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Abstract

Influenza A virus (IAV) infection during pregnancy initiates significant aortic endothelial and

vascular smooth muscle dysfunction, with inflammation and T cell activation, but the details

of the mechanism are yet to be clearly defined. Here we demonstrate that IAV disseminates

preferentially into the perivascular adipose tissue (PVAT) of the aorta in mice. IAV mRNA

levels in the PVAT increased at 1–3 days post infection (d.p.i) with the levels being ~4–8

fold higher compared with the vessel wall. IAV infection also increased Ly6Clow patrolling

monocytes and Ly6Chigh pro-inflammatory monocytes in the vessel wall at 3 d.p.i., which

was then followed by a greater homing of these monocytes into the PVAT at 6 d.p.i. The vas-

cular immune phenotype was characteristic of a “vascular storm”- like response, with

increases in neutrophils, pro-inflammatory cytokines and oxidative stress markers in the

PVAT and arterial wall, which was associated with an impairment in endothelium-dependent

relaxation to acetylcholine. IAV also triggered a PVAT compartmentalised elevation in CD4+

and CD8+ activated T cells. In conclusion, the PVAT of the aorta is a niche that supports IAV

dissemination and a site for perpetuating a profound innate inflammatory and adaptive T cell

response. The manifestation of this inflammatory response in the PVAT following IAV infec-

tion may be central to the genesis of cardiovascular complications arising during pregnancy.

Author summary

Influenza A virus (IAV) infection remains a major cause of significant disease during

pregnancy. IAV infection in pregnancy results in virus dissemination from the lung to the
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systemic vasculature, thereby initiating profound vascular inflammation and T cell activa-

tion that leads to vascular damage. Currently, the details of the mechanism that facilitates

this vascular pathology and the influence of IAV dissemination to the vasculature on the

perivascular adipose tissue (PVAT) is not clearly defined. Here, we show that IAV dissem-

inates to the PVAT compartment of the vessel at a much larger rate than the vessel wall.

We found that IAV infection increased PVAT inflammation characterised by immune

cell infiltration, oxidative stress and pro-inflammatory cytokines. This was accompanied

by a preferential immune T cell activation in the PVAT. We also found that this vascular

inflammatory burden results in vascular endothelial dysfunction that is characterised by

an impairment in endothelium dependent relaxation. Our study provides new insights

into how IAV utilises the PVAT to promote the vascular inflammatory pathology that dis-

rupts the vasculature in pregnancy and lead to pregnancy complications.

Introduction

Pregnancy is a risk factor for the severe illness associated with influenza A virus (IAV) infec-

tion. The magnitude of the impact on pregnant women during the 1918, 1957, 1968 and 2009

influenza pandemics is highlighted by significant and disproportionately high mortality rates

in pregnant women [1]. Seasonal influenza epidemics are also a risk factor for severe disease,

hospitalisation and mortality, with IAV-infected pregnant women being 3 to 4 times more

likely to be hospitalised due to acute cardiopulmonary events [2]. Morbidity is also increased

with advancing gestation, and influenza-infected pregnant women in their third trimester are

5 times more likely to be hospitalised than in the first and second trimester [3]. Moreover, the

risk of IAV-induced respiratory failure is increased in pregnant women with underlying co-

morbidities, such as hypertension or cardiovascular disease [4]. Pregnancy is a unique state of

immunomodulation, which is thought to occur due to the adaptation of the maternal immune

system to prevent the rejection of the semi-allogenic fetus, whilst maintaining its ability to clear

pathogens. It is postulated that pregnancy-related immunomodulation impacts on IAV-

induced disease progression, with increased IAV replication and reduced antiviral gene expres-

sion in peripheral blood mononuclear cells (PBMCs), when isolated from pregnant women in

their third trimester [5]. Moreover, pregnancy is associated with significant physiological

changes to the cardiovascular system, to meet the oxygen and nutrient demands of the develop-

ing fetus. Given that IAV-infected pregnant women in their third trimester are more likely to

be hospitalised, an increased demand on the maternal cardiovascular system, particularly as

pregnancy progresses, may also play a role in increased IAV morbidity in pregnant women.

How pregnancy-related immunomodulation and changes to the cardiovascular system

affect IAV disease progression in pregnant women remains poorly understood. Our recent

study showed that IAV infection significantly disrupts the normal functioning of the thoracic

aorta [6]. We demonstrated that IAV disseminates from the lung into the thoracic aorta to

induce a “vascular storm” characterised by increases in inflammatory Ly6G+ neutrophils,

endothelial patrolling Ly6Clow and pro-inflammatory Ly6Chigh monocytes, as well as CD4+

and CD8+ T cells. This inflammation was also associated with elevations in inflammatory cyto-

kine expression and oxidative stress in the vessel. We observed substantial oxidative stress

within the PVAT of the aorta. The vascular storm resulted in vascular endothelial and smooth

muscle dysfunction, which consisted of an impairment in nitric oxide (NO)-dependent vasor-

elaxation [6]. Although our study highlighted a novel respiratory-vascular disease axis of path-

ogenesis driven by IAV in pregnancy, the underlying mechanisms remained largely

undefined. Here, we hypothesised that the PVAT, which is a major site of immune activation
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in other cardiovascular diseases such as atherosclerosis [7,8] and hypertension [9,10], plays a

significant role in maternal IAV pathogenesis.

The PVAT is a component of the aorta, part of the tunica externa, which also houses the

periadventitial space and these are paramount for vascular function. The aorta is also com-

prised of two additional structural layers, which are regulators of its function: Tunica intima,

the inner most layer housing the endothelium, and the tunica media—the smooth muscle [11].

The endothelium is a single cell layer that physiologically functions to regulate vessel tone, vas-

cular homeostasis, neutrophil recruitment, and platelet and leukocyte interactions [12]. More-

over, the endothelial cells release vasoactive factors that function locally to dilate or constrict

smooth muscle cells within arterial walls, to regulate blood flow and in small resistance blood

vessels, the blood pressure [13,14]. The endothelium and smooth muscle, are well regarded to

influence vascular pathogenesis, due to their roles in channelling and signalling vasoactive NO

[15]. Nevertheless, in vascular pathologies such as hypertension, the presence of immune cells,

adhesion molecules and oxidative stress, creates an inflammatory milieu in the vasculature

that dampens NO availability leading to vascular/endothelial dysfunction [16]. Human and

vascular disease preclinical animal models have focused mainly on endothelial inflammation

as a key initiator of vascular endothelial dysfunction, but only more recently, has the contribu-

tion of the PVAT in the pathogenesis been considered.

Similar to the endothelium, the PVAT directly regulates vascular tone via the release of key

substances including adipocyte derived relaxing factors (ADRFs) that modulate vessel function

and homeostasis [17]. Anatomically, PVAT surrounds blood vessels and shares some morpho-

logical and functional similarities with brown adipose tissue (BAT) such as the regulation of

metabolic activities [10,18]. The prototypical role of the PVAT was mechanical support of the

vessel [17,19], but recent evidence extends the role of the PVAT into an immune mechanistic

role. For example, the PVAT contributes to the modulation of vascular function in chronic dis-

ease states by contributing to inflammation and immune activation [10]. In atherosclerotic apo-

lipoprotein E-/- (APOE-/-) mice, PVAT inflammation precedes atherosclerotic plaque formation

and the development of oxidative stress and endothelial dysfunction [7]. Moreover, in hyperten-

sion, the PVAT initiates endothelial inflammation by accumulating and activating immune T

cells and triggering oxidative stress to drive endothelial dysfunction [20–22]. A key mechanism

of how the PVAT drives chronic vascular disease is via the release of paracrine factors [10]

including the pro-inflammatory cytokines, tumour necrosis factor α (TNF-α) and interleukin 6

(IL-6), both of which negatively affect the vascular smooth muscle cells (VSMCs) and endothelial

cells, resulting in the initiation of vascular inflammation [16,18]. This inflammatory PVAT phe-

notype serves as an important trigger for endothelial dysfunction. Although the vascular inflam-

matory characteristics occurring in chronic disease states such as hypertension are reminiscent

of those observed in our IAV-infected pregnancy mouse model [6], the pathological involve-

ment of the PVAT in IAV-induced endothelial dysfunction in pregnancy remains unknown.

In the present study, we utilised a well-characterised pregnant mouse model of IAV infec-

tion to establish: (i) whether IAV infects the PVAT of the aorta following intranasal infection

in mice; (ii) if the immune cell profile within the vessel and PVAT and immune T cell activa-

tion is occurring within the PVAT in a manner analogous to that observed in hypertension.

We show IAV disseminates into the PVAT at 1 day post infection (d.p.i) and this was at a sig-

nificantly greater magnitude than that observed in the arterial wall. Endothelial dysfunction of

the aorta was observed as early as 1 d.p.i. Pro-inflammatory monocytes and neutrophils infil-

trated the PVAT of the aorta and to a lesser degree the wall of the aorta, however, the mono-

cyte response occurred firstly within the vessel wall. Furthermore, a predominant infiltration

and activation of T cells in the PVAT occurred following IAV infection without any discern-

ible T cell homing to the arterial wall. This suggests that during pregnancy the PVAT is a
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critical vascular niche for IAV infection, and culminates in an exacerbated inflammatory vas-

cular immune response that can cause profound downstream pathogenesis.

Results

Influenza A virus infection in pregnancy results in greater viral

dissemination to perivascular adipose tissue versus vessel wall

We recently reported that IAV disseminates into the aorta to trigger a vascular inflammatory

response and endothelial dysfunction in pregnant mice [6]. The detection of IAV mRNA tran-

scripts in maternal thoracic aorta at 3 d.p.i prompted us to investigate the distribution of IAV

into the arterial wall and PVAT of the aorta. Viral dissemination was measured by real-time

PCR to detect the presence of viral polymerase acidic protein (PA) mRNA. Samples that had

Ct values less than 31 was considered IAV positive. In the arterial wall, detection of viral PA

indicated that IAV dissemination occurred at 1 d.p.i (Fig 1A). Viral PA mRNA load was con-

sistently significantly greater in the PVAT than compared to the arterial wall at 1, 3 and 6 d.p.i

(Fig 1A and S1 Table). The Ct values between PVAT and arterial wall accounts for ~4–8 fold

higher expression within the PVAT. Viral PA Ct values were further analysed by normalising

to a housekeeping gene and assessed for statistical differences. Notable statistical differences

and trends were observed in both the arterial wall and PVAT (Fig 1B and 1C). IAV dissemina-

tion was confirmed using immunofluorescence for detection of IAV nucleoprotein (NP). NP

was detected within the arterial wall as well as the periadventitial space at 1, 3 and 6 d.p.i (Figs

1D and S1). Interestingly, in the PVAT, IAV dissemination also occurred as early as 1 d.p.i (S2

Fig) but no discernible elevation at 6 h post-infection (h.p.i). IAV NP was also detected in the

PVAT at 3 and 6 d.p.i, with peak detection at 3 d.p.i and a subsequent decline in viral NP at 6 d.

p.i (Fig 1E). Interestingly, qPCR analysis of viral load in the heart tissue revealed a significant

increase in IAV dissemination to the heart. This finding suggests that the heart could be signifi-

cantly impacted by IAV infection in pregnancy, but this warrants further investigation (S4 Fig).

Therefore, IAV accumulates to a greater degree in the PVAT versus the arterial wall, suggesting

that the PVAT offers a more conducive environment for the virus than the arterial wall.

Influenza A virus infection during pregnancy drives early onset endothelial

dysfunction

Given that IAV disseminates as early as 1 d.p.i into the arterial wall and PVAT, we next per-

formed functional assessments of the aorta using wire myography to establish if the presence of

viral mRNA is associated with vascular dysfunction. Vascular endothelial and smooth muscle

function was accessed by either the endothelium-dependent vasodilator acetylcholine (ACh), or

the endothelium-independent vasodilator, sodium nitroprusside (SNP). At 6 h.p.i, vascular

functional responses to ACh remained similar to the responses of uninfected controls (Fig 2B).

However, at 1 d.p.i, endothelium-dependent vasorelaxation to ACh (Fig 2C) was significantly

impaired while there was no alteration in the endothelium-independent vasodilation to SNP

(Fig 2D). This finding suggests that the dissemination of IAV into the PVAT and arterial wall as

early as 1 d.p.i, is associated with an early onset of endothelial dysfunction.

Influenza A virus triggers inflammation and oxidative stress in the arterial

wall and perivascular adipose tissue

Pro-inflammatory cytokine production and oxidative stress are important contributors to vas-

cular pathologies, which underpin systemic vascular alterations in pregnant mice [6]. There-

fore, we assessed whether IAV triggers an inflammatory response in the arterial wall and
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Fig 1. Influenza A virus (IAV) primarily disseminates into the PVAT of pregnant mice compared to the arterial wall. Eight-to-twelve-weeks-old pregnant

(E12 gestation) C57BL/6 mice were intranasally inoculated with PBS or Hk-x31 (X-31; 104 PFU) for arterial wall and PVAT tissue assessment at 6 hours post

infection (h.p.i), 1, 3 and 6 days post infection (d.p.i). (A) Schematic of infection schedule and experiments (created with BioRender.com), the presence of IAV

burden in the arterial wall and PVAT was confirmed through qPCR, using a cycle threshold of<31 cycles as a confirmed infection. (B—C) Vessel wall and

PVAT gene expression of viral PA normalized to GAPDH or RPS18. (D) Representative immunofluorescence image of the arterial wall of pregnant PBS and

Hk-x31 infected mice at 6 h, or 3 and 6 d.p.i labeled with IAV nucleoprotein antibody (green). (E) Representative immunofluorescence image of the PVAT of

pregnant PBS at 6 h.p.i and Hk-x31 infected mice at 6 h, or 3 and 6 d.p.i labeled with IAV nucleoprotein antibody (green). Data are represented as mean ± SEM

(pregnant PBS, n = 4–8; pregnant X-31, n = 4–8 of at least two to three independent experiments). All fold change calculations of the X-31 group were

measured via qPCR, performed against the PBS group within its respective timepoint and normalised against RPS18 (except otherwise stated). Statistical

analysis was performed using unpaired t-test against their respective PBS control. � P<0.05.

https://doi.org/10.1371/journal.ppat.1010703.g001
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PVAT prior to endothelial dysfunction. In the vessel wall, we observed no significant differ-

ences in pro-inflammatory cytokines TNF-α, IL-6, IFN-γ as well as oxidative stress marker,

NADPH oxidase 2 (NOX2) at the 6 h.p.i and 1 d.p.i time points (Fig 3B–3E and 3H–3I). How-

ever, the early pan leukocyte activation marker—CD69 was significantly elevated as early as 6

h.p.i with persistent elevation observed at 1, 3 and 6 d.p.i in the arterial wall (Fig 3J).

When we examined the arterial wall phenotype at 3 d.p.i. we noted that there was a trend

towards a significant increase (P = 0.05) in the pro-inflammatory cytokine TNF-α, which was

then significantly increased at 6 d.p.i (Fig 3B). IL-6 was only significantly elevated at 3 d.p.i

(Fig 3B) with a complete reversal of its expression by 6 d.p.i (Fig 3D). The expression of IFN-γ
increased at 3 and 6 d.p.i (Fig 3F). Furthermore, the NOX2 gene was significantly upregulated

at 3 d.p.i and maintained at 6 d.p.i (Fig 3H). Anti-inflammatory adipokine adiponectin was

unchanged in the arterial wall until 6 d.p.i (S3 Fig).

In the PVAT, at the earliest time point assessed i.e., 6 h.p.i and prior to endothelial dysfunc-

tion there was a significant but small elevation in CD69 and IFN-γ but no change in TNF-α,

IL-6, or NOX2 (Fig 3). TNF-α was only significantly increased at 6 d.p.i (Fig 3C); IL-6 was sig-

nificantly increased at 3 and 6 d.p.i (Fig 3E); IFN-γ and NOX2 were significantly increased at 3

and 6 d.p.i, (Fig 3G and 3I) and CD69 showed persistent elevation over the 6 days of infection

(Fig 3K). These findings suggest that the initial trigger for endothelial dependent vascular dys-

function was unlikely to be a direct consequence of an overt pro-inflammatory and oxidative

Fig 2. IAV infection triggers early onset endothelial dysfunction in pregnant mice. Vascular function was assessed at 6 h and 1 d.p.i in isolated thoracic

aortic rings of pregnant mice inoculated with PBS or Hk-x31 (X-31; 104 PFU). (A) Schematic of infection schedule and experiments (created with BioRender.

com) (B) Endothelium-dependent vasodilation to acetylcholine (ACh) at 6 h.p.i. (C) 1 d.p.i vascular function assessment to endothelium-dependent vasodilator

—ACh. (D) 1 d.p.i vascular reactivity assessment to endothelium independent vasodilator–SNP. Vascular relaxation is calculated as a % of pre-constriction to

U-46619 (thromboxane agonist). Data are represented as mean ± SEM (pregnant PBS, n = 4–8; pregnant X-31, n = 4–8 of at least two independent

experiments). Statistical analysis was conducted using a two-way analysis of variance (ANOVA) followed by Holm’s Sidak post-hoc multiple comparison. �

P<0.01, #P<0.001.

https://doi.org/10.1371/journal.ppat.1010703.g002
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response, but possibly due to a virus dependent IFN-γ and CD69 response that occurred in the

PVAT and in the vascular wall.

Maternal influenza A virus infection promotes inflammatory monocytes

and neutrophilic cell infiltration into the perivascular adipose tissue

We next investigated the infiltration of monocytes and neutrophils into the arterial wall and

PVAT as a means to examine the innate vascular immune response. In the arterial wall,

CD11b+Ly6Clow ‘patrolling’ monocytes and ‘pro-inflammatory’ CD11b+Ly6Chigh monocytes

were significantly elevated by IAV infection at both 3 and 6 d.p.i (Fig 4A). There was also a

trend towards a significant increase (P = 0.057) in CD11b+Ly6G+ neutrophils at 6 d.p.i (Fig

4B). In contrast, in the PVAT, there was no significant effect of IAV infection on CD11b+Ly6-

Clow (P = 0.08) and CD11b+Ly6Chigh (P = 0.08) monocytes at 3 d.p.i (Fig 4C). However, at 6 d.

p.i, the number of CD11b+Ly6Clow and CD11b+Ly6Chigh monocytes were significantly and

substantially higher in the PVAT compared to the arterial wall (Fig 4C). Inflammatory

CD11b+Ly6G neutrophils were also significantly elevated in the PVAT at 6 d.p.i, with an

increasing but insignificant (P = 0.07) trend observed at 3 d.p.i (Fig 4D). Therefore, IAV

Fig 3. IAV induces an inflammatory and oxidative stress phenotype in both the arterial wall and PVAT in pregnant mice. Eight-to-twelve-week-old

pregnant (E12 gestation) C57BL/6 mice were intranasally inoculated with PBS or Hk-x31 (X-31; 104 PFU) for vessel wall and PVAT tissue inflammatory and

oxidative stress mRNA transcripts assessment at 6 h, or 1, 3 and 6 d.p.i. (A) Schematic of infection schedule and experiments (created with BioRender.com) (B

—E) Vessel wall and PVAT gene expression of pro-inflammatory cytokines TNF-α and IL-6. (F—G) Antiviral mediator IFN-γ mRNA transcript gene

expressions as determined via qPCR in the vessel wall and PVAT. (H—I) Vessel wall and PVAT gene expression of oxidative stress marker NOX2. (J—K) Early

immune activation marker CD69 mRNA transcript gene expressions as determined via qPCR in the vessel wall and PVAT. Data are represented as

mean ± SEM (pregnant PBS, n = 4–8; pregnant X-31, n = 4–8 of at least two independent experiments). All fold change calculations of the X-31 group were

measured via qPCR, performed against the PBS group within its respective timepoint and normalised against RPS18. Statistical analysis was performed using

unpaired t-test against their respective PBS control. � P<0.05.

https://doi.org/10.1371/journal.ppat.1010703.g003
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promotes a monocyte and neutrophil based innate immune response that occurs firstly in the

arterial wall but with a delayed and ultimately substantially greater response in the PVAT.

The infiltration of activated T cell phenotypes occurs predominantly in the

perivascular adipose tissue compartment

Given that T cells influence vascular function during hypertension and atherosclerosis, and as

more recently shown, in IAV-induced vascular dysfunction in pregnant mice [6,8,21], the

extent to which aortic compartment (PVAT or the arterial wall) drives the majority of T cell

responses in response to IAV infection was investigated. We assessed CD3+ T cell populations

Fig 4. IAV promotes innate inflammation via substantial infiltration of monocytes and neutrophils in PVAT compared to arterial wall in pregnant mice. Separate

single cell suspensions were prepared from vessel wall and PVAT digests from pregnant mice that were inoculated with either PBS or Hk-x31 virus (X-31; 104 PFU) at 3

and 6 d.p.i and quantified via flow cytometry for the following cell subsets. (A) Representative dot plots and quantification showing patrolling monocytes

(CD11b+Ly6Clow) and pro-inflammatory monocytes (CD11b+Ly6Chigh) in the vessel wall. (B) Ly6G+ neutrophils quantification. Quantification results in the vessel wall

are also shown. (C) Representative dot plots and quantification showing patrolling monocytes (CD11b+Ly6Clow) and pro-inflammatory monocytes (CD11b+Ly6Chigh) in

the PVAT. (D) Ly6G+ neutrophils quantification. Quantification results in the PVAT are also shown. All cell populations were measured as absolute number of CD45+

population per 25,000 counting beads. Data are represented as mean ± SEM (pregnant PBS, n = 4–6; pregnant X-31, n = 4–6; of at least two independent experiments).

Statistical analysis was performed using unpaired t-test against their respective PBS control. � P<0.05.

https://doi.org/10.1371/journal.ppat.1010703.g004
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via immunofluorescence staining and observed a significant increase in CD3+ T cells in the

PVAT and the surrounding periadventitial space (Fig 5). There was no detectable CD3+ stain-

ing in the arterial wall. Using flow cytometry, in the arterial wall, there was no alteration in

CD4+ and CD8+ T cell (Fig 6A). A similar trend was observed with their CD44+ and CD69+

activated forms at 3 and 6 d.p.i (Fig 6B and 6C). In contrast, in the PVAT, although there were

no significant increases in CD4+ and CD8+ T cells (Fig 6D), their activated forms were signifi-

cantly altered. For instance, whilst the CD4+CD44+ and activated CD4+CD69+ T cells

remained unaltered by IAV infection at 3 d.p.i, at 6 d.p.i the number of CD4+CD44+ and acti-

vated CD4+CD69+ T cells were significantly higher (Fig 6E). Similarly, CD8+CD44+ and

Fig 5. IAV drives an increase in global CD3+ immune T cell infiltration and activation predominantly in the PVAT and periadventitial space of

pregnant mice when compared to the arterial wall. Representative Immunofluorescence image of pregnant PBS and X-31 mice arterial wall and PVAT

labelled with CD3 antibody (red) and counterstained with DAPI (blue). Data are representative of pregnant PBS, n = 5–6; pregnant X-31, n = 4–6; of at least

two independent experiments.

https://doi.org/10.1371/journal.ppat.1010703.g005
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activated CD8+CD69+ T cells infiltrated the PVAT with significant elevations observed at 6 d.

p.i, but with no alterations at 3 d.p.i, which corroborates with our previous study [6] where the

adaptive immune response was prevalent at 6 d.p.i in maternal aorta (Fig 6F). This suggests

that IAV drives a significant immune T cell infiltration and activation predominantly in the

PVAT.

Fig 6. IAV drives immune T cell infiltration and activation predominantly in the PVAT of pregnant mice when compared to the arterial wall. Separate single cell

suspensions were prepared from vessel wall and PVAT digests from pregnant mice that were inoculated with either PBS or Hk-x31 virus (X-31; 104 PFU) at 3 and 6 d.p.i

and quantified via flow cytometry for the following cell subsets. (A) Vessel wall analysis showing CD4+ and CD8+ T cells at 3 and 6 d.p.i. (B—C) Representative X-31 dot

plots and quantification showing PBS and X-31 CD44+ and CD69+ activated CD4+ and CD8+ T cells in the vessel wall. (D) PVAT analysis showing CD4+ and CD8+ T

cells at 3 and 6 d.p.i. (E—F) Representative X-31 dot plots and quantification showing PBS and X-31 CD44+ and CD69+ activated CD4+ and CD8+ T cells in the PVAT.

All cell populations are measured as absolute number of CD45+ population per 25,000 counting beads. Data are represented as mean ± SEM (pregnant PBS, n = 3–6;

pregnant X-31, n = 4–6; of at least two independent experiments). Statistical analysis was performed using unpaired t-test against their respective PBS control. � P<0.05.

https://doi.org/10.1371/journal.ppat.1010703.g006

PLOS PATHOGENS Influenza A virus and peri-vascular adipose tissue inflammation

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010703 August 5, 2022 10 / 21

https://doi.org/10.1371/journal.ppat.1010703.g006
https://doi.org/10.1371/journal.ppat.1010703


Discussion

This study is the first to characterise the inflammatory and immune cell profile of the arterial

wall and PVAT in pregnant mice following IAV infection. We show that the PVAT is suscepti-

ble to IAV infection with substantially higher levels of IAV mRNA and viral antigens com-

pared to the arterial wall. Moreover, IAV infection induced the expression of the anti-viral

mediator IFN-γ, which was associated with vascular endothelial dysfunction at 1 d.p.i. We also

identified an influx of pro-inflammatory monocytes and neutrophils to the PVAT following

infection, and a preferential infiltration of CD4+ and CD8+ T cells to the PVAT. Collectively,

these data suggest that the PVAT is an essential site for viral inflammation during pregnancy

and the subsequent monocyte and T cell accumulation that ensues in response to IAV infec-

tion. The evidence highlights a pro-inflammatory role of the PVAT in the initiation and devel-

opment of IAV induced vascular pathology, which shares similar pathological inflammatory

features with other vascular diseases such as hypertension and atherosclerosis.

Direct IAV infection of the aorta is not exclusive to pregnancy, but the vascular pathology

is markedly exacerbated during pregnancy. Different IAV viral strains have been shown to dis-

seminate and infect the aorta independent of sex [23]. Despite this, vascular inflammation

occurs at a much lower rate in non-pregnant compared to pregnant mice [6,23]. The vascular

pathogenesis that befalls pregnant and non-pregnant mice following IAV infection of the aorta

is vastly different. This is due to the more profound inflammatory response and viral burden

that occurs in pregnant mice [6]. Moreover, endothelial dysfunction in response to IAV infec-

tion appears to occur almost exclusively in pregnant mice. The substantial localisation of IAV

mRNA transcripts and viral antigens to the PVAT in comparison to the arterial wall, signifies

that there is preferential trafficking of IAV to this vascular compartment. IAV localisation to

the PVAT in the aorta is likely to be detrimental to aortic function, due to the critical role of

the PVAT in maintaining normal vascular haemostasis in a non-pathogenic state [24]. For

instance, physiologically, the PVAT regulates vascular tone and the regulation of blood vessel

function through the release of vasoactive factors such as NO and ADRF [17]. A dysfunctional

PVAT can negatively impact on blood vessel function leading to enhanced contractile

responses that are characteristic in hypertension [25]. Indeed, in disease models of atheroscle-

rosis and hypertension, the PVAT undergoes substantial cellular and molecular alterations

that initiates a switch from a protective to a pathogenic role [10]. In the present study the dis-

semination of greater levels of IAV to the PVAT suggests that this event could potentially

prime the aorta to become dysfunctional, as the infection progresses. Indeed, at 1 d.p.i, there

was a significant impairment of the endothelial-dependent vasorelaxation response to ACh in

the aorta. This suggests that IAV dissemination into the PVAT results in a reduction in bio-

availability of endothelial derived NO culminating in a supressed vascular relaxation response.

However, despite the predominance of virus in the PVAT, the overall inflammatory immune

response to IAV infection is likely to be the result of a dynamic balance of effects at the PVAT

and the arterial wall, with different elements of the immune response being variably activated

in one or the other compartment. Ultimately the viral load appeared higher in the PVAT and

while some of the cellular immune response (e.g. CD69, monocyte, neutrophil and oxidative

stress) was higher in the PVAT the reverse was true for the pro-inflammatory IL-6 and TNF-α
responses with higher expression in the vessel wall.

Historically, the effects of IAV on vascular function and on the physiological cardiovascular

adaptations that occur during pregnancy have not been thoroughly examined. Nonetheless,

our recent study highlighted for the first time the critical effects of IAV on large blood vessel

function [26]. Our study demonstrated that IAV infects the aorta in pregnant mice to trigger

an inflammatory cascade, which modifies the maternal vascular landscape at 3 and 6 d.p.i [6].
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However, how early aortic IAV dissemination and vascular dysfunction occurred was not

investigated. Here, the observed impairment in endothelium-dependent relaxation at 1 d.p.i

might have occurred as a result of direct IAV infection, causing apoptosis of the endothelial

cells, and/or via the increase in IFN-γ [27]. Increased IFN-γ stimulation in blood vessels could

lead to endothelial cell apoptosis resulting in vascular dysfunction [27–29]. The recruitment of

IFN-γ is suggested to precede the development of atherosclerosis [30]. Although IFN-γ has

also been associated with the modulation of VSMC constriction, the effect of IFN-γ on smooth

muscle relaxation was only observed at the 3 d.p.i (~40%) timepoint in the seminal study [6].

This is comparable to the vascular pathology observed in atherosclerosis where endothelial

dysfunction occurs first, and VSMC impairment typically occurs at an advanced phase in ath-

erosclerosis development [29].

An established and widely accepted concept is that chronic low-grade inflammation exhib-

its some of the pathological hallmarks of cardiovascular diseases, such as atherosclerosis and

hypertension, which are triggered by an array of altered phenotypic and structural factors in

the blood vessel [31,32]. Of significance, PVAT dysfunction which is characterised by

increased cytokines, chemokines and oxidative stress burden, has been shown to drive chronic

vascular inflammation [10]. The inflammatory phenotype that develops in a dysfunctional

PVAT, significantly alters its key function in vascular tone regulation [17]. This concept is

extensively studied in atherosclerotic and hypertensive disease, where the imbalance in vasoac-

tive factors and the recruitment of pro-inflammatory immune cells results in endothelial dys-

function [7,20–22]. In an IAV infected aorta, the vascular inflammation that occurs, entails

contributions from the PVAT and the arterial wall. In the PVAT, despite the increase in IFN-γ
at 6 h.p.i, the pathological consequence on the aorta remained undetectable until 1 d.p.i. Along

with pro-inflammatory cytokines, oxidative stress is concomitantly triggered by IAV infection

and is a key influence in vascular pathology [33]. Oxidative stress, which is characterised by

the over production of reactive oxygen species (ROS) and superoxide anions, promotes endo-

thelial dysfunction in vascular diseases [34,35]. IAV infection has been shown to induce oxida-

tive stress in the lungs [34] and more recently in the aorta of pregnant mice [6]. NOX2 is the

catalytic subunit of the prototypical NADPH oxidase that specifically localises to endosomes/

phagosomes and is a major source of ROS during IAV infection 35. NOX2 expression was sig-

nificantly elevated in the arterial wall and PVAT at 3 and 6 d.p.i in corroboration with our pre-

vious study [6]. Despite this transcriptional increase in NOX2, further investigations are

warranted to discern the impact of ROS on vascular function during the early stages of IAV

infection in pregnant mice.

The impact of monocytes on the pathogenesis of inflammatory and cardiovascular disease

conditions cannot be overstated [36,37]. Insights into the inflammatory burden of IAV infec-

tion and the link to an altered cardiovascular landscape has recently become a major area of

interest. The “vascular storm”, which destabilises maternal vasculature during IAV infection is

associated with extensive infiltration and activation of monocytes and neutrophils. The

increase in the recruitment and infiltration of patrolling Ly6Clow monocytes and inflammatory

Ly6G+ neutrophils during IAV infection in this study is suggested to contribute to focal necro-

sis of infected endothelial cells [6,38]. Moreover, it is well documented that the accumulation

of Ly6Clow monocytes and Ly6G+ neutrophils at the site of infection assists in facilitating the

clearance of pathogens [38]. In this study, the accumulation of Ly6Clow monocytes and Ly6G+

neutrophils to the PVAT following IAV infection signifies an important innate immune

response in an attempt to initiate IAV clearance. Similarly, the increased pro-inflammatory

Ly6Chigh monocytes in both the PVAT and arterial wall is evidence of an enhanced viral clear-

ance at the infection site [39]. This process ensues irrespective of the PVAT showing a higher

inflammatory burden when compared to the arterial wall. This influx of innate immune cells
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to different compartments of the aorta is reflected by the preferential dissemination of IAV to

the PVAT compared to the arterial wall. Irrespective of the larger IAV burden in the PVAT,

the inflammatory profile in both compartments suggests that monocyte recruitment and the

trafficking of innate immune cells initially occurs in the arterial wall possibly via the blood-

stream prior to entry into the PVAT. Secondary innate immune cell trafficking into the PVAT

may have occurred via its extensive vaso-vasorum network of capillaries. Pro-inflammatory

adipokines including leptin and resistin are produced by adipocytes and can inhibit the pro-

duction of anti-inflammatory adipokine adiponectin, which may limit the production of pro-

inflammatory cytokines such as TNF-α and IL-6 [40,41]. In this study, adiponectin levels

remained unaltered until 6 d.p.i, which could signal the development of a late anti-inflamma-

tory phenotype. Nevertheless, this may not be sustainable, as most pro-inflammatory

cytokines were still highly expressed at 6 d.p.i. The trafficking of immune cells first to the arte-

rial wall and then the PVAT might occur via leptin-induced leukocyte chemotaxis and the

release of adhesion molecules by resistin to facilitate adhesion of immune cells to the PVAT

[41,42].

T cell infiltration of the arterial wall in hypertensive mouse models predominantly occurs

from the PVAT [16], where T cells are observed to densely accumulate prior to activating a

non-beneficial crosstalk with the arterial wall. This phenomenon is termed “outside-in” mean-

ing that T cells infiltrate and activate within the PVAT prior to migrating into the arterial wall

[16]. During IAV infection, the outside-in phenomenon may also occur due to IAV preferen-

tially disseminating into the PVAT. Immunofluorescence staining revealed CD3+ T cell popu-

lations were largely present in the PVAT and periadventitial space while undetected in the

arterial wall in response to IAV infection. Furthermore, the PVAT had a significantly greater

population of CD4+ and CD8+ T cells when compared to the arterial wall. CD4+ and CD8+ T

cells expressing adhesion protein CD44+ and early activation marker CD69+ were observed to

densely populate the PVAT [43]. The significant increase in CD69 gene expression at every

timepoint in the arterial wall could signify the early activation of resident T cells; although this

may not translate to a significant increase in CD69 protein expression. The gene expression

levels in the PVAT at 6 d.p.i does however translate to increased protein expression as detailed

in our previous study [6]. This is important, as the phenotype occurring during IAV infection

of the PVAT mimics the T cell responses in hypertension. It appears that the preferential accu-

mulation and infiltration of the PVAT by T cells may be in response to the larger IAV burden.

Furthermore, CD3+ T cell detection in the periadventitial space could suggest a delay in migra-

tion to the arterial wall. Delineating whether T cells ultimately infiltrate the arterial wall rather

than brewing up an inflammatory phenotype that transcends beyond the periadventitial space

requires further investigation. Collectively, the preferential accumulation and infiltration of

the PVAT by T cells may suggest that the PVAT is a site prone to immune T cell inflammation

that may extend to the arterial wall and cause further vascular damage.

While the results in this study were mainly observational and hypothesis generating, we do

show that virus disseminates to extra pulmonary sites such as the vessel, PVAT and heart in

pregnancy, but the mode of dissemination is yet to be determined. In our previous study, we

demonstrated that viral dissemination was not a phenomenon that’s unique to pregnancy but

rather the development of vascular dysfunction, and the heightened level of viral and inflam-

matory burden that occurs [6]. The process involved in facilitating viral dissemination during

pregnancy remains elusive and evaluating several experimental avenues to comprehend the

process involved is needed. A potential mechanism may involve IAV induced damage to alve-

olar barrier through the disruption of epithelial cell tight junctions which can result in viral

antigen escape [44]. Another mechanism may perhaps be via the blood (viremia), the lym-

phatic system [45], or via phagocytoses by platelets and immune cells. A limitation of this
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study is discerning whether replication-competent IAV directly infects immune cells which

may subsequently traffic to the vessel and PVAT.

The hyperinflammatory phenotype induce by IAV infection within the maternal vascular

framework is suggestive of a mechanism that enhances systemic antiviral responses during

pregnancy to protect against fetal infection at the cost of increased maternal pathology. Indeed,

PBMCs isolated from pregnant women have shown increased number of activated natural

killer (NK) and T cells in response to IAV infection compared with non-pregnant women

[46]. This study corroborates our findings of enhanced systemic immune response against cir-

culating viruses during pregnancy and could be a potential mechanism that underlies

increased IAV-associated morbidity and mortality in pregnant women [46]. This unique pro-

cess along with perhaps an increase in Tregs may also contribute to the lack of vertical trans-

mission of IAV to the fetus [6]. A mechanistic interrogation that could enhance the

conclusions of this study is the lack of data examining the expression levels of antiviral restric-

tion factor such as the interferon inducible transmembrane protein (IFITM) 3 [47]. This pro-

tein is effective in inhibiting IAV replication when overexpressed through the inhibition of the

cytosolic entry of IAV into the cell cytoplasm [47]. Examining IFITM 3 expression in the vessel

and the PVAT would be vital in discerning whether active replication is occurring in either

compartment due to an inhibition of IFITM 3 secretion. The detection of IAV mRNA in the

PVAT at 1 d.p.i suggests that IAV dissemination to the PVAT may contribute to the vascular

pathology reported at 1 d.p.i. Nevertheless, it is a plausible that a direct infection of the endo-

thelial cells within the vessel wall perhaps results in an increase in the number of activated

Ly6Clow monocytes. An increase in activated Ly6Clow monocytes correlates with increased

focal necrosis of endothelial cells [38] and the consequent endothelial dysfunction [6].

A potential limitation of this study is that the IAV infection was only assessed at E12 gesta-

tion (late second/early third trimester in humans), whereas a different pathological outcome

might arise during first or third trimester infection. In the present study, the gestational time-

point E12 was selected as it represents an exponential phase of fetal development [48], whereby

IAV infection results in the greatest risk of pregnancy complications in humans [49–52].

Indeed, data from seasonal and pandemic IAV infection in pregnant women suggest that the

risk of IAV-induced complications are higher in the second and third trimester than in the

first [53,54]. The second trimester also represents the phase where the greatest alterations in

the cardiovascular system are occurring which are important in ensuring fetal oxygen and

nutrient supply demands. Although infection at E12 may have been optimal in addressing the

cardiovascular complications, it would be interesting to determine whether a similar maternal

and fetal pathology arises if infection occurred at E7.5 (first trimester) or late third trimester at

E17.5.

In conclusion, we provide evidence that IAV directly infects the PVAT in pregnant mice to

initiate vascular dysfunction. Moreover, the PVAT is the main site for T cell infiltration and

activation, which are key to facilitating inflammation and viral clearance. This study provides

a fundamental insight into how the PVAT promotes vascular pathology in pregnancy during

IAV infection; and has direct relevance for how respiratory viral infections cause complica-

tions in pregnancy.

Materials and methods

Ethics statement

All experiments were conducted according to approval obtained from Animal Experimenta-

tion Ethics Committee of the Royal Melbourne Institute of Technology University (RMIT)

Animal Ethics Committee (Ethics number 1801) and in compliance with the guidelines of the
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National Health and Medical Research Council (NHMRC) of Australia on animal

experimentation.

Mice, virus, and infection

Pregnant (8-12wk) C57BL6/J mice were obtained from the Animal Resources Centre (ARC)

Western Australia, Australia, and maintained in a 12 h light/12 h dark cycle with unrestricted

access to food and water at the animal research facility (RMIT University, Bundoora, Austra-

lia). For infections, mice were sedated with isoflurane inhalation and infected intranasally at

embryonic day (E)12 gestation with 104 plaque forming units (pfu) of mouse adapted H3N2

virus (Hk-x31; X-31) or phosphate buffered saline (PBS, Sigma-Aldrich, USA) for controls and

and culled for endpoint analysis at 6 h, 1, 3 and 6 d.p.i. Viral aliquots were provided in PBS at a

concentration of 9.6 x 107 pfu/milliliter (pfu/mL) by Prof. Patrick Reading (Department of

Immunology and Microbiology, The Peter Doherty Institute for Infection and Immunity, Uni-

versity of Melbourne). Mice were then weighed and monitored daily.

Airways inflammation and blood analysis

At study endpoints mice were euthanised at 6 h or 1, 3, and 6 d.p.i via intraperitoneal (i.p)

injection of ketamine/xylazine (180 mg/kg/32 mg/kg) and organs harvested. To assess airway

inflammation, the lower jaw to the top of the rib cage was incised to expose the salivary glands,

which were separated to expose the surface of the trachea. A small incision was made roughly

¾ of the way up from the trachea where a sheathed 21-Gauge needle was inserted. The lung

was flushed with 300–400 μL aliquots of PBS repeatedly, with the aspirate transferred to an

Eppendorf tube. Cell viability assessment involved staining total bronchioalveolar lavage fluid

(BALF) cells with 10 μL Acridine Orange solution (Thermofisher Scientific, USA) and quanti-

fied using a hemocytometer. Blood was retrieved by performing a cardiac puncture to obtain

between 0.6–1 mL of blood. The blood was centrifuged at 10,000 x g for 10 mins at 4˚C to

retrieve plasma and stored at -80˚C.

Quantification of mRNA by QPCR

Maternal lung, thoracic aortic vessel and perivascular adipose tissue were harvested from preg-

nant mice at 6 h or 1, 3, and 6 d.p.i for RNA extraction using the RNeasy Mini kit (Qiagen) as

per manufacturer’s instructions. RNA sample concentration and quality were measured using

the Nanodrop one Spectrophotometer (Thermo Scientific). The cDNA synthesis was per-

formed on 1–2 μg of total RNA using the High-Capacity cDNA Reverse Transcription Kit

(Applied Biosystems, Foster City, CA, USA). Total RNA was added to a Master Mix mixture of

reagents in the High-Capacity cDNA RT kit to make a final volume of 20 μL and transcribed

at the following settings: 25˚C for 10 min, 37˚C for 120 min, 85˚C for 5 min and kept at 4˚C

until collection using the Veriti Thermal Cycler (Applied Biosystems, USA). Quantitative poly-

merase chain reaction (qPCR) was then performed using the TaqMan Universal PCR Master

Mix (Applied Biosystems) and analysed on Applied biosystem QuantStudio 7 Flex Real-Time

PCR System (Thermofisher, Waltham, MA, USA). The PCR primers for TNF-α, IL-6, NOX2,

IFN-γ, CD69 and Adiponectin were included in the Assay on-Demand Gene Expression

Assay Mix (Applied Biosystems, Foster City, CA, USA). Viral titers were measured using oligo-

nucleotide mouse sequence for the forward and reverse primer of the segment 3 PA of influ-

enza virus using SYBR Green PCR Master Mix (Applied Biosystems). The quantitative values

were obtained from the threshold cycle (Ct) number. Gene expression analysis was performed

using the comparative Ct method. Each sample individual target gene expression level was

normalised against GAPDH or RPS18 mRNA expression and expressed relative to the control.
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Wire myograph

Maternal thoracic aortic rings were harvested and dissected free of perivascular adipose tissue

from 6 h.p.i and 1 d.p.i pregnant mice. Harvested vessels were placed in physiological carbogen

(95% O2 and 5% CO2) bubbled Krebs solution (119 NaCl, 4.7 KCl, 1.17 MgSO4, 25 NaHCO3,

1.18 KH2PO4, 5.5 glucose, 2.5 CaCl2 in mmol/L). The thoracic artery was later cut into 2 mm

rings and mounted onto two stainless steel pins on a four-channel wire myograph Krebs con-

taining baths (Danish myo Technology (DMT), Hinnerup, Denmark). Vessels were normal-

ised to a resting tension of 5 mN and allowed to equilibrate for 30 mins before exposure to 0.5

x 10−3 M of thromboxane A2 agonist U-46619 (Cayman, MI, USA) to determine maximum

smooth muscle dependent vasocontraction. Endothelium nitric oxide dependent and smooth

muscle nitric oxide dependent vasodilation were assessed using increasing concentrations

(1 × 10−9 M—1 × 10−5 M) of Acetylcholine (ACh) and sodium nitroprusside (SNP) respec-

tively, in a half maximally contracted aorta. All experiments were conducted in duplicates and

compared to saline treated pregnant controls.

Flow cytometry

Maternal thoracic vessel and PVAT harvested at 3 and 6 d.p.i, were minced using scissors

and then treated with a digestion buffer (composition Collagenase type XI (Sigma-Aldrich),

hyaluronidase (Sigma-Aldrich) and Collagenase Type I-S (Sigma-Aldrich) for 1 h at 37˚C

with intermittent shaking to make up a cell suspension. Cell suspensions were filtered

through a 40 μm strainer, centrifuged in a refrigerated centrifuge at 400 x g and washed

twice with FACS buffer. Total viable cells were then counted, resuspended in PBS, and incu-

bated on ice for 30 min. Cells were then stained for 15 min at 4˚C with antibodies and

washed twice with FACS buffer. The antibody panel used for staining, and in their different

multi-colour combinations were as follows: Alexa Fluor anti-CD45 (30-F11); APC anti-CD3

(145-2C11); PE-Cy7 anti-CD8 (53–6.7); BV605 anti-CD4 (RM4-5); FITC anti-Ly6C

(HK1.4); APC-Cy7 anti-Ly6G (1A8); BV421 anti-CD11b (M1/70); BV650 anti-CD69

(H1.2F3); PerCP-CD44 (IM7); PE anti-FoxP3 (FJK-16s) and live/dead Aqua (Invitrogen).

Following immunostaining, cells were resuspended in FACS buffer, fixed and analysed the

following day on the BD LSRFortessa X-20 flow cytometry analyser with DIVA software

(Becton Dickinson Biosciences). Data were analysed using FlowJo software (Tree Star, Inc.).

The cells were analysed as a percentage of the CD45+ (live cells) and expressed in absolute

numbers per 25,000 counting beads.

Immunofluorescence microscopy

Maternal thoracic vessel and PVAT was fixed in 10% neutral buffered formalin, embedded in

paraffin, and prepared in 5 μm sections by the Department of Histology (Monash University,

Clayton, Australia). Tissue sections underwent immunofluorescence staining protocol. Conju-

gated primary antibodies used included Anti-Influenza A (NP) (Abnova; Cat # MAB5468) to

detect IAV, while unconjugated primary antibodies included Anti-CD3 antibody (SP7)

(Abcam; Cat # ab16669). A conjugated secondary antibody—Goat anti-rabbit IgG H&L (Alexa

Fluor 594) (Abcam; Cat # ab150080) was used for anti-CD3 antibody. Tissues were imaged

using Olympus S5 VS-ASW slide scanner and quantified by two separate blinded investigators

via mean positive cell counts or fluorescence intensity using the Olympus cellSens Dimension

Desktop Analyser. Appropriate controls were performed–including all primary and secondary

antibody combinations to identify any non-specific cross reactivity.
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Statistical analysis

All data are expressed as the mean ± SEM. All comparisons were made within experimental

groups and were performed by unpaired t-test or one-way ANOVA followed by a Mann Whit-

ney test. Dose response curve analysis for vascular reactivity studies was performed using

ANOVA for repeated measures followed by Holm’s Sidak post-hoc multiple comparison. Sta-

tistical tests were performed using GraphPad Prism (GraphPad Software Version 8.2, San

Diego CA, USA). Statistical significance was considered at P<0.05.

Supporting information

S1 Fig. IAV primarily disseminates into the PVAT of pregnant mice compared to the arte-

rial wall. Representative immunofluorescence image of the arterial wall of pregnant Hk-x31

infected mice at 6 h and 1 d.p.i labeled with IAV nucleoprotein antibody (green). Negative

control used to show level of autofluorescence. Data are representative of pregnant PBS,

n = 5–6; pregnant X-31, n = 5–6; of at least two independent experiments.

(TIF)

S2 Fig. IAV primarily disseminates into the PVAT of pregnant mice compared to the arte-

rial wall. Representative immunofluorescence image of the PVAT of pregnant Hk-x31

infected mice at 6 h and 1 d.p.i labeled with IAV nucleoprotein antibody (green). Data are rep-

resentative of pregnant PBS, n = 5–6; pregnant X-31, n = 5–6; of at least two independent

experiments.

(TIF)

S3 Fig. IAV infection increases anti-inflammatory adipokine adiponectin at 6 d.p.i in preg-

nant mice. Pregnant mice were inoculated with PBS or Hk-x31 (X31; 104 PFU) for aortic

assessment at 6 h, 1, 3 and 6 d.p.i. (A) Schematic of infection schedule and experiments (cre-

ated with BioRender.com). (B) Adiponectin gene expression in the vessel wall of pregnant

mice (C) Adiponectin gene expression in the PVAT of pregnant mice. Data are represented as

mean ± SEM (pregnant PBS, n = 6–8; pregnant X-31, n = 6–8; of at least two to three indepen-

dent experiments). All fold change calculations of the X-31 group were measured via qPCR,

performed against the PBS group within its respective timepoint and normalised against

RPS18. Statistical analysis was performed using unpaired t-test against the respective PBS con-

trol. � P<0.05.

(TIF)

S4 Fig. IAV disseminates to maternal heart tissue at 1 and 3 d.p.i. Pregnant mice were inoc-

ulated with PBS or Hk-x31 (X31; 104 PFU) for aortic assessment at 1 and 3 d.p.i. (A) Schematic

of infection schedule and experiments (created with BioRender.com). (B) Viral PA gene

expression in the heart of pregnant mice. Data are represented as mean ± SEM (pregnant PBS,

n = 4–6; pregnant X-31, n = 4–8; of at least two to three independent experiments). All fold

change calculations of the X-31 group were measured via qPCR, performed against the PBS

group within its respective timepoint and normalised against RPS18. Statistical analysis was

performed using unpaired t-test against the respective PBS control. � P<0.05, �� P<0.01.

(TIF)

S5 Fig. Total number of dead cells in Vessel and PVAT at 3 and 6 d.p.i. (A) Gating strategy

for dead cells identification (B) Number of Dead cells in the vessel and PVAT per 25000 beads.

Data are represented as mean ± SEM (pregnant PBS, n = 3–6; pregnant X-31, n = 4–6; of at

least two independent experiments). Statistical analysis was performed using unpaired t-test
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against their respective PBS control. � P<0.05.

(TIF)

S6 Fig. Gating strategy for thoracic aorta single cell suspension. T cells and macrophages

were gated as CD3+ and CD11b+ and respectively from CD45+ Lymphocytes. Patrolling

Ly6Clow, pro-inflammatory Ly6Chigh monocytes and inflammatory Ly6G+ neutrophils were

identified within CD11b+ macrophages. CD3+ T cells were further divided into subsets T

helper (CD4+) and cytotoxic (CD8+) T cells. CD44+ and CD69+ were gated within CD4+ and

CD8+ T cell subsets.

(TIF)

S1 Table. Viral polymerase cycle threshold (Ct) values of vessels and perivascular adipose

tissue from control and infected dams from 6 h, 1, 3 and 6 d.p.i study timepoints. Low Ct

value represents higher infection and replication.
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