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S1. Calculation of the correlation between the two sets of fixed number of random and 
independent variables 

For the calculation of CC1/2, the entire dataset of images is split into two equal parts. Both halves are 

processed independently to arrive at two separate sets of intensities. The correlation between these 

two half-datasets is calculated in resolution shells, to give a CC1/2 for each shell. The values of CC1/2 

are then used to help define a resolution cut-off and the data are truncated at a resolution where CC1/2 

falls below an arbitrary value. The expectation is that for strong, accurately determined data, the two 

half-datasets will show a strong correlation, whereas for noise, the correlation will be weak. 

However, it is important to put numbers on this expectation. Thus, we need to know the probability 

that a certain CC1/2 arises from pure noise. In other words, we need to quantify the significance level 

of any calculated CC1/2 value. 

 

In the following we derive a formula for the probability of a nonzero correlation from pure 

coincidence. To this end, we employ a noise model for the integrated intensities that allows the 

calculation of a significance level. To obtain a significant value for CC1/2 and thus to define a 

resolution cut-off it is required that the calculated correlation value exceeds the correlation arising 

from random coincidence. 

 

The correlation of noise can be understood as a random variable Z that is calculated from the 

covariance of two random variables X and Y, which are the individual intensities in the two half 

datasets: ܼ = ,ሾܺݎݎ݋ܥ ܻሿ = ,ሾܺݒ݋ܥ ܻሿߪ௫ߪ௬  

Where the covariance is defined as ݒ݋ܥሾܺ, ܻሿ = ෍ ௜ୀଵ,…,ே݌ ሾݔ௜, ௜ݔ௜ሿሺݕ − ௜ݕ௫ሻ൫ߤ −  ௬൯ߤ

With the assumption that the integrated intensities from the background noise xi and yi are identically 

and independently distributed, this results in the definition of the random variable Z as follows: ܼ = 1ܰ ෍ ൬ݔ௜ − ௫ߪ௜ߤ ൰௜ୀଵ,…,ே ቆݕ௜ − ௬ߪ௬ߤ ቇ 

In the following, we derive the distribution of the correlation value as a random variable and the 

parameters of this distribution using the algebra of random variables. ܼ ∝? ሾߤ௓,  ௓ሿߪ
 

The individual xi and yi values are calculated as the mean values of the integrated intensities for the 

identical Miller indices ݔప෥  and ݕప෥ . 
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௜ݔ = ܯ1 ෍ ప෥௝ୀଵ,…,ெݔ  

These values display a normal, i.e. Gaussian distribution, since the Central Limit Theorem states that 

the sum of identically and independently distributed random variables, that need not themselves be 

normal distributed, approaches a normal distribution with a new mean and new standard deviation for 

the case that the number of summands approaches infinity; i.e.: 

௜ݔ  ∝ ,௫೔ߤൣݏݏݑܽܩ  ௫೔൧ߪ
 

The mean intensities are calculated as the mean of a set of intensity measurements, i.e. the normalized 

sum of random variables. Hence, for a large number of observations of an intensity, the probability 

distribution of the mean value can be approximated by a normal distribution with appropriate mean 

and standard deviation parameters. 

Since, given a large number of observations, we can apply the Central Limit Theorem to the 

approximation of the probability distribution of the mean intensity values, we are free to choose the 

probability distribution for the individual values. If we assume that these values ݔఫ෥  are produced by 

uncorrelated noise, we can choose the probability distribution to simply be uniform on the interval of 

[0,1] for the individual measurements ݔఫ෥ ఫ෥ݔ . ∝ ሾ{0,1}ሿ݉ݎ݋݂ܷ݅݊ = ݉ݎ݋݂ܷ݅݊ ൤ߤఫ෥ = 0.5, ఫ෥ߪ = 112൨ 

According to the Central Limit Theorem, the probability distribution for the sum of many random 

variables is Gaussian with new mean and standard deviation parameters, where ߤ෤ is the mean of the 

individual measurements, and ߪ෤ their standard deviation. 

పܺ෩ = ෍ ప෥௝ୀଵ,…,ெݔ  

௑ഢ෪ߤ → ෍ ఫ෥௝ୀଵ,…,ெߤ = ܯ ⋅  ෤ߤ

௑ഢ෪ߪ → ඨ ෍ ఫ෥ߪ ଶ௝ୀଵ,…,ெ = ܯ√ ⋅  ෤ߪ

పܺ෩ ∝ ௑ഢ෪ߤൣݏݏݑܽܩ = ,෤ߤܯ ௑ഢ෪ߪ = ܯ√ ∙  ෤൧ߪ
Scaling this random variable changes the mean and the standard deviation but not the distribution. ݔ௜ = ܯ1 పܺ෩  

௫೔ߤ → ܯ1 ⋅  ௑ഢ෪ߤ

௫೔ߪ → ܯ1 ⋅  ௑ഢ෪ߪ
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௜ݔ ∝ ݏݏݑܽܩ ൤ߤ௫೔ = ,෤ߤ ௫೔ߪ =  ൨ܯ√෤ߪ

 

Shifting and scaling the random variable again changes the mean and standard deviation of the 

distribution to zero mean and a standard deviation of 1. ݔ௜ − ௫೔ߤ ∝ ,0ൣݏݏݑܽܩ  ௫೔൧ߪ
௜ܺ = ௜ݔ − ௫೔ߪ௫೔ߤ ∝  ሾ0,1ሿݏݏݑܽܩ

Now the correlation value random variable ܼ can be understood as the sum of products of the 

individual observables for the different mean integrated reflection intensities. ܼ = ,ሾܺݎݎ݋ܥ ܻሿ = 1ܰ ෍ ௜ܺ௜ୀଵ,…,ே ⋅ ௜ܻ 
 

Multiplying two standard Gaussian-distributed random variables produces a random variable that has 

a different probability distribution. With Xi and Yi being gaussian distributed the Zi will follow a 

Bessel-K distribution. (The derivation of the probability distribution of a product of two Gaussian-

distributed random variables is shown further below). 

௜ܺ ∝ ,0ൣݏݏݑܽܩ ௑೔൧ ௜ܻߪ ∝ ,0ൣݏݏݑܽܩ  ௒೔൧ߪ
௜ܼ = ௜ܺ ⋅ ௜ܻ ∝ ௓೔ൣܨܦܲ ௜ܼ; ,௑೔ߪ ௒೔൧ߪ = ௒೔ߪ௑೔ߪߨ1 ܭ݈݁ݏݏ݁ܤ ቈ0, | ௜ܼ|ߪ௑೔ߪ௒೔቉ 

The mean of this distribution is 0 and the standard deviation for ௜ܼ amounts to 1, as will be shown 

below using the characteristic function. ߤ௓೔ = ௓೔ߪ 0 = ටߪ௑೔ଶ ௒೔ଶߪ = 1 

௜ܼ ∝ ௓೔ൣܨܦܲ ௜ܼ; ௑೔ߪ = 1, ௒೔ߪ = 1൧ = ߨ1 ,ሾ0ܭ݈݁ݏݏ݁ܤ | ௜ܼ|ሿ 
The sum of many random variables that are Bessel-K distributed can be again approximated by a 

normal distributed random variable according to the Central Limit Theorem. ܼ = ,ሾܺݎݎ݋ܥ ܻሿ = 1ܰ ෍ ௜ܼ௜ୀଵ,,ே  

The summation of Zi produces ߞ which is normally distributed. ߞ = ෍ ௜ܼ௜ୀଵ,,ே  

ߞ ∝ ,0ൣݏݏݑܽܩ √ܰ൧ 
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ܼ can now be calculated by scaling the ߞ random variable, and its (Gaussian) probability density 

function can now be determined: ܼ = ,ሾܺݎݎ݋ܥ ܻሿ = 1ܰ  ߞ

ܼ = ,ሾܺݎݎ݋ܥ ܻሿ ∝ ݏݏݑܽܩ ൤ߤ௓ = 0, ௓ߪ = 1√ܰ൨ 

 

By integrating the probability density function of ܼ, a general formula for the significance value of 

CC1/2 given the number of reflection intensities N in a resolution shell and the significance level α 

(0.05,0.01,0.001 ...) can be derived: 

ሺ1 − ሻߙ = න ௓஼஼భܨܦܲ మ⁄ೞ೔೒
ି஼஼భ మ⁄ೞ೔೒ ሾܼ; ,௓ߤ ௓ሿܼ݀ߪ = 12 ൭݂ݎܧ ൥ܥܥଵ ଶ⁄௦௜௚ − ௓ߪ௓√2ߤ ൩ + ݂ݎܧ ൥ܥܥଵ ଶ⁄௦௜௚ + ௓ߪ௓√2ߤ ൩൱ 

Using the previously derived values for the distribution statistics ߤ௓ = 0 and ߪ௓ = 1 √ܰ⁄  

 

it follows that ሺ1 − ሻߙ = ݂ݎܧ ൤஼஼భ మ⁄ ⋅√ே√ଶ ൨ and 

ଵܥܥ  ଶ⁄௦௜௚ = ሾሺ1݂ݎܧ݁ݏݎ݁ݒ݊ܫ2√ − ܰ√ሻሿߙ  

The required number Nsig of structure factors in a resolution shell for a significant correlation given a 

CC1/2
sig value can be calculated from the following formula. ܰ௦௜௚ = 2 ∙ ሾሺ1݂ݎܧ݁ݏݎ݁ݒ݊ܫ − ଵܥܥሻሿଶቀߙ ଶ⁄௦௜௚ቁଶ  

These formulae can be used to calculate whether an obtained CC1/2 given the number of intensities in 

the given resolution shell is statistically significant. 
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S2. Calculation of the PDF for the product of two Gaussian random variables 

 

In this section, we show how to obtain the probability distribution for the product of two random 

variables using the algebra of random variables. 

 

The probability density function (PDF) is defined as the derivative of the cumulative density function 

(CDF). ܲܨܦ௓ሾݖሿ = ݖ݀݀ ሺܨܦܥ௓ሾݖሿሻ 

For the case that the random variable Z is defined as the product of two random variables X and Y, the 

CDF is defined as follows: ܨܦܥ௓ሾݖሿ = න න ௑ஶܨܦܲ
ିஶ

ஶ
ିஶ ሾݔሿܲܨܦ௒ሾݕሿ߆ሾݖ − ሺݔ ⋅  ݕ݀ݔሻሿ݀ݕ

where ߆ is the Heaviside step function. 

Using the Fourier transform and the inverse Fourier transform ܨሾ݂, ݔ → ߱ሿ = ߨ2√1 න ݂ஶ
ିஶ ሾݔሿ݁݌ݔሾ−݅߱ݔሿ݀ݔ 

,ଵሾ݃ିܨ ߱ → ሿݔ = ߨ2√1 න ݃ஶ
ିஶ ሾ߱ሿ݁݌ݔሾ݅߱ݔሿ݀߱ ିܨଵሾܨሾ݂, ݔ → ߱ሿ, ߱ → ሿݔ = ݂ሾݔሿ 

and the linearity property of the Fourier transform ܨሾܽ ⋅ ݂ + ܾ ⋅ ℎ, ݔ → ߱ሿ = ܽ ⋅ ,ሾ݂ܨ ݔ → ߱ሿ + ܾ ⋅ ,ሾℎܨ ݔ → ߱ሿ 
we can perform this integration: ܨܦܥ௓ሾݖሿ = න න ௑ஶܨܦܲ

ିஶ
ஶ

ିஶ ሾݔሿܲܨܦ௒ሾݕሿିܨଵሾܨሾ߆ሾݖ − ሺݔ ⋅ ,ሻሿݕ ݖ → ߱ሿ, ߱ →  ݕ݀ݔሿ݀ݖ

ሿݖ௓ሾܨܦܥ = ଵିܨ ቈන න ௑ஶܨܦܲ
ିஶ

ஶ
ିஶ ሾݔሿܲܨܦ௒ሾݕሿܨሾ߆ሾݖ − ሺݔ ⋅ ,ሻሿݕ ݖ → ߱ሿ݀ݕ݀ݔ, ߱ →  ቉ݖ

The Fourier transform of the unit step function ߆ is obtained as follows: ܨሾ߆ሾݖ − ሺݔ ⋅ ,ሻሿݕ ݖ → ߱ሿ = ߱ߨ2√݅−  ሿݕݔ߱݅−ሾ݌ݔ݁
Finally, to calculate the PDF for the product of two Gaussian-distributed random variables with their 

respective PDFs 

ሿݔ௑ሾܨܦܲ = ݌ݔ݁ ൤−ݕଶ2ߪ௫ଶ ൨√2ߪߨ௫  

ሿݕ௒ሾܨܦܲ = ݌ݔ݁ ቈ−ݕଶ2ߪ௬ଶ ቉√2ߪߨ௬  
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we insert these definitions into the equation 

ሿݖ௓ሾܨܦܥ = ଵିܨ ⎣⎢⎢⎢
⎡න න ݌ݔ݁ ൤−ݔଶ2ߪ௫ଶ ൨√2ߪߨ௫

ஶ
ିஶ

ஶ
ିஶ

݌ݔ݁ ቈ−ݕଶ2ߪ௬ଶ ቉√2ߪߨ௬ ൬ ߨ2√݅− ሿ൰ݕݔ߱݅−ሾ݌ݔ݁ ,ݕ݀ݔ݀ ߱ → ⎥⎥⎥⎦ݖ
⎤
 

and obtain the following integral after integration and application of the definition of the inverse 

Fourier transform given above. This integral does not have a tabulated solution. ܨܦܥ௓ሾݖሿ = ߨ2√1 න ට1߱ߨ2√݅− + ߱ଶߪ௫ଶߪ௬ଶ
ஶ

ିஶ  ሿ݀߱ݖሾ݅߱݌ݔ݁

Differentiation can be performed within the integral to obtain the probability density function:  ܲܨܦ௓ሾݖሿ = ݖ݀݀ ሺܨܦܥ௓ሾݖሿሻ
 = ݖ݀݀ ⎝⎛ ߨ2√1 න ට1߱ߨ2√݅− + ߱ଶߪ௫ଶߪ௬ଶ

ஶ
ିஶ = ⎞⎠ሿ݀߱ݖሾ݅߱݌ݔ݁ ߨ2√1 න ට1߱ߨ2√݅− + ߱ଶߪ௫ଶߪ௬ଶ

ஶ
ିஶ ݖ݀݀ ሺ݁݌ݔሾ݅߱ݖሿሻ݀߱

 = ߨ2√1 න ට1߱ߨ2√݅− + ߱ଶߪ௫ଶߪ௬ଶ
ஶ

ିஶ ሿ݀߱ݖሾ݅߱݌ݔ݁߱݅
 = ߨ2√1 න ට1ߨ2√1 + ߱ଶߪ௫ଶߪ௬ଶ

ஶ
ିஶ ሿ݀߱ݖሾ݅߱݌ݔ݁

 = ௬ߪ௫ߪߨ1 ܭ݈݁ݏݏ݁ܤ ቈ0, ௬቉ߪ௫ߪ|ݖ|
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S3. Calculating the mean and standard deviation of a Bessel-K-distributed random variable 
using the characteristic function 

In the following, we show how the statistics (mean and standard deviation) for an arbitrary probability 

distribution can be obtained using the characteristic function of the probability distribution. 

The characteristic function is defined as follows: ܥ௓ሾ߱ሿ = ሿ൧ݖሾ݅߱݌ݔ݁ൣܧ = න ௓ஶܨܦܲ
ିஶ ሾݖሿ݁݌ݔሾ݅߱ݖሿ݀ݖ 

For the case of the Bessel-K distribution this produces: ܥ௓ሾ߱ሿ = 1ට1 + ߱ଶߪ௫ଶߪ௬ଶ 

The n-th moment is defined as: ݉௡ = න ௓ஶܨܦܲ
ିஶ ሾݖሿ ⋅  ݖ௡݀ݖ

Which is related to the characteristic function by: 

݉௡ = ሺ−݅ሻ௡ ݀௡݀߱௡ ሺܥ௓ሾ߱ሿሻఠୀ଴ = ሺ−݅ሻ௡ ݀௡݀߱௡ ⎝⎛ 1ට1 + ߱ଶߪ௫ଶߪ௬ଶ⎠⎞ఠୀ଴
 

The first moment for the Bessel-K distribution can now be derived using: ݉ଵ = ሺ−݅ሻ ቆ ௬ଶ1ߪ௫ଶߪ߱− + ߱ଶߪ௫ଶߪ௬ଶቇఠୀ଴ = 0 

And the second moment can be derived using this relation. 

݉ଶ = ሺ−݅ሻଶ ൮ 3߱ଶߪ௫ସߪ௬ସ൫1 + ߱ଶߪ௫ଶߪ௬ଶ൯ହଶ − ௬ଶ൫1ߪ௫ଶߪ + ߱ଶߪ௫ଶߪ௬ଶ൯ଷଶ൲
ఠୀ଴

=  ௬ଶߪ௫ଶߪ

 

The variance and therefore the standard deviation (as the square root of the variance) can be derived 

from the difference of the 2nd and (squared) 1st moments: ݎܽݒ௓೔ = ݉ଶ − ሺ݉ଵሻଶ = ௓೔ߪ ௬ଶߪ௫ଶߪ = ටߪ௫ଶߪ௬ଶ 


