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S1. Calculation of the correlation between the two sets of fixed number of random and

independent variables

For the calculation of CC,,, the entire dataset of images is split into two equal parts. Both halves are
processed independently to arrive at two separate sets of intensities. The correlation between these
two half-datasets is calculated in resolution shells, to give a CC,, for each shell. The values of CC;,,
are then used to help define a resolution cut-off and the data are truncated at a resolution where CC,
falls below an arbitrary value. The expectation is that for strong, accurately determined data, the two
half-datasets will show a strong correlation, whereas for noise, the correlation will be weak.
However, it is important to put numbers on this expectation. Thus, we need to know the probability
that a certain CC,, arises from pure noise. In other words, we need to quantify the significance level

of any calculated CC,, value.

In the following we derive a formula for the probability of a nonzero correlation from pure
coincidence. To this end, we employ a noise model for the integrated intensities that allows the
calculation of a significance level. To obtain a significant value for CC,,, and thus to define a
resolution cut-off it is required that the calculated correlation value exceeds the correlation arising

from random coincidence.

The correlation of noise can be understood as a random variable Z that is calculated from the
covariance of two random variables X and Y, which are the individual intensities in the two half
datasets:

Cov[X,Y]
00y

Z = Corr[X,Y] =
Where the covariance is defined as

CovlX,Y] = p [0, yil O — ) (i — 1y)
i=1,..,N
With the assumption that the integrated intensities from the background noise x; and y; are identically

and independently distributed, this results in the definition of the random variable Z as follows:

7 =l z (xi —.Ui)<)’i _Hy>
N i=1,..N Ox Ty

In the following, we derive the distribution of the correlation value as a random variable and the

parameters of this distribution using the algebra of random variables.

Z «? [z, 0]

The individual x; and y; values are calculated as the mean values of the integrated intensities for the

identical Miller indices X; and .
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1
xi:M z X,

j=1,..M
These values display a normal, i.e. Gaussian distribution, since the Central Limit Theorem states that
the sum of identically and independently distributed random variables, that need not themselves be
normal distributed, approaches a normal distribution with a new mean and new standard deviation for

the case that the number of summands approaches infinity; i.e.:
X; « Gauss[uxi,axi]

The mean intensities are calculated as the mean of a set of intensity measurements, i.e. the normalized
sum of random variables. Hence, for a large number of observations of an intensity, the probability
distribution of the mean value can be approximated by a normal distribution with appropriate mean
and standard deviation parameters.
Since, given a large number of observations, we can apply the Central Limit Theorem to the
approximation of the probability distribution of the mean intensity values, we are free to choose the
probability distribution for the individual values. If we assume that these values ¥, are produced by
uncorrelated noise, we can choose the probability distribution to simply be uniform on the interval of
[0,1] for the individual measurements ;.

1

X, o« Uniform[{0,1}] = Uniform [,LTJ =0.5,5, = R

According to the Central Limit Theorem, the probability distribution for the sum of many random

variables is Gaussian with new mean and standard deviation parameters, where ji is the mean of the

individual measurements, and & their standard deviation.

X’;:Zj{l

j=1,.M

X « Gauss[uyl = Mf,ox, = \/F&]

Scaling this random variable changes the mean and the standard deviation but not the distribution.
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5 o
X; X Gauss [uxi = [, 0y, = \/_M]
Shifting and scaling the random variable again changes the mean and standard deviation of the
distribution to zero mean and a standard deviation of 1.
Xi — fy; X Gauss[O, axi]
Xi —

X; = X7 Py « Gauss[0,1]
Oy,

Now the correlation value random variable Z can be understood as the sum of products of the

individual observables for the different mean integrated reflection intensities.

1
Z = Corr[X,Y] =5 Z XY
i=1,..,N

Multiplying two standard Gaussian-distributed random variables produces a random variable that has
a different probability distribution. With X; and Y; being gaussian distributed the Z; will follow a
Bessel-K distribution. (The derivation of the probability distribution of a product of two Gaussian-
distributed random variables is shown further below).

X; « Gauss[O, Uxi]

Y; « Gauss[O, ayi]

|Z; 1
Zy =X;-Y; x PDF; |Z;; 0, 0v,] = BesselK |0,

T Oy, Oy, Ox, Oy,
The mean of this distribution is 0 and the standard deviation for Z; amounts to 1, as will be shown

below using the characteristic function.
uuZi =0

— |52 52 —
oz, = |0x,0v, =1

1
Z; < PDFy|Z;; 04, = 1,0y, = 1] = EBesselK[O, 1Z;1]

The sum of many random variables that are Bessel-K distributed can be again approximated by a

normal distributed random variable according to the Central Limit Theorem.
1
Z = Corr[X,Y] =N Z Z;

i=1,N
The summation of Z; produces ¢ which is normally distributed.
¢= z Z;
i=1,N

{ x Gauss[O, \/N]
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Z can now be calculated by scaling the { random variable, and its (Gaussian) probability density

function can now be determined:

Z=Corr[X,Y] ==
orr[X, Y] = ¢

1
Z = Corr|X,Y] « Gauss [,uz =0,0;, = —]
VN

By integrating the probability density function of Z, a general formula for the significance value of
CC,), given the number of reflection intensities /V in a resolution shell and the significance level a
(0.05,0.01,0.001 ...) can be derived:

sig

ccyyg cCl9 —u CC 4+
(1—a) —f PDF,[Z; uz, 0,1dZ = = (E rf |22 T2 prp |22 2
cci \/_O'Z \/_O'Z

Using the previously derived values for the distribution statistics

Uz = 0 and
O-Z=1/\/N

it follows that

(1—a) = Er f[“”zq nd

s — V2InverseErf[(1 — a)]
1/2 — m

The required number N of structure factors in a resolution shell for a significant correlation given a

CC, " value can be calculated from the following formula.

2 - InverseErf[(1 — a)]?

(cea)

These formulae can be used to calculate whether an obtained CC,), given the number of intensities in

NSi9 =

the given resolution shell is statistically significant.
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S$2. Calculation of the PDF for the product of two Gaussian random variables

In this section, we show how to obtain the probability distribution for the product of two random

variables using the algebra of random variables.

The probability density function (PDF) is defined as the derivative of the cumulative density function
(CDF).

d
PDFy[z] = E(CDFZ[Z])

For the case that the random variable Z is defined as the product of two random variables X and Y, the

CDF is defined as follows:
CDF,[z] = J f PDFy [x]PDFy[ylO[z — (x - y)]ldxdy

where 0 is the Heaviside step function.

Using the Fourier transform and the inverse Fourier transform

Flf,x » w] = \/%f f [x]exp[—iwx]dx

Flg,w-x]= \/%f_o:og [w]exp[iwx]dw

FUFIf,x > 0], 0 - x] = flx]
and the linearity property of the Fourier transform
Fla-f+b-hx > w]l=a-F[f,x >w]+b-Flhx - w]

we can perform this integration:

CDF,[z] = f ; f " PDF, [XPDF, yIF-[F[8[z - (x - y)], z > w], @ — z]dxdy

CDF4[z] =F1 Um fooPDFX [x]PDFy[y]F[O[z — (x - ¥)],z = w]dxdy,w — z

The Fourier transform of the unit step function @ is obtained as follows:

FlOlz— (x-y)],z > w] = \/2_7;(1) exp[—iwxy]

Finally, to calculate the PDF for the product of two Gaussian-distributed random variables with their

respective PDFs

PDFy[x] =

exp | ==

PDFy[y] =
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we insert these definitions into the equation

1
CDF,[z] = F 1{[ foo ele ] v 20y]<\/_iexp[—iwxy])dxdy,w—>Z|

V2mo, V2mo, 21

and obtain the following integral after integration and application of the definition of the inverse
Fourier transform given above. This integral does not have a tabulated solution.

—i

\/_f‘”\/_a) ’1+a) 0f0;

Differentiation can be performed within the integral to obtain the probability density function:

CDFy[z

expliwz]dw

PDFy[z] = (CDFz[Z])

—i

¢ 1 )
= \\/_fm\/_w\/mexp[lwz]dw/
! i (expliwz])dw

-5 ———i
2n *Raw [1+w 20705 z

—i

\/_f‘”\/_a) ’1+a) oo}

1

iwexpliwz]dw

expliowz]dw

el

1+ w? O' ay

1 ||
= BesselK |0,
TO,0, 0,0,
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S3. Calculating the mean and standard deviation of a Bessel-K-distributed random variable

using the characteristic function

In the following, we show how the statistics (mean and standard deviation) for an arbitrary probability
distribution can be obtained using the characteristic function of the probability distribution.
The characteristic function is defined as follows:

Cylw] = E[exp[iwz]] = fwPDFZ [z]expliwz]dz

For the case of the Bessel-K distribution this produces:
1

Czlw] =
1+ w?0f0]
The n-th moment is defined as:
m, = fwPDFZ [z] - z"dz
Which is related to the characteristic function by:
n n 1

—_ (_\n
= (Cl0Dwm0 = (D" 7 —
1+ w?oxoy
w=0

The first moment for the Bessel-K distribution can now be derived using:

2.2
[ —woioy
m; = (—)|——— =0
1= <1 + wza,?%%)w:o

my = ="

And the second moment can be derived using this relation.

2 4 _4 2.2
3w=ox 0y, Ox 0y

m, = (=0)? = o207

5 3
(1+ wzafaf)f (1+ wza,?af)f mo

The variance and therefore the standard deviation (as the square root of the variance) can be derived
from the difference of the 2™ and (squared) 1*' moments:

varg, = my — (my)* = ofoy



