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Purpose: To investigate the relationship between hypoxia-inducible factor 1-alpha (HIF-

1α), Twist family BHLH transcription factor 1 (TWIST-1), and β1 integrin (ITGB-1)

expression and tumor stiffness, and evaluate performance of HIF-1α, TWIST-1, and ITGB-

1 alone and in combination with Ki-67 for predicting pathological responses to neoadjuvant

chemotherapy (NACT) in breast cancer (BC).

Patients and Methods: This was a prospective cohort study of 104 BC patients receiving

NACT. Tumor stiffness and oxygen score (OS) were evaluated before NACT by shear-wave

elastography and optical imaging; HIF-1α, TWIST-1, ITGB-1, and Ki-67 expression were

quantitatively assessed by immunohistochemistry of paraffin-embedded tumor samples

obtained by core needle biopsy. Indexes were compared among different residual cancer

burden (RCB) groups, and associations of HIF-1α, TWIST-1, ITGB-1, and Ki-67 with tumor

stiffness and OS were examined. The value of HIF-1α, TWIST-1, ITGB-1, and Ki-67, and

a possible new combined index (predRCB) for predicting NACT responses was assessed by

receiver operating characteristic (ROC) curves.

Results: HIF-1α, TWIST-1, and ITGB-1 expression were positively correlated with tumor

stiffness and negatively with OS. Area under the ROC curves (AUCs) measuring the

performance of HIF-1α, TWIST-1, ITGB-1, and Ki-67 for predicting responses to NACT

were 0.81, 0.85, 0.79, and 0.80 for favorable responses, and 0.83, 0.86, 0.84, and 0.85 for

resistant responses, respectively. PredRCB showed better prediction than the other individual

indexes for favorable responses (AUC = 0.88) and resistant responses (AUC = 0.92).

Conclusion: HIF-1α, TWIST-1, ITGB-1, and Ki-67 performed well in predicting favorable

responses and resistance to NACT, and predRCB improved the predictive power of the

individual indexes. These results support individualized treatment of BC patients receiving

NACT.

Keywords: HIF-1α, TWIST-1, ITGB-1, neoadjuvant chemotherapy, breast cancer,
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Introduction
Neoadjuvant chemotherapy (NACT) plays an indispensable role in the treatment of

breast cancer (BC). Pathological complete response (PCR) is used as a surrogate

prognostic marker for long-term disease-free survival after NACT in BC.1,2

Approximately 30% of cancers achieve PCR after NACT.3 However, certain risk

factors are associated with the development of chemotherapy resistance.4 Moreover,
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because BC can progress during NACT, determining the

optimal time for surgical intervention is difficult.

Therefore, early prediction of the pathological response

to NACT is critical, and it may help optimize individual

chemotherapeutic strategies in BC patients.

Among the established clinicopathological markers,

only Ki-67, estrogen receptor (ER), and human epidermal

growth factor receptor 2 (HER2) have shown clear clinical

applicability,4,5 and of these, only Ki-67 was reported to be

an accurate biomarker for predicting PCR to NACT.6

However, the predictive efficacy of a single biomarker

remains controversial. Gene expression analysis may

improve our understanding of the biological behavior

of BC, and although some genes may be useful indicators

for the early identification of NACT responses,7,8 the high

costs associated with their analysis limit their routine

clinical application. Therefore, the identification of an

effective biomarker to predict NACT responses and opti-

mize the treatment of BC is an urgent need.

It is reported that BC with high matrix stiffness evalu-

ated by pre-treatment ultrasound elastography is strongly

correlated with chemoresistance.9,10 Tumor stiffness is lar-

gely determined by the collagen composition of the extra-

cellular matrix (ECM), which has profound effects on BC

progression, invasion, metastasis, and chemoresistance.11

Recent studies show that high matrix stiffness could induce

epithelial to mesenchymal transition (EMT) and tumor pro-

gression by activating Twist family BHLH transcription

factor 1 (TWIST-1).12,13 In addition, TWIST-1 over-

expression is associated with short survival and a poor

response to chemotherapy in patients with cancer.2,14,15

Hypoxia-inducible factor 1-alpha (HIF-1α), which

mediates adaptation to hypoxia in cells, has been shown

to be associated with matrix stiffness.16 Activation of the

hypoxia pathway by HIF-1α contributes to the develop-

ment of radiotherapy and chemotherapy resistance.17 HIF-

1α can also directly upregulate TWIST-1 expression.18,19

Integrins play an important role in maintaining mam-

mary stem cells in the normal breast. Dysregulation of

integrin signaling distorts cell–cell or cell–ECM interac-

tions and promotes BC progression by inducing chemore-

sistance and metastasis.20,21 A recent study showed that β1
integrin (ITGB-1) plays a pivotal role in the regulation of

matrix stiffness,22 and ITGB-1 expression is associated

with chemoresistance and metastasis in BC.20,21

Most of the studies cited above were based on basic

experiments in vitro or in animal models. However, no

study has investigated the relationships between HIF-1α,

TWIST-1, and ITGB-1 expression and tumor stiffness

in BC patients, or the predictive diagnostic performance of

these biomarkers for predicting NACT responses. Here, we

analyzed 104 patients who received NACT to determine the

association of HIF-1α, TWIST-1, and ITGB-1 expression

with tissue stiffness, oxygen score (OS), and pathological

responses. In addition, we investigated the power of HIF-

1α, TWIST-1, and ITGB-1 alone or in combination with Ki-

67 to predict the response to NACT in BC.

Materials and Methods
Patients
A total of 112 women were enrolled between

February 2014 and July 2019. All patients were diagnosed

with invasive BC by ultrasound-guided core needle biopsy

(CNB) and received NACT and subsequent surgical inter-

vention. Eight patients were excluded because of changes

in the treatment regimen or other unspecified reasons. The

study was conducted with the approval of the ethics com-

mittee of Shengjing Hospital of China Medical University.

All patients provided written informed consent.

Chemotherapy Regimen
Prior to surgery, all patients (n = 104) had received six

cycles of NACT. The detailed chemotherapy regimens are

as follows: 66 received TEC (docetaxel, epirubicin, and

cyclophosphamide); 11 received TE (docetaxel and epir-

ubicin); 9 received FEC (5-fluorouracil, epirubicin, and

cyclophosphamide); and 18 classified as HER2+ received

the targeted drug herceptin (trastuzumab) in addition to the

docetaxel-based regimen.

Shear-Wave Elastography (SWE) Stiffness

Evaluation
Tumor stiffness was evaluated using an ultrasound diag-

nostic imaging system, Aixplorer (SuperSonic Imagine,

Aix en Provence, France), with a 4–15 MHz linear

transducer. Four SWE images were obtained on two

orthogonal planes for each lesion without outside pres-

sure. Gray-scale and SWE images were simultaneously

displayed in the split-screen mode. Tissue elasticity was

assessed according to a color-coded map, with colors

ranging from blue (soft) to red (hard). An optionally

sized region of interest (ROI) trace (Q-box trace;

SuperSonic Imagine) was drawn to include the lesion

and peritumoral stroma. Then, quantitative elasticity

values representing the Young modulus in kilopascals
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(range: 0–300 kpa) were automatically calculated and

presented by the SWE system. Finally, the maximum

elasticity (Emax) and mean elasticity (Emean) values of

a lesion were recorded, and the average results of the

four images were used for further analysis.

Breast Relative Oxygen Saturation

Evaluation
The OS of the tumors was evaluated using the dynamic

optical breast imaging (DOBI) system, TM-A02 (TRKM

Medical Technology Co., Ltd, Shenzhen, China), which is

equipped with a high-intensity probe (with a dual-

wavelength LED illuminator at 730 and 850 nm) and

a near-infrared camera (resolution: 570–600 lines; sensi-

tivity: 0.001–0.01 Lux). The probe emits red light, which

penetrates breast tissues and shows a different absorption

or scatter pattern when meeting a neoangiogenic area

compared with that in other tissues. This is attributed to

differences in the distribution of oxygenated and deoxyge-

nated hemoglobin.23

OS evaluation was performed in the dark. The patients

exposed their upper body and sat facing the machine at

a distance of 55–75 cm. First, the examiner palpated the

five breast quadrants and the axillary area bilaterally. The

probe was placed under the breast to be examined (outer

or lower quadrant). The examiner adjusted the sharpness

and brightness of the image to ensure that the entire

breast was captured and that the vasculature in the breast

tissue was clearly displayed. For each image, the probe

was retained for at least 2 seconds to complete the acqui-

sition. The system then generated a two-dimensional dis-

tribution image and a functional image. The relative

oxygen content distribution of the area was represented

by a color-coded map on the functional image (with

colors ranging from green to red). Then, the ROIs were

selected, and the system automatically calculated the OS

of the lesion. OS represents the relative oxygen saturation

of the ROI.23

Tumor SWE stiffness and the OS of all patients were

evaluated one day before NACT.

Immunohistochemistry and Pathology
Pathologic assessments were conducted in two steps.

First, samples from ultrasound-guided CNBs were

examined to confirm the histopathological characteristics

and molecular subtypes of the tumors.

Immunohistochemistry

Anti-ER (Clone SP1, Roche, USA), anti-PR (Clone 1E2,

Roche, USA), and anti-HER2 antibodies (Clone 4B5,

Roche, USA), anti- HIF-1α (dilution 1:250; Clone

EPR3658, Abcam, USA), anti-TWIST-1 (dilution 1:200;

Clone 10E4E6, Abcam, USA), anti-ITGB-1 (dilution 1:200;

Clone EPR1040Y, Abcam, USA), and anti-Ki-67 antibodies

(dilution 1:200; Clone SP6, Abcam, USA) were used for

immunohistochemical staining. Immunohistochemistry pro-

cedures were performed according to the manufacturers’

instructions.

Immunohistochemical Evaluation

Positive staining for ER and PR was defined as nuclear

staining in ≥1% of the tumor cells. HER2 was assessed

based on the intensity of tumor cell membrane staining;

HER2-positivity was indicated by a 3+ or 2+ score and was

confirmed by fluorescence in situ hybridization (FISH).24

HIF-1α, TWIST-1, ITGB-1, and Ki-67 expression

levels were scored by two independent clinical doctors

who had no prior knowledge of the prognosis or other

clinicopathological variables, using a weighted

Histoscore method, also known as the H-score.25

Briefly, the percentage of positive cells per slide (0% to

100%), as the average of ten random fields (400x, dia-

meter: 0.55mm) screened, and the dominant intensity

pattern of staining (0, absent; 1, weak; 2, moderate; 3,

intense) were measured for each tumor section. H-scores

for each sample were determined by multiplying the

staining intensity by the percentage of positive cells

(range, 0 to 300). Positivity for HIF-1α and TWIST-1

was defined as positive nuclear and cytoplasmic staining.

Positivity for ITGB-1 was defined as positive membrane

and cytoplasmic staining. Positivity for Ki-67 was

defined as positive nuclear staining.

According to the St. Gallen International Expert Panel

consensus,26 all lesions were classified into four major

molecular subtypes: luminal A, luminal B, triple negative,

and HER2-positive.

Second, all surgical specimens were collected to assess

NACT responses. We opted for the web-based MD

Anderson Residual Cancer Burden (RCB) calculator

(http://www3.mdanderson.org/app/medcalc/index.cfm?

pagename=jsconvert3).

This method allows calculation of an index that combines

pathology measurements of the primary tumor (size and

cellularity) and nodal metastases (number and size) as fol-

lows: RCB = 1.4 (finvdprim)
0.17 + [4(1–0.75LN) dmet]

0.17,27
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where finv is the proportion of primary tumor area containing

invasive carcinoma; dprim is the bidimensional diameters of

the primary tumor bed; LN is the number of positive lymph

nodes; and dmet is the diameter of the largest nodal metasta-

sis. Using two cut-off points, four RCB categories were

proposed as follows: RCB-0 (PCR, RCB = 0), RCB-I

(RCB = 0−1.36), RCB-II (RCB = 1.36−3.28), and RCB-III

(RCB > 3.28).27 Favorable responses to NACT were classi-

fied as RCB-0 or RCB-I, whereas RCB-III represented resis-

tance to NACT (pathological non-responders). Pathologic

assessments for all lesions were performed according to the

World Health Organization classification standards.

Statistical Analysis
Statistical analyses were performed using SPSS 23.0 soft-

ware (IBM, USA), GraphPad Prism version 5.0 (GraphPad

Software, USA), and Sigmaplot version 14.0 (Systat

Software, USA). Continuous variables with normal distri-

bution were expressed as the mean ± standard deviation,

skewed distributions were expressed as the median and

interquartile range, and categorical variables were

expressed as counts and percentages. Comparisons

among three groups (PCR+RCB-I, RCB-II, and RCB-III)

were performed using the χ2 test, Kruskal–Wallis test or

analysis of variance (ANOVA). Post hoc analysis was used

for pairwise comparisons among three groups if the results

of the Kruskal–Wallis test or ANOVA test were signifi-

cant. Bonferroni method analysis was also performed for

pairwise comparisons among three groups if the results of

the χ2 test were significant. Inter-observer reproducibility

of Ki-67, HIF-1α, TWIST-1, and ITGB-1 was assessed by

computing intra-class correlation coefficients (ICC). The

detail parameters were as follows: Model: Two-Way

Mixed-Effect model; Type: single measure; Definition:

absolute agreement.28 Pearson’s correlation (rp) and

Spearman’scorrelation (rs) analyses were used to analyze

the relationships among SWE stiffness, OS, HIF-1α,

TWIST-1, and ITGB-1 expression. The area under the

ROC curve (AUC) values were used to determine the

predictive diagnostic performance of HIF-1α, TWIST-1,

ITGB-1, and Ki-67. A new predictive biomarker

(predRCB) was combined with the largest AUC of new

predictors (HIF-1α, TWIST-1, and ITGB-1) and the tradi-

tional one (Ki-67) according to the results of the multi-

variable linear regression model. Differences were

considered significant when the two-sided P value

was <0.05.

Results
Baseline Characteristics of Patients in the

Three Groups
The baseline characteristics are summarized in Table 1.

Among the 104 patients who underwent breast and axillary

surgery 3–4 weeks after NACT, 23 (22%) showed a favorable

response (PCR and RCB-I), 48 (46.2%) showed a moderate

response (RCB-II), and 33 (31.7%) showed NACT resistance

(RCB-III). In the subpopulations according to molecular sub-

type, the rate of PCR+RCB-I was 21.7% in the triple negative

type, 26.1% in the HER2-positive type, 17.4% in the luminal

A type, and 39.1% in the luminal B type. TheRCB-III rate was

0% in the triple negative type, 4.2% in the HER2-positive

type, 21.2% in the luminal A type, and 72.7% in the luminal

B type. There were significant differences among the three

RCB groups (P < 0.05) for most clinical indicators, except for

HER2 positivity in “Immunohistochemical marker”, T2 in

“Tumor size”, Grade 2 and Grade 3 in “Grade”, and IIIB in

“Clinical stage”. The imaging indicators Emax, Emean, and

OS were also significantly different among the three groups

(P < 0.05). Figures 1 and 2 show the SWE and DOBI images

of one lesion 1 day before NACT, respectively.

HIF-1α, TWIST-1, ITGB-1, and Ki-67

Expression in the Three Groups
The expression of HIF-1α, TWIST-1, ITGB-1, and Ki-67

was detected in 104 preoperative tumor biopsy specimens

(Figure 3A–H). Inter-observer reliability was good, with

ICC values of 0.839 (0.771–0.888), 0.837 (0.769–0.886),

0.877 (0.823–0.915), and 0.804 (0.723–0.863) for Ki-67,

HIF-1α, TWIST-1, and ITGB-1, respectively. The expres-

sion levels of HIF-1α, TWIST-1, ITGB-1, and Ki-67 in the

different RCB groups are presented in Table 2. The

expression of all biomarkers differed significantly among

the three RCB groups (P < 0.01). Specifically, patients in

the resistance group showed higher HIF-1α, TWIST-1, and

ITGB-1 expression and lower Ki-67 expression, whereas

those in the favorable response group showed lower HIF-

1α, TWIST-1, and ITGB-1 expression and higher Ki-67

expression.

Correlations Between SWE Stiffness, OS,

HIF-1α, TWIST-1, ITGB-1, and Ki-67

Expression
Correlation analysis revealed negative correlations

between Emax and OS (rs = –0.812, P < 0.001) and
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Emean and OS (rs = –0.715, P < 0.001); positive correla-

tions were observed between HIF-1α and TWIST-1

expression (rs = 0.797, P < 0.001), between HIF-1α and

ITGB-1 expression (rp = 0.852, P < 0.001), and between

TWIST-1 and ITGB-1 expression (rs = 0.814, P < 0.001);

negative correlations were observed between Ki-67 and

HIF-1α expression (rp = –0.404, P < 0.001), between

Ki-67 and TWIST-1 expression (rs = –0.467, P < 0.001),

and between Ki-67 and ITGB-1 expression (rp = −0.358,
P < 0.001). The correlations of immunohistochemical fea-

tures with SWE stiffness and OS at baseline are shown in

Table 3. The results showed that HIF-1α, TWIST-1, and

ITGB-1 expression levels were positively correlated with

SWE stiffness (Emean and Emax) and negatively corre-

lated with OS. In addition, Ki-67 showed no or weak

correlation with SWE stiffness and OS at baseline.

Table 1 Baseline Characteristics of Patients

Characteristic Total PCR+RCB-I RCB-II RCB-III P value

RCB scores 2.1 (1.5–3.6) 0 (0–1.2) 2.1 (1.8–2.7) 4.0±0.5 <0.001#,a,b,c

Patients number 104 23 48 33

Age (years) 49.0 (38.0–57.0) 46.0 (43.0–53.0) 49.0 (32.0–57.0) 50.2±11.1 0.187#

Largest diameter (cm) 4.0 (2.3–5.0) 4.0(2.0–6.0) 3.0 (2.3–4.0) 4.0 (3.0–6.0) 0.192#

Immunohistochemical marker

Ki-67 (%) 32.5±18.9 50.0±21.3 33.7±14.9 18.6±9.4 <0.001￥,a,b,c

ER positive, n (%) 62 12 (52.2) 20 (41.7) 30 (90.1) <0.001*,b,c

PR positive, n (%) 56 8 (34.8) 20 (41.7) 28 (84.8) <0.001*,b,c

HER2 positive, n (%) 35 7 (30.4) 20 (41.7) 8 (24.2) 0.247*

Molecular subtype, n (%)

Luminal A 13 4 (17.4) 2 (4.2) 7 (21.2) 0.039*,c

Luminal B 51 9 (39.1) 18 (41.8) 24 (72.7) 0.004*,b,c

Triple negative 20 5 (21.7) 15 (31.2) 0 (0) <0.001*,b,c

HER2 positive 20 6 (26.1) 13 (27.1) 2 (4.2) 0.032*

Pathological types, n (%)

Invasive ductal carcinoma 95 19 (82.6) 47 (97.9) 29 (87.9) 0.04*

Invasive lobular carcinoma 9 4 (17.4) 1 (2.1) 4 (12.1) 0.04*

Tumor size (cT), n (%)

T1 9 2 (8.7) 7 (14.6) 0 (0) 0.047*

T2 72 13 (56.5) 36 (75.0) 23 (69.7) 0.297*

T3 23 8 (34.7) 5 (10.4) 10 (30.3) 0.022*,a

Grade, n (%)

Grade 2 90 19 (82.6) 43 (89.6) 28 (84.8) 0.662*

Grade 3 14 4 (17.4) 5 (10.4) 5 (15.1) 0.662*

Clinical stage

IIA 12(11.5) 7 (30.4) 5 (10.1) 0 (0) 0.001*,b

IIB 40(38.5) 6 (26.1) 27(56.2) 7 (21.2) 0.002*,c

IIIA 45(43.3) 8 (34.8) 16 (33.3) 21 (63.6) 0.002*,c

IIIB 4(3.8) 2 (8.7) 0 (0) 2 (6.1) 0.098*

IIIC 3(2.9) 0 (0) 0 (0) 3 (9.1) 0.040*

SWE stiffness

Emax 147.9±65.5 114.7±34.9 141.2±56.9 180.7±78.9 0.001￥a,b

Emean 49.0±24.3 41.5±13.2 44.7±21.1 60.4±30.3 0.003￥b,c

OS 0.3 (0.2–0.5) 0.6±0.2 0.2 (0.2–0.4) 0.3±0.2 <0.001#,a,b

Notes: *χ2 test; #Kruskal–Wallis test; ￥ANOVA test; asignificant difference for pairwise comparison between PCR+RCBI and RCBII; bsignificant difference for pairwise

comparison between PCR+RCBI and RCBIII; csignificant difference for pairwise comparison between RCBII and RCBIII.

Abbreviations: PCR, pathological complete response; RCB, residual cancer burden; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth

factor receptor 2; Emax, maximum elasticity; Emean, mean elasticity; OS, oxygen score; SWE, shear-wave elastography; n (%), number (%).

Dovepress Zhang et al

Cancer Management and Research 2020:12 submit your manuscript | www.dovepress.com

DovePress
2213

http://www.dovepress.com
http://www.dovepress.com


Performance of HIF-1α, TWIST-1,

ITGB-1, Ki-67, and PredRCB for

Predicting the Response to NACT
The AUC values of HIF-1α, TWIST-1, ITGB-1, and Ki-67

for predicting NACT responses and the optimal threshold

required are summarized in Table 4. HIF-1α, TWIST-1,

ITGB-1, and Ki-67 showed good power for predicting

a favorable response (AUC = 0.81, 0.85, 0.79, and 0.80,

respectively) and resistance to NACT (AUC = 0.83, 0.86,

0.84, 0.85, respectively). Among the new predictors,

TWIST-1 showed the highest predictive power with the

largest AUC values for both a favorable response (AUC =

0.85) and resistance (AUC = 0.86).

Furthermore, Ki-67 (traditional predictor) and TWIST-1

(the best new predictor) were combined into a new predic-

tor (predRCB), which was generated using a multivariable

linear regression model (predRCB = 1.819 + 0.012 ×

TWIST-1 – 0.01 × Ki-67). Compared with other single

predictors, predRCB showed a better performance for pre-

dicting both a favorable response (AUC = 0.88) and resis-

tance (AUC = 0.92) (Figure 4).

In addition, the results of AUC analysis of the predic-

tive performance of predRCB among the different sub-

groups are shown in Table 5. PredRCB showed good

accuracy (AUC > 0.80) in predicting NACT responses in

the different subgroups, especially in patients with luminal

A type, invasive lobular carcinoma, Grade 3, T3 tumor

size, and TEC in NACT regimens.

Discussion
The results of this study can be summarized as follows: (i)

Higher tumor stiffness was strongly correlated with higher

Figure 1 SWE image with a ROI placed over the stiffest part of the lesion with the Emax and Emean values being automatically calculated by the system.

Abbreviations: Emax, maximum elasticity; Emean, mean elasticity; ROI, region of interest; SWE, shear-wave elastography.

Zhang et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
Cancer Management and Research 2020:122214

http://www.dovepress.com
http://www.dovepress.com


HIF-1α, TWIST-1, and ITGB-1 expression and lower OS.

(ii) HIF-1α, TWIST-1, ITGB-1, and Ki-67 expression exhib-

ited good diagnostic performances for predicting a favorable

response and resistance to NACT. (iii) PredRCB had con-

siderably better power than HIF-1α, TWIST-1, ITGB-1, and

Ki-67 alone for predicting NACT responses.

BC with higher stiffness evaluated by ultrasound elas-

tography is closely correlated with chemoresistance.9,29,30

Indeed, BC progression, invasion, and resistance to che-

motherapeutic drugs are not only determined by the tumor

cells themselves, but also by the extracellular

microenvironment.31 Basic research studies have con-

firmed that the cross-linking collagen in the ECM plays

an important role in tissue stiffness.32 However, the reason

why tumors with high stiffness tend to be resistant to

NACT in BC remains unknown.

The two particularly important molecules of the

ECM, collagen and hyaluronan (HA), participate in

matrix stiffness, especially in the targeting of mechan-

otransduction in cancer.30,33 Specifically, abnormal col-

lagen composition or increased HA concentration can

increase colloidal osmotic pressure, which can increase

interstitial fluid pressure (IFP). High IFP can cause

collapse of tumor vessels, thereby reducing microvascu-

lar perfusion and eventually limiting the delivery of

chemotherapeutic drugs.34,35

Hypoxia is another extracellular microenvironment

factor that plays an important role in regulating BC

progression, invasion, metastasis, and chemotherapeutic

resistance.36,37 Zhu et al37 analyzed the concentrations

of total hemoglobin (t-Hb), oxygenated (oxy-Hb), and

deoxygenated hemoglobin (deoxy-Hb) before che-

motherapy by ultrasound-guided near-infrared optical

tomography, and determined their association with

pathologic responses to chemotherapy in 34 BC cases.

The results indicated that hypoxia in BC tissues was

strongly correlated with chemoresistance. In this study,

we confirmed that invasive BC with lower stiffness and

higher OS showed better NACT responses (PCR or

RCBI), whereas tumors with higher stiffness and lower

OS were associated with NACT resistance (RCBIII).

These results are consistent with those of previous

studies.9,29,30,37

This study is the first to use non-invasive imaging

modalities to confirm the significant negative correla-

tion between tumor stiffness and OS. The results can

be explained as follows. (i) Matrix stiffness and neo-

vascularization increase simultaneously during BC pro-

gression. However, the growth of vasculature in the

tumor region does not meet the increased need for

oxygen and nutrients in the neoplasm. An imbalance

between blood oxygen demand and supply leads to

hypoxia in tumor tissues. (ii) Increased matrix stiffness

increases IFP, which causes tumor vascular collapse

and compression. This further increases blood flow

resistance, which reduces tumor microvascular blood

perfusion, consumption of oxygen, and accumulation

of waste, eventually leading to the formation of

a hypoxic environment.

We hypothesized that increased matrix stiffness causes

insufficient blood perfusion, which not only reduces drug

delivery, but also induces hypoxia. The response to

Figure 2 DOBI image with a ROI placed over the center point of the lesion with

the OS values being automatically calculated by the system.

Abbreviations: DOBI, dynamic optical breast imaging; OS, oxygen score; ROI,

region of interest.
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Figure 3 Left column (A–D) Immunohistochemical analysis of a pre-NACT biopsy specimen from a patient with chemotherapy resistance. (A) High HIF-1α expression with

a H score of 180; (B) high TWIST-1 expression with a H score of 160; (C) high ITGB-1 expression with a H score of 190; (D) low Ki-67 expression with a H score of 30.

Right column (E–H) Immunohistochemical analysis of a pre-NACT biopsy specimen from a patient with PCR to NACT. (E) Low HIF-1α expression with a H score of 40; (F)
low TWIST-1 expression with a H score of 6; (G) low ITGB-1 expression with a H score of 2; (H) High Ki-67 expression with a H score of 270.

Abbreviations: HIF-1α, hypoxia-inducible factor 1-alpha; ITGB-1, β1 integrin; NACT, neoadjuvant chemotherapy; PCR, pathological complete response; TWIST-1, twist

family BHLH transcription factor 1.
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hypoxia is mainly regulated by HIF-1α in tumors, and

HIF-1α is involved in tumorigenesis, growth, and metas-

tasis in BC.38,39 Furthermore, HIF-1α directly binds to and

upregulates the expression of TWIST-1.18,19,40 In addition,

increased matrix stiffness activates and upregulates the

expression of TWIST-1 in BC.12 However, the mechanism

by which TWIST-1 promotes BC resistance to NACT still

needs to be elucidated. Recently, Yang et al41 revealed that

ECM–receptor interaction and the MAPK, PI3K/AKT,

P53, and WNT signaling pathways are aberrantly activated

in MCF10A-TWIST-1 cells based on iTRAQ-labeling

combined with 2D LC-MS/MS analysis. These authors

used ingenuity pathway analysis to show that TWIST-1

regulates these downstream proteins through ITGB-1.

Thus, TWIST-1/ITGB-1 seems to be the upstream signal-

ing molecules that induce invasion and metastasis in BC.

In addition, over-expression of both TWIST-1 and ITGB-1

is associated with increased tumorigenesis, growth,

metastasis, and resistance to chemotherapy in several

cancers.42,43

Based on the analysis above, we propose

a hypothesis to explain why high tumor stiffness is

closely correlated with chemoresistance in BC. The

IFP increases in tumor environments with high matrix

stiffness, leading to heterogeneity and tortuosity of neo-

vascularization. This leads to increased blood flow resis-

tance, which reduces blood perfusion and increases

oxygen consumption. Finally, a hypoxic environment is

formed in BC cells. The HIF-1α/TWIST-1/ITGB-1 path-

way is activated, which causes BC phenotypic changes

(eg, increased efflux of chemotherapeutic drugs,

increased cytoprotective autophagy, and reduced apop-

tosis) through different downstream signaling pathways.

These factors lead to the development of resistance to

chemotherapeutic drugs. This study is the first to show

that the expression levels of HIF-1α, TWIST-1, and

ITGB-1 are positively correlated with stiffness and

negatively correlated with OS in BC patients. In addi-

tion, we found a direct association among the expression

levels of HIF-1α, TWIST-1, and ITGB-1. Moreover,

higher expression levels of HIF-1α, TWIST-1, and

ITGB-1 were inter-related in the NACT resistance

group (RCBIII). These results strongly support the

hypothesis above. However, the mechanism underlying

the function of the HIF-1α/TWIST-1/ITGB-1 axis and

downstream signaling needs to be investigated in further

prospective studies in vitro and in vivo.

We also used these biomarkers to predict the patho-

logical response to NACT in BC. The results demon-

strated that HIF-1α, TWIST-1, and ITGB-1 show

comparable abilities for the accurate assessment and

prediction of NACT responses. To the best of our

knowledge, this is the first study to report the perfor-

mance of HIF-1α, TWIST-1, and ITGB-1 for predicting

Table 2 HIF-1α, TWIST1, ITGB1, and Ki-67 Expression in the Three RCB Groups

Biomarkers (H Score) Total PCR+RCB-I RCB-II RCB-III P value

HIF-1α 115.61±56.7 73.9±34.1 103.7±42.3 161.8±57.0 <0.001￥,a,b,c

TWIST-1 83.0 (58.5–149.0) 57.7±23.5 88.4±38.3 154.2±62.2 <0.001￥,a,b,c

ITGB-1 100.3±54.8 64.3±37.7 87.0±37.0 144.8±58.8 <0.001 ￥,a,b,c

Ki-67 67.6±46.1 112.7±62.7 67.4±29.8 36.6±19.5 <0.001￥,a,b,c

Notes: ￥ANOVA test; asignificant difference for pairwise comparison between PCR+RCBI and RCBII; bsignificant difference for pairwise comparison between PCR+RCBI

and RCBIII; csignificant difference for pairwise comparison between RCBII and RCBIII.

Abbreviations: PCR, pathological complete response; RCB, residual cancer burden; HIF-1α, hypoxia-inducible factor 1-alpha; TWIST-1, twist family BHLH transcription

factor 1; ITGB-1, β1 integrin.

Table 3 Relationships Between HIF-1α, TWIST-1, ITGB-1, and Ki-67 Expression and SWE Stiffness and OS

Parameters HIF-1α TWIST-1 ITGB-1 Ki-67

Emax 0.708 (<0.001)* 0.621 (<0.001) 0.665 (<0.001)* –0.244 (0.018)*

Emean 0.655 (<0.001)* 0.580 (<0.001) 0.637 (<0.001)* –0.198 (0.044)*

OS –0.644 (<0.001) –0.622 (<0.001) –0.618 (<0.001) 0.322 (0.001)

Notes: *Pearson’s correlation analysis; Spearman's correlation analysis for remaining data.

Abbreviations: HIF-1α, hypoxia-inducible factor 1-alpha; TWIST-1, twist family BHLH transcription factor 1; ITGB-1, β1 integrin; Emax, maximum elasticity; Emean, mean

elasticity; OS, oxygen score.
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the response to NACT in BC. Ki-67 is a biological

marker associated with cell proliferation and is regarded

as the traditional marker for predicting the response to

NACT in BC.6 In this study, Ki-67 also showed a good

predictive performance. These results strongly support

previous findings.6,44

This study also showed that a combination of patho-

logical markers can improve the power of single mar-

kers for predicting the response to NACT in BC.

TWIST-1 and Ki-67, which showed the best perfor-

mance for predicting different responses, were combined

into a new predictive marker termed predRCB using

a linear regression model. The results showed that the

performance of predRCB was better than that of the

other biomarkers alone for predicting NACT responses.

In the subgroup analysis, we confirmed that the predic-

tive power of predRCB was not influenced by tumor

classification, subtype, or NACT regimens. This pro-

vided strong evidence that our conclusions had general-

izability and validity.

Clinically, identifying a method to reverse or block

chemoresistance in BC with high tissue stiffness is

important. In in vitro cultures mimicking stiffness

changes during BC progression, alterations in ECM rigid-

ity might aberrantly activate certain mechanotransduction

pathways, resulting in various tumorigenic processes,

such as sustained proliferation, EMT, invasion, metasta-

sis, and resistance to cell death.31,45-47 However, altera-

tions in ECM rigidity cannot be induced in the human

body because cells normally exist in a physiologic envir-

onment with specific rigidity, pressure, and strain.

Several studies have investigated whether markers such

as HIF-1α, TWIST-1, and ITGB-1 can be used as ther-

apeutic targets to reverse or block resistance to che-

motherapy in BC. Some of the results are as follows. (i)

HIF-1α: HIF-1α inhibitors such as digoxin and acriflavine

show convincing potential therapeutic effects by decreas-

ing tumor growth, vascularization, invasion, and metas-

tasis, as well as chemoresistance in animal models

of BC.48,49 (ii) TWIST-1: TWIST-1 is an excellent target

for modulating chemoresistance in BC because it is rarely

expressed in normal human tissues.50 Therefore, systemic

use of TWIST-1 inhibitors could have a significant effect

on TWIST-1-overexpressing cancer cells with minimal

side effects in other tissues. The inactivation of TWIST-

1 by siRNA technology or chemotherapeutic approaches

was shown to be successful,51–53 and several inhibitors

have been identified to antagonize the upstream orT
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downstream molecules of TWIST signaling.54 Recently,

cancer stem cell-targeted nanoparticle delivery has

received increased attention. Finlay et al55 verified the

in vivo efficacy of mesoporous silica nanoparticle

(MSN)-delivered siRNA in a mouse model of melanoma.

Similar data were reported in ovarian cancer, where the

tumor burden was significantly reduced by 75% in mice

treated with siTWIST MSN plus chemotherapy compared

with the control chemotherapy-only treated mice.56 (iii)

ITGB-1: Increasing evidence suggests that ITGB-1 is

a potential molecular therapeutic target in BC.57,58 The

therapeutic potential of targeting ITGB-1 using various

strategies or inhibitors, such as monoclonal antibodies,

peptides, or synthetic peptides, and siRNA is being inves-

tigated. Inhibitors that silence ITGB-1 were shown to

suppress tumor progression and metastasis in vitro and

in vivo.

However, most of these studies are based on basic

experiments. Further clinical trials are warranted to deter-

mine whether HIF-1α/TWIST-1/ITGB-1 targeting strate-

gies can reverse or block the chemotherapeutic resistance

of BC alone or in combination with current therapeutic

regimens.

The present study had several limitations. First, the

study was based on a relatively small sample size.

Second, the endogenous expression of HIF-1α, TWIST-

1, ITGB-1, and Ki-67 in the tumor (as a three-

dimensional structure) showed an uneven distribution.

The expression of HIF-1α, TWIST-1, ITGB-1, and Ki-

67 was assessed using tissues obtained by CNB.

However, local samples obtained by CNB do not fully

reflect the heterogeneity of the entire tumor. Taking the

average of multi-site biopsies might reduce this differ-

ence. Finally, disease-free survival and overall survival

analyses could not be performed because of the short

follow-up period. A prospective study with a longer fol-

low-up period should be conducted to confirm the present

results.

Conclusion
First, higher HIF-1α, TWIST-1, and ITGB-1 expression

levels were strongly correlated with higher tumor stiff-

ness and lower OS in BC patients. Second, HIF-1α,

TWIST-1, and ITGB-1 expression exhibited a good

diagnostic performance for the early prediction of

NACT responses in BC. Third, this study highlighted

the potential utility of predRCB, which could improve

the diagnostic performance of single markers for the

early prediction of different pathological responses and

Figure 4 ROC curves of HIF-1α, TWIST-1, ITGB-1, Ki-67 index and predRCB for predicting (A) a favorable response to NACT and (B) resistance to NACT.

Abbreviations: HIF-1α, hypoxia-inducible factor 1-alpha; ITGB-1, β1 integrin; TWIST-1, twist family BHLH transcription factor 1; RCB, residual cancer burden; ROC,

receiver operating characteristic.
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assist in clinical treatment decisions in patients with BC

receiving NACT.

Abbreviations
AUC, area under the curve; BC, breast cancer; CNB, core

needle biopsy; Deoxy-Hb, deoxygenated hemoglobin;

DOBI, dynamic optical breast imaging; ECM, extracellu-

lar matrix; Emax, maximum elasticity; Emean, mean elas-

ticity; FEC, 5-fluorouracil, epirubicin, and

cyclophosphamide; HA, hyaluronan; HIF-1α, hypoxia-

inducible factor 1-alpha; ITGB-1, β1 integrin; NACT,

neoadjuvant chemotherapy; OS, oxygen score; Oxy-Hb,

oxygenated hemoglobin; PCR, pathological complete

response; RCB, residual cancer burden; ROC, receiver

operating characteristic; ROI, region of interest; SWE,

shear-wave elastography; T-Hb, total hemoglobin;

TWIST-1, twist family BHLH transcription factor 1;

TEC, docetaxel, epirubicin, and cyclophosphamide; TE,

docetaxel and epirubicin; TH, docetaxel and herceptin;

US, ultrasound.
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Table 5 Performance of predRCB for Predicting Responses to NACT in the Different Subgroups

Subtype Favourable Response Resistant Response

AUC SE 95% CI P value AUC SE 95% CI P value

Molecular subtype

Luminal A 1.00 0.000 1.00–1.00 0.005 0.93 0.07 0.79–1.00 0.01

Luminal B 0.90 0.044 0.81–0.98 <0.001 0.91 0.04 0.83–0.99 <0.001

Triple negative 0.89 0.101 0.69–1.00 0.010 – – – –

HER2 0.95 0.05 0.85–1.00 0.003 0.78 0.17 0.44–1.00 0.20

Pathological types

Invasive ductal carcinoma 0.86 0.04 0.78–0.94 <0.001 0.92 0.03 0.86–0.97 <0.001

Invasive lobular carcinoma 1.00 0.00 1.00–1.00 0.014 0.95 0.07 0.81–1.00 0.03

Grade

Grade 2 0.88 0.04 0.81–0.95 <0.001 0.90 0.03 0.84–0.97 <0.001

Grade 3 1.00 0.00 1.00–1.00 0.005 1.00 0.00 1.00–1.00 0.003

Tumor size (cT)

T1 0.57 0.20 0.19–0.96 0.770 – – – –

T2 0.84 0.05 0.75–0.94 <0.001 0.88 0.04 0.80–0.96 <0.001

T3 1.00 0.00 1.00–1.00 <0.001 0.96 0.03 0.90–1.00 <0.001

NACT regimens:

TEC 0.93 0.03 0.86–1.00 <0.001 0.92 0.03 0.85–0.98 <0.001

TE 0.64 0.18 0.30–0.99 0.450 1.00 0.00 1.00–1.00 0.114

FEC – – – – 0.79 0.15 0.48–1.00 0.242

TH 0.75 0.11 0.54–0.96 0.261 1.00 0.00 1.00–1.00 0.008

Note: “–“: Unable to calculate due to small sample size after subgrouping.

Abbreviations: NACT, neoadjuvant chemotherapy; TEC, (docetaxel, epirubicin, and cyclophosphamide); TE (docetaxel and epirubicin); FEC (5-fluorouracil, epirubicin, and

cyclophosphamide); TH (docetaxel and herceptin); AUC, area under the receiver operating characteristic curve; SE, standard error. CI, confidence interval.
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