are unknown but in humans, inherent differences

between subjects in baseline inspiratory muscle strength [61] and the degree of activation of

the diaphragm and chest wall inspiratory muscles during ventilation have been postulated

[62]. Inherent differences in baseline strength of inspiratory muscles have also been shown to

affect the efficacy of IMT in humans [63]. High inter-subject variability for the degree of

improvement in maximal inspiratory pressure, an established measure of global inspiratory

muscle strength in humans [64,65] following IMT has been demonstrated in numerous stud-

ies, with improvements ranging between 10─55% [15,45,66]. Although the IMSi (proxy for

maximal inspiratory pressure) improved on average by 57% in horses following IMT, there

was a wide degree of variation with improvements ranging between 29─146%. For the control

group the IMSi decreased on average by 31% but there was also a wide degree of variation with

decreases ranging between 11─57%. Since variability in limb skeletal muscle adaptation to

strength training has been shown to be inversely related to baseline strength in humans [61], it

is likely that the same applies for skeletal respiratory muscle adaptation to training. Although it

was attempted to standardise fitness levels for all study horses, it is possible that a combination

of variations in fitness as well as inherent differences in inspiratory muscle strength between

horses contributed to the observed inter-horse variability in the present study.

Resting tidal volume values reported for horses are similar to T0 values obtained in the pres-

ent study (4.8 L vs. 4.6 L), with reported resting peak inspiratory flows higher than the values

measured in the present study (3.5 L/sec vs. 2.2 L/sec) [21,24]. Reported resting values for peak

inspiratory pressure (0.2 cmH2O vs. 10.6 cmH2O), peak pulmonary resistance (0.21 cmH2O/

L/sec vs. 14.7 cmH2O/L/sec) and peak work of breathing (0.41 J/L vs. 0.5 J/L) are all lower than

the values measured in the present study [23,29]. This does make logical sense since values

obtained for horses in the present study were obtained during an incremental threshold of

breath-loading test which should result in greater inspiratory load, resistance and work of

breathing values. However, since horses were used as their own controls, the purpose here was

to determine the actual changes from baseline measurements rather than assess and interpret

the actual measured values themselves.

The authors had hypothesised that IMT could be used to sustain or improve respiratory

muscle strength during a period of inactivity (e.g., detraining, injury, illness). This was of inter-

est since maintenance of a certain level of aerobic fitness during a period of inactivity may
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make it easier for a horse re-entering an active exercise programme to regain fitness for com-

petition. Although several researchers have shown that horses can maintain their fitness for as

much as five to six weeks after ending exercise training [67–69], other researchers have dem-

onstrated the maximal oxygen consumption (VO2max, measurement of aerobic capacity) of

trained horses to decrease to pre-training values after only two to three weeks of detraining

[33,70]. The level and duration of a horse’s training programme may affect the rate at which

VO2max decreases [71] as well the type of detraining protocol (light cantering, walking,

box rest) [72]. Horses that are maintained by cantering lose less of their fitness versus those

that are walking or box rest, while horses that are walked maintain more fitness than horses on

complete box rest [72]. Although exercise was not associated with any of the measured inspira-

tory variables for either study group in the present study, further evaluation of the use of IMT

in a larger sample size of horses undertaking different detraining protocols is warranted.

The present results certainly warrant further investigation into whether IMT may be a ben-

eficial training modality for Tb racehorses as observed in human athletes. In addition to

benefiting sprint performance in human athletes [1], IMT at a reduced load has been shown to

be beneficial as part of a warm-up protocol in human athletes, helping to prepare the respira-

tory muscles for exercise [19,73,74] and improve sprint performance [73]. IMT used during

the recovery period in humans has also been shown to expediate lactate clearance more effec-

tively than traditional strategies [75]. Based on these studies in humans, investigation into the

use of IMT in both the warm-up and recovery periods in the equine athlete is warranted.

Conclusions

Eight weeks of IMT significantly increased the total number of breaths achieved, load, volume,

flow, energy and IMSi measured during an IMST in Tb Flat racehorses in a detraining pro-

gramme. Comparatively, the total number of breaths achieved, load and IMSi significantly

decreased below T0 values for control horses after eight weeks of detraining. These results sup-

port that IMT can be used to maintain and/or increase aspects of resting inspiratory muscle

strength in horses not in active exercise training. Further evaluation of the effect of exercise on

measured respiratory variables following IMT and the effect of IMT on exercise performance

in horses is warranted.
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