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Prunella vulgaris L, a perennial herb widely used in Asia in the treatment of various diseases including 
cancer. In vitro studies have demonstrated the therapeutic effect of Prunella vulgaris L. against 
breast cancer through multiple pathways. However, the nature of the biological mechanisms 
remains unclear. In this study, a Network pharmacology based approach was used to explore active 
constituents and potential molecular mechanisms of Prunella vulgaris L. for the treatment of breast 
cancer. The methods adopted included active constituents prescreening, target prediction, GO and 
KEGG pathway enrichment analysis. Molecular docking experiments were used to further validate 
network pharmacology results. The predicted results showed that there were 19 active ingredients in 
Prunella vulgaris L. and 31 potential gene targets including AKT1, EGFR, MYC, and VEGFA. Further, 
analysis of the potential biological mechanisms of Prunella vulgaris L. against breast cancer was 
performed by investigating the relationship between the active constituents, target genes and 
pathways. Network analysis showed that Prunella vulgaris L. exerted a promising preventive effect on 
breast cancer by acting on tumor-associated signaling pathways. This provides a basis to understand 
the mechanism of the anti-breast cancer activity of Prunella vulgaris L.

Prunella vulgaris L. is a perennial herbaceous plant in the genus prunella1. It is a traditional Chinese medicine 
widely used for the treatment of inflammation, eye pain, headache, and cancer2,3. Modern pharmacological 
studies suggest that Prunella vulgaris L. possesses antiviral, antibacterial, anti-inflammatory, immunoregulatory, 
anti-oxidative and anti-tumor functions4,5. Lee et al.6 reported that ursolic acid in Prunella vulgaris L. provides the 
anticancer effects. This study also showed marginal cytotoxicity in KB cells, human colon cancer cells (HCT-8) 
and breast tumor cells (MCF-7). Other related studies have reported that oral administration of Prunella vulgaris 
L. with taxane prevents breast cancer progression as well as reduces its side effects7. In addition, crude extracts of 
Prunella vulgaris L. are reported to inhibit the proliferation of breast cancer cells and also induce their apoptosis8. 
Triterpenoids in Prunella vulgaris L. have shown selective inhibitory effects on breast cancer cells and normal 
breast cells. These approaches, however, fail to address the anti-breast cancer mechanism of Prunella vulgaris 
L, while the active ingredients and targets also remain unclear. In vitro, experimental studies have validated the 
anti-cancer activity of most of the active ingredients in Prunella vulgaris L. However, the underlying molecular 
mechanisms are poorly understood.

Network pharmacology is a new drug discovery approach created by Hopkins in 2007 and integrates sys-
tematic medicine with information science9. It emphasizes on the concept of “network target, multicomponent 
therapeutics”10,11, shifting the paradigm from the concept of one gene, one target, and one disease. Network 
pharmacology is a powerful method used to study the synergistic actions and underlying mechanisms of tra-
ditional medicine12–14.
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DL is a qualitative character used to describe the physical and chemical properties of drugs, for example, 
solubility, stability, and bioavailability are some of the important properties15. Additionally, it is regarded as a 
property to use when evaluating the clinical efficacy of a compound since it has a guiding role in the prediction 
of new drugs16.

ADME is an abbreviation in pharmacokinetics representing absorption, distribution, metabolism, and excre-
tion and it is essential in drug discovery17. Caco-2 cell model (Caco-2), a human clone of colorectal adenocar-
cinoma cell, is used to predict the constituent’s intestinal absorption. Human Intestinal Absorption (HIA) is 
important in the identification of potential drug candidates and it refers to the sum of bioavailability and absorp-
tion assessed from the ratio of excretion or cumulative excretion in urine, bile, and feces. It is used to evaluate 
the absorption capacity of drugs in humans. Plasma Protein Binding (PPB) affects the function, distribution, 
and efficacy of drugs, and PPB rate is used to predict the distribution of drugs in humans.

Molecular docking has shown potential applications in the field of computer-aided drug research, especially 
in the development of new treatment targets against diseases caused by genetic mutations18,19. Moreover, the 
method has emerged as a powerful tool in the study of drug active sites hence playing a significant role in natural 
product research.

In this study, the active constituents of Prunella vulgaris L. and the potential mechanism underlying its anti-
breast cancer effect were explored using network pharmacology. Several databases were used to predict Prunella 
vulgaris L. target sites and GO biological process analysis and KEGG pathway enrichment analysis were used to 
investigate the possible mechanisms involved in the anti-breast cancer effect of Prunella vulgaris L. Molecular 
docking of key targets was used to validate network pharmacology of selected active constituents. The flow chart 
of the study is shown in Fig. 1.

Results
Filtering of active constituents of Prunella vulgaris L.  A total of 60 constituents of Prunella vulgaris 
L. were retrieved from the TCMSP database while 18 constituents were retrieved from literature (Supplementary 
Table 1). Constituents with DL ≥ 0.18 were retained as active ingredients and 41 chemical components matched 
the threshold (Supplementary Table 2). The potential targets of the identified components were submitted to 
the preADMET website where further screening was performed based on ADME parameters, Caco-2, HIA and 
PPB. The screening results showed that 31 constituents were considered to be biologically active in vivo with the 
major active compounds being flavonoids, triterpenes, and phenolic acids. These findings were consistent with 
previously reported anti-cancer active components in Prunella vulgaris L1,20–22. Although the HIA and PPB of 

Figure 1.   Flow chart of the network pharmacology based study. Go Gene Ontology, KEGG Kyoto encyclopedia 
of genes and genomes, PPI protein–protein interaction.



3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:15730  | https://doi.org/10.1038/s41598-020-72797-8

www.nature.com/scientificreports/

rutin predicted by preADMET were lower, it has been reported with significant biological activity23, this con-
stituent was temporarily included for further network pharmacology experiments. Table 1 presents the DL and 
partial ADME values of the 32 final filtration constituents.

Screening of anti‑breast cancer targets.  A total of 379 potential targets were obtained from 32 active 
constituents retrieved from STITCH and Swiss Target Prediction databases (Supplementary Table 3). Further, 
a total of 204 gene targets associated with breast cancer were retrieved from Malacards and GeneCards (sup-
plementary Table  4). Common targets of both breast cancer and the chemical constituents were considered 
potential targets. 31 potential anti-breast cancer genes of Prunella vulgaris L. are shown in Table 2.

GO and KEGG analysis.  Bioconductor package in R software was used to construct the top 20 main path-
ways by GO analysis (Fig.  2A) and KEGG analysis (Fig.  2B). GO functional analysis predicted that the key 
targets of Prunella vulgaris L. are mainly involved (supplementary table 5) in estrogen receptor binding, steroid 
hormone receptor binding, steroid hormone receptor activity, and so forth. KEGG pathway analysis was used to 
determine relevant signaling pathways associated with the anti-breast cancer effect of Prunella vulgaris L. The 
following processes had the highest number of genes: Proteoglycans in cancer (13), Endocrine resistance (11), 
Human cytomegalovirus infection (11), MicroRNAs in cancer (11), Breast cancer (10), and Kaposi sarcoma-
associated herpesvirus infection (10). From the 20 KEGG signaling pathways results (supplementary table 6), 
the significantly enriched genes were EGF, AKT1, EGFR, ERBB2, SRC, MTOR, MYC, BCL2, JUN, VEGFA, 
MMP9, and CTNNB1.

Compounds target network construction.  A total of 32 satisfactory chemical constituents were gained 
from Prunella vulgaris L. Among the 32 compounds, 13 compounds could not be successfully predict anti-
breast cancer genes, hence only 19 constituents were retained. Further, 19 constituents, 31 potential anti-breast 

Table 1.   DL and partial ADME values of the 32 DL filtered components.

Components DL Caco-2 HIA PPB

Oleanolic acid-28-O-beta-D-glucopyranoside 0.54 20.67 83.27 97.72

Cyanidol 0.92 0.66 66.71 100.00

Oleanolic acid 0.37 21.89 96.00 100.00

Sitogluside 0.51 25.23 90.03 100.00

Beta-sitosterol 0.88 52.37 100.00 100.00

Rutin 1.10 7.91 2.86 43.90

Arjunglucoside I 0.62 20.13 30.74 76.25

Kaempferol 0.77 9.58 79.44 89.61

Stigmasterol 0.73 52.34 100.00 100.00

Ursolic acid 0.65 21.86 96.00 100.00

Δ7-stigmasterol 0.40 52.27 100.00 100.00

Astragalin 0.80 11.15 25.17 57.58

Luteolin 0.86 4.54 79.43 99.72

Vulgarsaponin B 0.32 20.24 76.98 93.7

Nigaichigoside F1 0.73 19.96 30.78 71.85

Poriferasterol monoglucoside 0.32 25.16 90.57 100.00

Poriferasterol monoglucoside_qt 0.57 54.6 100.00 100.00

Sericoside 0.62 20.13 30.74 76.25

Stigmast-7-enol 0.30 52.37 100.00 100.00

Morin 0.87 17.10 63.49 91.63

Luteolin-7-glucoside 0.86 52.37 100.00 100.00

Quercetin 0.93 3.41 63.49 93.24

Rosmarinic acid 0.63 20.72 62.49 86.24

2α,3α-dihydroxyursa-12-en-28-oic acid 0.56 21.26 94.28 99.22

Stigmasterol-3-O-β-d-glucoside 0.32 25.16 90.57 100.00

Uvaol 0.18 24.66 94.41 100.00

Lupenone 0.37 49.54 100.00 100.00

Wogonin 0.25 4.28 93.04 90.45

Acacetin-7-O-β-d-glucopyranoside 0.72 7.73 65.90 68.78

Ethyl rosmarinate 0.62 20.52 78.87 86.96

Butyl rosmarinate 0.67 20.54 82.15 90.42

Rhein 0.79 2.84 82.96 88.52
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cancer genes and the top 20 pathways (P ≤ 0.01) with the highest number of genes were selected to construct 
the compound-target-pathway network diagram (Fig. 3). Each compound corresponded to multiple targets in 
the network diagram. This reveales that multiple targets may result in a synergistic effect when Prunella vulgaris 
L. plays a role in anti-breast cancer. The degree of the 19 active components in the compound-target-pathway 
network was analyzed (Table 3). In the table, flavonoids and triterpenes have a relatively higher degree, while 
anthraquinones and saponins are relatively lower. The following 8 components were retained for further docking 
experiments: three higher degree flavonoids, namely luteolin, quercetin‚ and wogonin; one triterpene compo-
nent, namely ursolic acid; one phenolic acid component, namely rosmarinicacid; one sterol component, namely 
beta-sitosterol; one anthraquinone component, namely rhein; and one saponin component, namely astragalin. 

PPI network construction and molecular docking analysis.  31 target genes associated with anti-
breast cancer activity were imported into the STRING database for PPI network construction (Supplementary 
table 7). The nodes in the PPI network represent the interrelationships during the development of breast cancer 
(Fig. 4A). Analyze tool in Cytoscape was applied to analyze the PPI diagram24, AKT1 (27), ESR1 (27), MYC (27), 
JUN (26), SRC (26), CASP3 (25), EGFR (25), and VEGFA (25) showed a higher degree (Fig. 4B). Comparing the 
results with those provided by KEGG analysis, four target genes, AKT1, EGFR, MYC, and VEGFA were selected 
for molecular docking experiments.

From the Protein Data Bank (PDB) database, 3O9625, 4HJO26, 5I4Z27, and 4KZN28 were identified as the 
protein structures of the four key targets highlighted above for molecular docking experiments. Resveratrol29, 
erlotinib26, acetylsalicylic acid30, and minocycline31 were selected as positive control drugs of AKT1, EGFR, 
MYC, and VEGFA, respectively. Previous studies have reported the four target proteins, hence the Drugbank 
database was used to retrieve information on their active binding sites to inhibitors. The Grid Box parameters 
in AutoDockTools were set as following: 3O96, grid center 6.0 − 7.0 15.0, number of points in xyz (NPTS) 50 50 
50, spacing 0.375; 4HJO, grid center 40 40 40, NPTS 24 9 1, spacing 0.375; 5I4Z, grid center 35 33 9, NPTS 80 
80 80, spacing 0.375; 4KZN, grid center 7 − 5 5, NPTS 126 126 126, spacing 0.375. The docking conditions were 
similar after 10 times docking and binding energy was used as an important criterion for constituents screening 

Table 2.   31 potential anti-breast cancer target genes of active components.

UniProt ID Protein name Gene name

P04626 Receptor tyrosine-protein kinase erbB-2 ERBB2

Q9SAD4 Ethylene-responsive transcription factor ESR1 ESR1

P31749 RAC-alpha serine/threonine-protein kinase AKT1

P15692 Vascular endothelial growth factor A VEGFA

P35222 Catenin beta-1 CTNNB1

P01106 Myc proto-oncogene protein MYC

P10275 Androgen receptor AR

P01375 Tumor necrosis factor TNF

P00533 Epidermal growth factor receptor EGFR

Q14790 Caspase-8 CASP8

Q92731 Estrogen receptor beta ESR2

P42345 Serine/threonine-protein kinase mTOR MTOR

P10415 Apoptosis regulator Bcl-2 BCL2

P12931 Proto-oncogene tyrosine-protein kinase Src SRC

P05093 Steroid 17-alpha-hydroxylase/17,20 lyase CYP17A1

P11388 DNA topoisomerase 2-alpha TOP2A

P01133 Pro-epidermal growth factor EGF

P03956 Interstitial collagenase MMP1

P16083 Ribosyldihydronicotinamide dehydrogenase [quinone] NQO2

P42574 Caspase-3 CASP3

P35354 Prostaglandin G/H synthase 2 PTGS2

P14780 Matrix metalloproteinase-9 MMP9

P08253 72 kDa type IV collagenase MMP2

Q16678 Cytochrome P450 1B1 CYP1B1

Q9UNQ0 ATP-binding cassette sub-family G member 2 ABCG2

P08183 Multidrug resistance protein 1 ABCB1

P05412 Transcription factor AP-1 JUN

P35228 Nitric oxide synthase NOS2

P37231 Peroxisome proliferator-activated receptor gamma PPARG​

P35869 Aryl hydrocarbon receptor AHR

P09874 Poly [ADP-ribose] polymerase 1 PARP1
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(Table 4). Clusters with the highest conformation and maximum absolute value of binding energy were selected. 
Figure 5 presents the docking complex of the four targets together with their strongest binding components.

Figure 2.   Top 20 GO enrichments and KEGG pathways annotation. (A) GO enrichment. X-axis is enrichment 
gene ratio, Y-axis is molecular function or biological process. Bubble size represents the number of genes 
involved in the GO enrichment. Color represents the adjusted p-value, the darker the color, the smaller the 
adjusted p-value. (B) KEGG pathway enrichment. X-axis is enrichment gene count, Y-axis is KEGG pathway, 
and the color of bar chart represents the adjusted p-value.
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Discussion
In recent years, natural product research has gained increased attention32,33. The network pharmacology-based 
approach promotes an understanding of the complex interactions between drugs and their targets and the poten-
tial mechanisms of action34–36. Similarly, the complexity of drug development from natural sources introduces 
methodological problems37. The development of new drug candidates is often limited by the lack of absorption, 
distribution, metabolism, and excretion (ADME) propertiese, and these high-cost nature presents a more dif-
ficult drug development process38. Therefore, ADME based screening has gained considerable attention from 
pharmaceutical scientists in drug discovery39.

Prunella vulgaris L. is a medicinal herb that is reported to possess antibacterial, anti-inflammatory and 
immunoregulatory effects40. In clinical practice, Prunella vulgaris L. is mainly prescribed for acute conjunctivitis, 
thyroid dysfunction, breast hyperplasia, and breast cancer. In the current study, screening results indicated that 
flavonoids and triterpenes in Prunella vulgaris L. were the most active constituents followed by phenolic acids. 
Previous studies on the anticancer activity of Prunella vulgaris L. focuses on the role of triterpenes and phenolic 
acids while limited research focuses on flavonoids, sterols or anthraquinones20,41,42. Studies on flavonoids such 
as luteolin, wogonin, morin, and kaempferol, report that they suppress the growth and invasion of human breast 
cancer cells43–46. Beta-sitosterol, a sterol compound which activates the Fas signaling is reported to induce apop-
tosis in human breast adenocarcinoma cells (MCF-7 and MDA-MB-231)47. Rhein in anthraquinones induces 
apoptosis in breast cancer cells (MCF-7 and SK-Br-3) through the NF-kappaB/P53 signalling pathway48. These 
flavonoids components were successfully filtered using the method of DL and ADME property screening.

As shown in GO analysis result, Estrogen receptor binding was ranked as No. 1, which indicated that this 
receptor might be one of the main drug targets for the treatment of breast cancer. It’s reported that estrogen 
receptor (ER) expresses in approximately 75% of breast cancers, modulating ER action has improved the survival 
of patients with ER-positive breast cancer49. Usually, the binding of estrogen to nuclear ERs, which then form 

Figure 3.   Network diagram of active components/target genes/enrichment pathways. The orange square nodes 
represent the active components, the green octagon nodes represent the target genes while the purple circle 
nodes represent the pathways. Nodes size are proportional to their degree.
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dimers and bind to estrogen response elements in the regulatory regions of estrogen-responsive genes to alter 
gene expression.

KEGG analysis revealed that multiple gene targets of Prunella vulgaris L. served important roles in sev-
eral cancer-related pathways, including the Breast cancer, ErbB signaling pathway, and Estrogen signaling path-
way. As is well known, breast cancer pathogenesis is extremely complicated. Several environmental factors are 
known to increase the risk of breast cancer by interacting with human genes, immunity, and hormone secretion. 
Beatson in 1986 was the first to report a link between estrogen and breast cancer50. In this study, women with 
metastatic breast cancer before menopause showed tumor regression after bilateral oophorectomy. Subsequent 
studies further demonstrated that estrogen binds to ERs which directly interacts with membrane receptors (such 
as IGFR, EGFR, and HER2) and key signaling molecules (Shc) to activate the major second messenger and 
MAPK, PI3K/AKT pathways and to promote the proliferation, growth, and survival of tumor cells. Therefore, 
inhibition of the estrogen signaling pathway (blocking estrogen production or inhibiting ER function) is one of 
the effective methods in breast cancer treatment.

ErbB-2 is a member of the ErbB family and plays a vital role in breast cancer development. Previous studies 
demonstrate that approximately 15–20% of all diagnosed breast cancers show overexpression of ErbB-2 (MErbB-
2) on the cell membrane51. Upon binding to the ligand, ErbB forms homodimers (ErbB-2) or heterodimers 
(ErbB-3), activates downstream signaling cascades and transduces the ErbBs effects. Two key signal transduc-
tion pathways that are activated include MAPK and PI3K/AKT. Upon activation, the MAPK pathway results 
in gene transcription that leads to cellular proliferation, migration, and angiogenesis. The PI3K/AKT pathway 
causes downstream cell survival and inhibition of apoptosis. Crosstalk between these signaling pathways acceler-
ates the growth and metastasis of breast cancer. Pathway analysis also indicated that Prunella vulgaris L. exerts 
anti-breast cancer effects by inhibiting key targets in the estrogen pathway and ErbB pathways, such as AKT1, 
EGFR, and MYC.

Among the four targets chosen for molecular docking experiments, AKT1, EGFR, and MYC were reported 
as key proteins in both the ErbB signaling pathway and the estrogen signaling pathway. Ursolic acid and Beta-
sitosterol were successful docked to those four target proteins with a higer binding energy compared with other 
components. It showed that Ursolic acid could bind to AKT1/VEGFA, then inhibited breast cancer growth 
through ErbB or Estrogen pathway. Beta-sitosterol bound to EGFR/MYC, inhibiting breast cancer growth 
through ErbB or Estrogen pathway. Molecular docking results also revealed that eight of the higher active com-
pounds had stronger binding energies than the positive control drugs (Resveratrol, Erlotinib, Acetylsalicylic 
acid). These findings validate the reliability of the active ingredients screened by network pharmacology and 
their interaction with breast cancer targets.

Flavonoids, sterols, and anthraquinones are reported to play a crucial role in the anti-breast cancer pro-
cess. Network analysis further reveals that Prunella vulgaris L. produces therapeutic effects on breast cancer by 
inhibiting key targets in the ErbB signaling pathway and estrogen signaling pathways, such as AKT1, EGFR, 
and MYC. Although we have described some interesting data, there is a need for further experiments to validate 
these findings.

Table 3.   Degree of 19 active components analyzed by function tool in Cytoscape.

Sorts Chemical name Degree

Flavonoid Luteolin 8

Flavonoid Quercetin 5

Flavonoid Wogonin 5

Flavonoid Morin 4

Flavonoid Cyanidol 3

Flavonoid Rutin 3

Flavonoid Kaempferol 3

Flavonoid Luteolin-7-glucoside 1

Triterpene Ursolic acid 5

Triterpene Oleanolic acid 2

Triterpene Uvaol 1

Triterpene Oleanolic acid-28-O-beta-D-glucopyranoside 1

Phenolic acid Rosmarinic acid 4

Phenolic acid Butyl rosmarinate 4

Phenolic acid Ethyl rosmarinate 3

Sterol Beta-sitosterol 4

Sterol Stigmasterol 3

Anthraquinone Rhein 3

Saponin Astragalin 2



8

Vol:.(1234567890)

Scientific Reports |        (2020) 10:15730  | https://doi.org/10.1038/s41598-020-72797-8

www.nature.com/scientificreports/

Figure 4.   (A) The protein–protein interaction (PPI) network. (B) The bar plot of the protein–protein 
interaction (PPI) network. The nodes represent the targets, the size shows their degree in the network.

Table 4.   Binding energy of eight active components and positive control drugs.

Compound

Binding Energy/(kcal mol−1 )

AKT1 EGFR MYC VEGFA

Luteolin − 7.05 − 7.84 − 5.96 − 6.28

Quercetin − 7.77 − 7.81 − 5.74 − 5.70

wogonin − 7.50 − 7.14 − 5.89 − 5.90

Ursolic acid − 10.40 − 7.56 − 6.65 − 7.11

Rosmarinic acid − 7.15 − 7.22 − 4.50 − 4.93

Beta-sitosterol − 10.17 − 8.59 − 6.86 − 7.33

Rhein − 7.61 − 7.62 − 5.99 − 5.85

Astragalin − 8.18 − 7.47 − 5.27 − 4.87

Resveratrol − 6.61 – – –

Erlotinib – − 6.93 – –

Acetylsalicylic acid – – − 4.57 –

Minocycline – – – − 6.07
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Methods
Screening for active constituents.  Information on all the constituents was obtained from literature and 
traditional Chinese Medicine systems pharmacology (https​://tcmsp​w.com/tcmsp​.php). “Prunellae Spica” was 
used as a keyword in TCMSP search while a literature search was carried out on Pubmed, CNKI database, and 
Google Scholar. The chemical structures were retrieved from PubChem (https​://pubch​em.ncbi.nlm.nih.gov/) 
and ChemSpider (https​://www.chems​pider​.com/). For structures not present in the database, TCMSP was refer-
eed to and original research articles.

DL is provided by the molsoft website (https​://www.molso​ft.com/mprop​/) for use in predicting potential 
constituents. DL ≥ 0.18 was assigned as the criteria for screening act active constituents. Selected compounds 
(DL ≥ 0.18) were imported into preADMET (https​://pread​met.bmdrc​.kr/) and screened by Caco-2, HIA and 
PPB. The active ingredients which don’t meet this requirement but have an obvious biological activity were still 
considered.

Target genes screening.  STITCH (https​://stitc​h.embl.de/) and Swiss Target Prediction (https​://www.swiss​
targe​tpred​ictio​n.ch/) databases were used to retrieve the gene targets for active ingredients. This was achieved 
by uploading the screened components to the STITCH database, selecting the Homo sapiens for the species, 
and collecting the targets with a combined-score ≥ 0.7. The smiles number of each component was entered into 
the Swiss Target Prediction online platform. Target’s prediction was performed by structural similarity using a 
reverse pharmacophore matching method, and a target with probability ≥ 0.7 was selected.

Potential target genes for breast cancer.  The target genes retrieved from the two databases were 
merged. Standardization of the gene name and definition of the species as "human" was performed using the 
UniProtKB function in the UniProt (https​://www.unipr​ot.org/) database. GeneCards (https​://www.genec​ards.
org/) and MalaCards (https​://www.malac​ards.org/), the human gene database, were used to retrieve breast can-
cer-related genes. The keywords used in the search were limited to "breast cancer" and "mammary carcinoma". 
The targets obtained were compared to those retrieved earlier and target genes linked to breast cancer were 
selected.

Figure 5.   The docking complex of four targets and their strongest binding components. The green sticks 
represent the ligand while the spheres represent the protein structure, the active site residues are shown. (A) 
AKT1. (B) EGFR. (C) MYC. (D) VEGFA.

https://tcmspw.com/tcmsp.php
https://pubchem.ncbi.nlm.nih.gov/
https://www.chemspider.com/
https://www.molsoft.com/mprop/
https://preadmet.bmdrc.kr/
https://stitch.embl.de/
https://www.swisstargetprediction.ch/
https://www.swisstargetprediction.ch/
https://www.uniprot.org/
https://www.genecards.org/
https://www.genecards.org/
https://www.malacards.org/
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Pathway and functional enrichment analysis.  KEGG analysis is one of the most prominent in net-
work pharmacology, which interprets pathways target genes. It is beneficial to understand the mechanisms of 
drug action in diseases52. We carried out GO enrichment analysis and KEGG pathway annotation for predicting 
targets of Prunella vulgaris L. on breast cancer by Bioconductor, a data package in R software (version 3.6.1)53. 
Adjusted p-value ≤ 0.01 was chosen, and the top 20 GO enrichments or KEGG pathways with higher counts were 
analyzed.

Network construction.  Network analysis was performed to understand the mechanism of Prunella vul-
garis L. in breast cancer. The network was established and visualized by Cytoscape 3.7.1 software. Active com-
pounds and target genes were represented by nodes in the network. The edges were used to indicate an interac-
tion between the compounds and the targets. Analyze tool in Cytoscape was employed to calculate Degree, a 
topological parameters which shows the importance of component/target/pathway in the network.

PPI Network construction and molecular docking experiment.  The PPI network of Prunella vul-
garis L. on breast cancer was constructed using the STRING database in combination with the Network Analyzer 
plugin of Cytoscape, combined-score in STRING was set to 0.4 or greater. The key targets were prepared for 
molecular docking.

The crystal structures of candidate targets were downloaded from RCSB Protein Data Bank (https​://www.
pdb.org/) and imported into AutoDockTools 1.5.6 for docking. PyMol (version 1.7.2.1) was used to process 
the protein, including removing the ligands, correcting protein structure, and removing water. Similar docking 
conditions were used and the Lamarckian genetic algorithm chosen to calculate the binding energy.

Data availability
The datasets supposing the current study are available in public database from TCMSP, STITCH, Swiss Target 
Prediction, GeneCards, MalaCards, STRING, DrugBank, and PDB.
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