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Most plant traits are governed by polygenes including both major and minor

genes. Linkage mapping and positional cloning have contributed greatly to

mapping genomic loci controlling important traits in crop species. However,

they are low-throughput, time-consuming, and have low resolution due to

which their efficiency in crop breeding is reduced. In this regard, the bulk

segregant analysis sequencing (BSA-seq) and its related approaches, viz.,

quantitative trait locus (QTL)-seq, bulk segregant RNA-Seq (BSR)-seq, and

MutMap, have emerged as efficient methods to identify the genomic loci/

QTLs controlling specific traits at high resolution, accuracy, reduced time span,

and in a high-throughput manner. These approaches combine BSA with next-

generation sequencing (NGS) and enable the rapid identification of genetic loci

for qualitative and quantitative assessments. Many previous studies have shown

the successful identification of the genetic loci for different plant traits using

BSA-seq and its related approaches, as discussed in the text with details.

However, the efficiency and accuracy of the BSA-seq depend upon factors

like sequencing depth and coverage, which enhance the sequencing cost.

Recently, the rapid reduction in the cost of NGS togetherwith the expected cost

reduction of third-generation sequencing in the future has further increased the

accuracy and commercial applicability of these approaches in crop

improvement programs. This review article provides an overview of BSA-seq

and its related approaches in crop breeding together with their merits and

challenges in trait mapping.
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Introduction

Identification and dissection of genetic loci determining a

particular trait is a regular process in genetics. Most of the

complex quantitative traits are regulated by multiple loci

distributed across the genome of a species. So to precisely

detect the specific genetic elements linked with the trait of

interest, one has to link all the loci with that trait (Bhat and

Yu, 2021). A quantitative trait locus (QTL) is defined as a region

within the genome that is associated with the genetic variation of

a quantitative trait. QTL mapping is a widely accepted and

applied approach to identify the genes/QTLs determining a

complex quantitative trait. Moreover, positional cloning and

QTL mapping are the two powerful approaches to dissect the

genetic basis of phenotypic variation of important agronomic

traits. Both these approaches investigate the genomes for

polymorphic markers, followed by linking the polymorphic

markers with a particular trait to identify the most likely

candidate genomic regions controlling that trait. At the next

level, increasing the marker density across these candidate

regions would ensure further refinement of their physical

interval (fine-mapping), followed by the evaluation of their

actual physical position on the chromosomes (physical

mapping). Diverse QTLs and underlying genes for numerous

traits across a myriad of species have been successfully

deciphered using these approaches. The major limitation to

these approaches, however, is that they usually are low-

throughput and time-consuming (Song et al., 2017).

The bulk segregant analysis is a high-throughput QTL

mapping approach to rapidly identify genomic loci regulating

the trait of interest. In contrast to individual segregant analysis

(ISA), which classifies segregants according to their marker

genotypes, the BSA pools segregants according to their

phenotypes. When the former compares trait values of

different classes, the latter compares marker allele frequencies

in different classes (Huang et al., 2020). Although ISA is more

commonly used, however, due to more precision and power of

BSA and its simplicity, quickness, and cheaper nature than ISA, it

provides additional advantages as compared to ISA. The brisk

evolution of sequencing technologies along with the rapid

downfall of sequencing costs has put the BSA approach to a

newer level by integrating the traditional BSA approach with

NGS. The basis of BSA is to generate two phenotypically

contrasting groups or populations by crossing two extreme

phenotypes. This is followed by creating two bulks from the

segregating populations, i.e., F2 by selecting individuals with

contrasting phenotypes; for example, tall and short plants,

tolerant and susceptible plants, etc. (Zhang and Panthee,

2020). The key to this approach is that the alleles of a locus

controlling the trait would be enriched in either bulk; for

example, the allele “A” can occur frequently in the tolerant

plants, and the allele “a” frequently exists in the susceptible

plants, whereas those not affecting the trait would segregate

randomly in both bulks (Zhang and Panthee, 2020). BSA was

initially targeted to develop genetic markers for trait dissection at

earlier stages (Giovannoni et al., 1991; Michelmore et al., 1991).

Both marker development and genetic mapping were time-

consuming and labor-intensive. However, the rapid

advancement of sequencing technologies has greatly facilitated

marker discovery and their associations with traits of interest.

Integrating BSA with sequencing has dramatically enhanced the

speedy detection of marker-trait association by eliminating the

time-consuming marker detection step in the traditional BSA

approach. This hybrid approach of BSA combined with

sequencing was subsequently termed BSA-seq (Zhang and

Panthee, 2020). BSA-seq can be regarded as a selective

genotyping in which only the tails (individuals with extreme

phenotypes) from a population are selected for genotyping. The

tailed concept, originally proposed by Darvasi and Soller (2013),

reduces the cost and simplifies the analytical process without

compromising the statistical power. Rather than analyzing each

individual, bulking all the individuals from each tail to create two

pools significantly reduces the sequencing cost. BSA-Seq is

comparatively an expeditious approach to accomplish the bulk

segregant analysis by NGS. BSA conjugated with NGS ensures

the rapid identification of both qualitative and quantitative trait

loci (Zhang et al., 2021) and speeds up the recognition of

candidate genes controlling relevant agronomic traits in

diverse crop species (Liang et al., 2020). It can be applied to

any population with significant phenotypic differences (Dakouri

et al., 2018). For BSA-seq to be more efficient and fruitful,

comparatively high sequencing depth and coverage are needed

to distinguish significant SNP-trait associations. This results in a

sharp rise in the sequencing cost (Zhang et al., 2021), which curbs

the application of BSA-Seq to species with large genomes (Tang

et al., 2018). However, BSA-seq requires only two sequencing

reactions for two pools, thus compensating for high depth and

coverage. Nevertheless, for an efficient and productive BSA-seq

experiment, the sequencing must be performed to the deepest

affordable level, rather than to construct a large pool.

General overview of the BSA-seq
technique

Creation of bulks

For the fast-track identification of QTLs linked with a

particular trait of interest, a mapping population has to be

constructed from a cross between parents encompassing

contrasting attributes (Figure 1A). From the progeny of this

cross, the individuals exhibiting contrasting phenotypes for a

particular trait are initially identified. These contrasting

individuals would form two different groups/bulks. For

example, some individuals may be resistant to a disease,

thereby forming one group/bulk, whereas the other
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individuals showing susceptibility to the disease form another

contrasting group/bulk. Then, the DNA of the individuals from

each group is extracted, and all the DNA samples of one group

are pooled to create one bulk, and those of the other group are

pooled separately to create a second bulk (Song et al. (2017)).

After that, sequencing libraries are prepared from the pooled

DNA samples of each group/bulk, followed by sequencing of the

libraries using an appropriate sequencing platform (Yuexiong

et al., 2020; Zhan et al., 2020).

Sequencing and variant calling

There are diverse variant calling approaches, with no

constraints for appraising a single technique, to call SNPs.

Usually, the application of a variant calling technique depends

on the organism and the depth and coverage of the sequencing

data. The differences in the depth and breadth of sequencing

coverage have implications on variant calling. Researchers have a

choice to use a particular sequencing strategy, depending on their

budget. The bulked samples can be sequenced by using different

approaches like whole-genome sequencing, genotyping by

sequencing (GBS), restriction site-associated DNA sequencing

(RAD-seq), etc. The outcome of the SNP calling depends on the

sequencing strategy used.Whatever the sequencing strategy used,

the downstream analysis of the sequenced reads, in the fastQ/

fasta format, involves aligning them with a reference genome or a

de novo genome assembly. A standard reference genome of a

species is used for this purpose; however, owing to the fact that a

single reference genome could not cover all the diversities present

within a species, a pangenome concept has emerged to resolve

this issue. Therefore, it would be more advantageous to sequence

the genome of at least one parent and use it for aligning the reads

of two bulks (Luo et al., 2019; Bayer et al., 2020; Kumar et al.,

2020). Read alignment represents a critical step of data analysis.

Common alignment tools include BWA (Li and Durbin, 2010),

Bowtie2 (Langmead and Salzberg, 2012), and Minimap2 (Li,

2018). The resulting alignments are stored and sorted in the

FIGURE 1
Representation of BSA-seq and general data analysis approach for marker trait associations. (A) depicts the creation of opposite bulks and their
sequencing. (B) depicts variant identification and their association with the trait. This figure was created through Biorender https://biorender.com.
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SAM/BAM format. BAM is preferred and has become the

standard format due to its compressed size and indexed

nature. Manipulation of the BAM file is mostly performed

through the SAMtools package (Li et al., 2009). After read

alignment with the reference genome, the next step is to

identify and remove the duplicated reads, i.e., the reads

originating from the same genomic region. The duplicated

reads may arise due to the amplification of the same fragment

several times during library preparation. Picard (http://

broadinstitute.github.io/picard), Sambamba (Tarasov et al.,

2015), etc., are used to identify and mark these PCR

duplicates in the BAM file for downstream exclusion. Before

variant calling, some SNP calling pipelines utilize additional

processing steps; for example, the GATK Best Practices

workflow (Van der Auwera et al., 2013) performs adjustments

to base quality scores of sequencing reads (base quality score

recalibration (BQSR)) to remove the alignment artifacts and to

reduce false positives through local realignment. However,

BQSR/realignment has been found to marginally improve the

variant calling accuracy; therefore, these steps may be considered

optional (Koboldt, 2020). A myriad of tools have been developed

for variant calling accurately like FreeBayes (Garrison andMarth,

2012), GATK HaplotypeCaller (DePristo et al., 2011), Platypus

(Rimmer et al., 2014), SAMtools/BCFtools (Li, 2011), TASSEL

(Bradbury et al., 2007), etc. Studies have shown that different

callers produce similar results (with 90% concordance), and the

differences arise only around the low coverage and low

confidence regions. Despite these low differences, the

differently called genome-wide variants by different callers

could amount to 1,000s, necessitating the need for

benchmarking and fine-tuning the variant caller (Koboldt,

2020). Choosing a single tool is usually sufficient; however,

variants called through different callers can be integrated for

sensitive advantage. Various tools like BCFtools are used for this

purpose. Whatever the tools used, variant calling can be

performed in two ways: individual variant calling (IVC) and

joint variant calling (JVC). In IVC, variants are called to create a

VCF file for each sample separately, followed by the merging of

individual VCF files through BCFtools or other packages. One of

the main problems with IVC is that since VCF files contain

positional information of variants only, it is not possible to

distinguish whether a variation absent in some samples is a

wild type or just has low coverage to be called a variant (Koboldt,

2020). In JVC, all the samples are called simultaneously and

produce genotypes at each variant position for all samples, which

has the potential to resolve the above problem of the IVC. The

JVC can also infer the likely genotype of a sample based on the

information from the other, which provides a sensitive advantage

around low coverage regions (DePristo et al., 2011; Koboldt,

2020). Errors during short-read alignment can produce artifacts

during variant calling (Li, 2014). In addition, artifacts may arise

due to low-quality base calls, local misalignment around indels,

erroneous alignments around low complexity regions, and

paralogous alignments of reads not well represented in the

reference. These artifacts have been excellently described by

Koboldt (2020). Such false positives usually skip during

automated filtration, so a visual cross-check using genome

browsers is needed to review the alignment of variants.

Approaches for downstream data analysis

When the principle of BSA-seq for the mapping of QTLs is

simple, a myriad of statistical methods have been developed to

analyze BSA-seq data (Figure 1B). A more convenient and robust

pipeline called PyBSASeq was developed by Zhang and Panthee

(2020). Once the SNPs are generated by the variant caller,

generally, the next step is to filter them based on certain

criteria. The unmapped SNPs, missing SNPs, SNPs with more

than one alternate (ALT) allele, and the SNPs with low-quality

scores are excluded (Zhang and Panthee, 2020). The filtered

SNPs are then subjected to Fischer’s exact test to obtain a set of

significant SNPs. Identification of SNPs is accomplished by

matching the bases from sequencing data to the reference

genome. Each identified SNP is compared with the reference

genome and designated as REF (reference SNP) if identical with

the reference genome or ALT (alternate SNP) if not identical with

the reference genome. Now, after dividing the number of ALT

SNPs by the total number of SNPs (REF + ALT), an allele

frequency measure termed the SNP index is obtained. The

difference in SNP indices between the two bulks is termed the

Δ SNP index. For any SNP, the greater the value of its Δ SNP

index, the higher is the probability that SNP is associated with the

trait of interest (Zhang and Panthee, 2020). In BSA, the alleles

associated with a trait get enriched in either bulk. Therefore, if a

gene contributes to a trait, its alleles and, therefore, the SNPs

within that gene are enriched in either bulk. For example, in one

bulk, there may be more REF allele-containing reads, whereas the

other bulk may contain more ALT allele-containing reads. Due to

the phenomenon of linkage disequilibrium (LD), the SNPs

flanking this gene are also enriched, depending on their

closeness to the gene. Based on the quantification of

enrichment values of these trait-associated flanking SNPs, a

recent python algorithm has been developed to analyze the

BSA-seq data more simply and effectively (Zhang and

Panthee, 2020). The pipeline can also calculate a G-statistic

value for each SNP through the G-test using both REF and

ALT SNPs in each bulk. The higher the G-statistic value, the

more likely the SNP is linked with the trait. After the calculation

of the Δ SNP index or the G-statistic, a sliding window algorithm

is utilized to aid the visualization. The sliding windows may

contain 100s to 1000s of SNPs among which only a few can be

significant. The pipeline developed by Zhang and Panthee (2020)

uses the ratio of significant SNPs and the total number of SNPs

within a sliding window as an indicator of the trait-associated

gene within the sliding window. The greater the ratio, the higher
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is the probability of the sliding window containing the trait-

associated gene. This approach is referred to as the significant

SNP method. When using the Δ SNP index or the G-statistic

values during window sliding, the higher Δ SNP index and

G-statistic values indicate that the window under observation

contains the trait-associated gene (Zhang and Panthee, 2020).

Based on the plots derived from the sliding window approach,

candidate genomic regions can be distinguished. The candidate

genomic regions would be the windows containing the trait-

associated gene. These candidate regions or QTLs associated with

a particular trait can then be validated using diverse polymorphic

markers (Arikit et al., 2019). Next, the SNPs within the candidate

regions can be annotated using distinct bioinformatics tools.

PyBSASeq is simple, effective, and highly sensitive. It performs

better at low sequence coverage; therefore, it has the potential to

significantly reduce the sequencing costs. It can calculate

significance levels of the detected associations; however, it

suffers from the deficiency of the estimation of confidence

intervals for the detected QTLs. It may be resolved in future

versions.

Block regression mapping (BRM) is another robust approach

developed to analyze BSA-seq data comprehensively. This

method was developed by Huang et al. (2020). The authors

developed this algorithm to solve two key issues in analyzing

BSA-seq data: 1) to accurately determine the significance

threshold and 2) to determine the confidence interval of the

QTLs. These two issues remain associated with QTL-seq, as

claimed by Huang et al. (2020). Through the BRM approach, the

users can also integrate the results from the BRM pipeline with

the Pooled QTL Heritability Estimator (PQHE) (Tang et al.,

2018) to estimate the heritability. The method is based on a null

hypothesis (Ho), which if an allele is not associated with the trait,

the frequency of that allele in two pools is equal. Conversely, the

difference in frequencies of an allele between the two pools is

equal to zero if the allele is not associated with the trait. However,

under this condition, both the pools should be a random sample

from the population for the marker. At Ho

f1 � f 2 � f orΔf � f 1 − f 2 � 0

where f = frequency of an allele in a population, f1 = frequency of

an allele in pool-1, and f2 = frequency of an allele in pool-2. If an

allele is linked with a trait, then

Δf � f 1 − f 2 ≠ 0

The larger the value of Δf for an allele, the more strongly the

allele is associated with the trait (Huang et al., 2020). After

calculating the Δf value for each marker, a continuous Δf curve
can be plotted across the genome. QTLs can be identified from

this curve as their peaks. The local regression method LOESS

(Jacoby, 2000) is used to fit the Δf, f1, and f2 curves, followed by

block regression. To calculate the significance levels, the method

relies on the fact that Δf approximately follows a normal

distribution under the central limit theorem. Therefore, the

significance level of the Δf is calculated using a two-tailed test.

If it is significant, the alternative hypothesis is accepted, i.e., there

is QTL present in this peak. Then, the confidence interval is

derived as the region between the left and right intersection

points of a horizontal line (calculated mathematically) with the

curve. This region represents the 95% confidence interval of the

QTL (Huang et al., 2020). Bonferroni correction is used for

multiple testing. Here, f1 and f2 are equivalent to SNP indices,

and Δf is the ΔSNP index of the QTL-seq method of Takagi et al.

(2013a) and PyBSASeq of Zhang and Panthee (2020). The main

advantage of the BRM approach is that it can calculate

significance levels through multiple testing and determine the

confidence intervals.

Among the other statistical approaches developed to analyze

BSA-seq data, a G-statistic-based approach developed by

Magwene et al. (2011) is well known. It calculates the

G-statistic value for each SNP through a smoothed version of

the G-test using both REF and ALT SNPs in each bulk. The

higher the G-statistic value, the more likely the SNP is linked with

the trait. This method takes into consideration the allele

frequency variation due to bulks and variation due to

sequencing of bulks. Larger bulk sizes and enough sequencing

depth have the potential to detect even weak effect QTLs

(Magwene et al., 2011). Although this approach is simple,

Huang et al. (2020) have asserted that the method of

calculating FDR for multiple testing is not concretely devised,

confidence intervals cannot be estimated through this method,

and it is less effective under low sequencing depth.

The MULTIPOOL method was developed by Edwards and

Gifford (2012) for genetic mapping through the utilization of

pooled genotyping. This approach was focused on experiments

with model organisms, where the progeny of a cross is grouped

and pooled based on phenotypes. Its theme is simple: a marker

not linked with a trait shall segregate with equal frequency in

both pools, whereas the marker linked with a trait shall be

enriched in either pool. It was developed to handle larger data

sets containing 1000s of markers. It uses the dynamic Bayesian

network (DBN) approach for estimating confidence intervals and

statistical accuracy of QTLs. The method can be used for any

number of replicates and multiple experimental designs

(Edwards and Gifford, 2012). It uses a probabilistic multi-

locus dynamic Bayesian network model, wherein a single

chromosome is considered at a time to model the influence of

pool size and recombination on the frequency of neighboring

alleles and describes the allele frequency change across the

chromosome. Although MULTIPOOL does not rely on a

specific read aligner or SNP calling strategy, however, it

suffers from the problem of estimating the LOD threshold

and judging the significance of signals accurately.

A simpler and widely accepted method known as QTL-seq

was developed by Takagi et al. (2013b) to identify the QTLs in

rice recombinant inbred lines (RIL) and F2 populations but can

be applied to any population for detecting genomic regions that
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underwent artificial or natural selection. It can also be applied to

populations under different environmental conditions like high

and low temperatures. However, this method is not suitable for

detecting minor effect QTLs as replicated measurements are not

possible for each genotype. The approach uses the Δ SNP index

method. It first calculates k (number of reads having an allele

different from the reference); then, the SNP index is calculated

using the formula

SNP − index � k 1/n,

where n = total number of reads.

QTL-seq estimates the contribution of each parent to the

variation. If SNP index = 0, there is no variation and all SNPs are

the same as reference. If SNP index = 1, all SNPs belong to either

parent and if SNP index = 0.5, each parent contributes equally to

the variation. Generally, only the SNPs with SNP index > 0.3 in

either bulk are retained for downstream analysis. A sliding

window is then applied to visualize the graphs based on the

SNP index. After that, the Δ SNP index is calculated for all

genomic regions, and the regions exhibiting a higher Δ SNP index

than the background genome represent the regions associated

with the trait of interest. These regions correspond to peaks or the

valleys of the SNP index plot (Takagi et al., 2013a). Depending on

the type of genotyping, i.e., whether analysis involves allele

frequencies of both tails of the phenotypic distribution of a

targeted trait (bidirectional selective genotyping) (Zhang et al.,

2003) or the allele frequencies from only one tail (unidirectional

selective genotyping) (Foolad et al., 2001), the QTL-seq can be

termed as bidirectional and unidirectional QTL-seq, respectively.

Although this selective genotyping of one or both phenotypic

extremes has the potential to detect effective QTLs, a simulation

study evaluating the power and precision of unidirectional and

TABLE 1 Key characteristics of different statistical approaches and pipelines used to analyze BSA-seq data.

Method Key statistics
used

Citations Limitation Advantage

1 G-statistic G-test 200 Based on estimating the G′ threshold; the
method for calculating FDR for multiple
testing has not been concretely devised;
significantly affected by sequencing depth
and is less suitable under low sequencing
depth; no estimation of confidence
intervals

Simplicity

2 MULTIPOOL Probabilistic multi-locus dynamic
Bayesian network model

70 Based on estimating the LOD threshold,
judging the significance of signals

Non-reliance on a particular aligner and
SNP calling strategy

3 QTL-Seq SNP index, Δ SNP index 780 Significance threshold estimated in QTL-
seq is inappropriate; no estimation of
confidence interval

Simplicity and intuition

4 EXPLoRA Hidden Markov model (HMM),
Linkage disequilibrium (LD)

45 Nomultiple testing correction, sometimes
maps a single QTL as two or more
adjacent QTLs, no confidence interval
estimation

Robust even at a low signal-to-noise ratio

5 Hidden Markov
model

HMM 9 Does not take into account that co-
segregation of SNPs is affected by the
distance between them

6 Non-homogeneous
hidden Markov
model

HMM 16 Takes the effect of distance between SNPs
during co-segregation into account

7 QTG-Seq smooth LOD test, Euclidean distance,
and G-statistic

49 Large pool size and high sequencing
coverage required

Time- and cost-saving strategy for fine-
mapping, suitable for minor-effect QTLs,
mapping resolution up to the gene level,
and requires only four generations from
the first cross of any parent lines for fine-
mapping

8 PyBSASeq Fischer’s exact test, Δ SNP index or
G-statistic, significant
SNP method

4 No estimation of confidence intervals for
detected QTLs

Simple and effective, calculates
significance, can detect SNP-trait
associations at lower sequencing
coverage so can reduce up to 80%
sequencing cost, high sensitivity

9 Block regression
mapping

Δf or Δ SNP index, Δf curve LOESS
analysis, block regression, central limit
theorem, and Bonferroni correction

10 Not apparent yet Calculates significance, uses multiple
testing, estimates confidence intervals

10 QTLseqr Δ SNP index and G-statistic 93 Not apparent Calculates significance, uses multiple
testing, and options for better
visualization
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bidirectional approaches revealed that the latter is more powerful

than the former (Navabi et al., 2009). QTL-seq has been

successfully used in a myriad of species like tomato (Illa-

Berenguer et al., 2015; Wen et al., 2019), capsicum (Park

et al., 2019), groundnut (Pandey et al., 2017; Clevenger et al.,

2018), watermelon (Branham et al., 2018; Cho et al., 2021), bottle

gourd (Chanda et al., 2018; Song et al., 2020), pear (Xue et al.,

2017), radish (Hu et al., 2022), rice (Lei et al., 2020), soybean

(Zhang et al., 2018), etc. QTL-seq is the most popular and widely

used tool for BSA-seq analysis and has the most citations

(Table 1). However, Huang et al. (2020) opine that the

significance threshold estimated in QTL-seq is inappropriate,

and there is no estimation of confidence interval.

Several approaches have also been developed that rely on the

hidden Markov model (HMM) concept to link SNPs with the

phenotype. The HMM is used to explain or derive the

probabilistic characteristic of any random process. It is used

to describe the observed events that depend on hidden events.

HMMs capture the hidden information from observed sequential

events. In HMM, the system being modeled is assumed to be a

Markov process with unknown parameters, and the observed

parameters are used to determine the hidden parameters. The

latter is used for further analysis (Hundal et al., 2016; Lan et al.,

2017). The EXPLoRA method was developed by Duitama et al.

(2014) to precisely distinguish between true and spurious linked

regions for a trait of interest. This algorithm relies on linkage

disequilibrium and uses HMM to model the relationships

between neighboring markers. This algorithm is robust and

performs better under a low signal-to-noise ratio. This tool is

claimed to give better results when the true linkage signal is

diluted by the availability of few segregants, sampling, and

screening errors (Duitama et al., 2014). EXPLoRA is effective

even at a low signal-to-noise ratio, but no multiple testing

correction and confidence interval estimation are carried out.

Another approach named the hidden Markov model (HMM)

was developed by Calaesen and Burzykowski (2015) to analyze

the BSA-seq data. The model assumes different states of a

nucleotide, and each state in an offspring being same or

different compared to the parent. Transition of nucleotides

implies transition in states. By calculating the probabilities of

transitions and states, the most probable state of each SNP is

selected, which indicates the most probable genomic regions

associated with the trait (Calaesen and Burzykowski, 2015).

Through this method, each identified SNP is classified into

one of the several predefined states having their specific

biological interpretation. The HMM identified states allow the

identification of genomic regions containing genes governing the

trait. This method is based on the assumption that the identified

SNPs are equally spaced across the whole genome, whichmay not

always be the case. Furthermore, the co-segregation of SNPs is

affected by the distance between them. Taking these two issues

into consideration, an extended method of the HMM known as

the non-homogeneous hidden Markov model (NH HMM) was

developed by Ghavidel et al. (2015), which takes the distance

between SNPs into account.

The quantitative trait gene sequencing (QTG-Seq) method

was developed by Zhang et al. (2019) to accelerate QTL fine-

mapping. The method partitions QTLs to convert a quantitative

trait into a near-qualitative trait. The partitioning is performed

by selfing the individuals heterozygous for the target QTL and

homozygous for other QTLs. This is followed by mining, in

which bulked pools are sequenced. In addition to the Euclidean

distance and G-statistic, a new statistic called smooth LOD was

used to delimit the QTL to a small interval (Zhang et al., 2019).

For the determination of minor-effect QTLs and fine-mapping,

QTG-Seq is cost-effective and time-saving but at the cost of a

large pool size and high sequencing coverage required. The

details and key features of these approaches are presented in

Table 1.

BSR-Seq approach

SNPs can be deduced from the transcriptomic data also;

therefore, it is also possible to use the RNA-sequencing

technology to efficiently identify SNPs from bulks. This

integration of BSA and transcriptome is known as bulked

segregant analysis RNA-seq (BSR-Seq). The fundamental

principles of BSR-Seq would remain the same as that of the

traditional BSA-seq, with the difference that only the transcribed

genome is used as a data source. BSR-Seq has been applied for the

elucidation of important genomic regions and SNPs associated

with different traits in both plants and animals. For example,

Wang et al. (2013) identified 1,255 and 56,419 differentially

expressed genes (DEGs) and SNPs, respectively, between

resistant and susceptible pools against enteric septicemia in

catfish. By pooling the RNA samples from 12 homozygous F3
resistant lines to the stem rust pathogen (strain Ug99 F3) and

11 susceptible homozygous lines, Edae and Rouse (2019) could

map the stem rust resistance to a 3.2-Mbp region on

chromosome 2U of Ae. umbellulata, with two nucleotide-

binding and leucine-rich repeat (NLR) genes as the potential

candidate genes (Edae and Rouse, 2019). Moreover, BSR-Seq was

used to clone the glossy3 (gl3) gene of maize (Liu et al., 2012). In

addition, the molecular details of wheat powdery mildew

resistance through BSR-Seq revealed that a single dominant

gene on chromosome 5DS conferred resistance (Zhu et al.,

2020). BSR-seq was also used to identify DEGs and SNPs

associated with waterlogging tolerance (Du et al., 2017).

Through the BSR-seq technique, the regulatory network of

melon color was identified by Chayut et al. (2015). The cold

tolerance response of Actinidia arguta through BSR-Seq revealed

that soluble sucrose and β-amylase activity were enhanced in

tolerant population compared to susceptible population (Lin

et al., 2021). Through BSR-Seq, in addition to the QTL

regions, the differential expression of candidate genes is also
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achieved. However, for traits affected by the environment and the

traits determined by many minor genes, BSR-Seq may not be

very effective (Edae and Rouse, 2019).

MutMap approach

With the advent of the sequencing technologies, there has

been a rapid progress in deciphering the causative alleles for a

particular trait more quickly than traditional QTL mapping

approaches. Spontaneous mutations and activation of natural

mutagens like transposons and viruses, etc., are the main sources

of variation in the natural populations. If variations are not

sufficient in a natural population, then artificial mutagens like

EMS, acridine dyes, base analogs, and UV, X-, and gamma-rays

can be used to induce mutation (Raina et al., 2016, 2020). The

mutations caused by these agents lead to altered phenotypes

through the generation of SNPs, indels, or segmental breaks

(Tribhuvan et al., 2018). The phenotypic variations either

existing spontaneously or induced artificially are exploited to

map the causative genes/QTLs using an appropriate marker

system. When the phenotypic variation is artificially induced

to create a mutant phenotype, then the causative mutation can be

analyzed and identified through MutMap methods. These

methods include MutMap, MutMap+, SHOREmap

(SHOrtREad map), MutMap-Gap, and NGM (next-generation

mapping). First, a mutant phenotype is created through

mutagenesis which is then crossed with the parent to create

F1 and F2 populations. With the aid of a marker system like SNPs,

the mutant phenotype is screened for segregation in the filial

generations and thus mapped on the genome. The key to these

approaches is the utilization of traditional BSA to generate SNP

data. They exploit the power of NGS technologies to map

inherited traits across any plant species where the generation

of an F2 mapping populations is possible. SHOREmap was

developed by Schneeberger et al. (2009) to identify the

causative gene mutation for slow growth and pale green leaves

in Arabidopsis. The authors first generated mutant lines and

crossed it with distant parent to dilute the distribution pattern of

non-causal SNPs present throughout the genome. Next, they

created a bulk of 500 mutant individuals, and their DNA was

pooled and sequenced. SNPs were identified between the parent

and mutant. The basic idea of this technique is that among the

progenies of mutant x parent, those with the mutant phenotype

are assumed to have SNP distribution similar to mutants at the

loci controlling the mutant phenotype, whereas other loci have a

random distribution. NGM mapping was developed by Austin

et al. (2011) to identify the cell wall biosynthesis andmaintenance

genes in Arabidopsis. NGM is similar to SHOREmap except that

it utilizes less mutant lines (10) to create a bulk, without

compromising the power to detect causal mutation. Like

SHOREmap and NGM, the MutMap technique, which was

developed by Abe et al. (2012), also uses the creation of bulks

from mutant F2 progenies (Etherington et al., 2014). MutMap,

however, differs from the aforementioned two techniques in the

sense that while the latter utilizes distantly related mapping lines,

the former relies on the crossing between the mutant and its wild

type itself. This approach of MutMap directly targets the causal

SNPs generated during mutagenesis (Tribhuvan et al., 2018). The

SNPs, which are associated with the mutant phenotype, would

show 0% wild type and 100%mutant reads, whereas the unlinked

SNPs would show 50% each. Abe et al. (2012) developed an SNP

index as the number of mutant SNP reads divided by the total

number of SNP reads. If this index =1, it means that the SNP is

highly linked to the mutant phenotype. This method is more

likely to map recessive mutations. An advancement to MutMap

known as MutMap+ was developed by Fekih et al. (2013) to

tackle the lethal or sterile mutations, wherein F2 cannot be

developed. Bulks of around 20–30 individuals for mutant and

wild type are created at M3 generation, sequenced at ~10x

coverage followed by SNP identification in both bulks. Then,

the SNP index for both is calculated, and the Δ SNP index is

derived by subtracting the wild-type SNP index from the mutant

SNP index. The positive Δ SNP index values indicate that SNP is

linked with the phenotype. A further extension of MutMap, to

map a causal mutation with the gaped region of the genome, was

developed and named MutMap-Gap (Takagi et al., 2013a, b).

Here, if an SNP with index = 1 remains undetected in the

reference genome, there is a possibility that such SNPs are

present within the gaped regions. Then, the unassembled

reads are de novo assembled, and the casual SNP is identified

using the de novo assembly. The key advantages of MutMap

include 1) no need of large mapping populations, 2) no need of

genetic linkage maps, 3) no need of natural variation in the

population, 4) time-saving and labor-effective, and 5) direct

identification of casual SNPs. Key disadvantages include 1)

availability of a reference genome, 2) artificial mutagenesis

required to develop mutant lines, 3) maintenance of mutant

lines, and 4) not applicable if a phenotype cannot be scored

(Tribhuvan et al., 2018).

Successful application of BSA-Seq in
elucidation of trait-associated QTLs

A myriad of studies on diverse species have proven the

applicability of BSA-seq in mapping QTLs for different traits

of agronomic importance. The details of some important studies

on important crop plants are presented in Table 2. BSA-Seq

successfully identified the genomic regions controlling the locule

number and fruit weight in tomatoes (Illa-Berenguer et al., 2015)

that may lead to significant breakthroughs in fruit development

in tomatoes. Breeding heat-tolerant cultivars of tomatoes seems

appealing. In order to identify the heat stress-responsive QTLs in

tomato, Wen et al. (2019) used an integrated approach of

conventional QTL mapping, BSA-Seq, and RNA-Seq and
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TABLE 2 Details of the studies utilizing BSA-Seq for the elucidation of trait-specific genomic regions in different crop species.

S.No. Species Pop type Pop size Pool
size

Sequencing
strategy

Number
of SNPs

Bioinformatics
approach
used

Trait Key findings Reference

1 Rice NIL-F2 176 35 individuals from
extreme
phenotypes

Whole-genome
sequencing (WGS)

455,262 QTL-seq method Grain length and
weight

One major QTL, 15–20 Mb on
chr 5, for grain length and
weight identified

Yaobin et al. (2018)

2 Rice F3 10,800 385 tolerant pools
and 430 sensitive
pools

Paired-end
Illumina
sequencing on
Hiseq
2000 platform

450,000 G′ statistic method Cold tolerance Six QTLs were mapped on
chromosomes 1, 2, 5, 8, and 10

Yang et al. (2013b)

3 Rice F2 940 20 extreme
phenotypes for
heading time (HT)
and plant
height (PH)

WGS on the
Illumina HiSeq X
Ten platform

511,393 for HT
and
543,319 for PH

ΔSNP-index method Heading time and
plant height

Four QTLs for HT on
chromosomes 3, 6, 9 and 10.
Three QTLs for PH on
chromosomes 1 and 8

Zhang et al. (2021)

4 Rice RILs 190 20 extreme
phenotypes were
used for bulking

Paired-end
sequencing using
the Illumina MiSeq
platform

184,917 Euclidean distance and
ΔSNP-index method

Cold tolerance One major QTL on chr6 was
identified, which spans 1.81 Mb
and harbors 269 genes

Sun et al. (2018)

5 Rice RILs 151 ---------- Paired-end
sequencing using
Illumina HiSeq
2500

116,993 Euclidean distance and
ΔSNP-index method

Grain shape One major QTL on chr9 was
identified, which spans 0.8 Mb
and harbors 101 genes

Wu et al. (2020)

6 Cucumber F2 258 10 individuals from
extreme
phenotypes

Illumina paired-end
sequencing

234,393 Δ (SNP index) Early flowering One major QTL around 890 kb
on chr 1 for early flowering. The
gene Csa1G651710 was
identified as the main flowering
switch

Lu et al. (2014)

7 Cucumber F3 135 15 resistant and
15 susceptible

Paired-end
sequencing using
Illumina HiSeq
2000

933,846 and
915,524 for
susceptible and
resistant bulk

ΔSNP-index method Vein yellowing
virus resistance

A unique region in chromosome
5 containing 24 annotated genes
was identified for resistance

Pujol et al. (2019)

8 Maize RILs 224 46 more extreme
plants formed two
pools

Paired-end
sequencing using
Illumina HiSeq
2000

3,301,371 Customized R-script Flowering time
and plant height

Two major QTLs found for FT
on chr 5 and chr 8 were 10.8 Mb
and 18.9 Mb in size, respectively.
Two major QTLs on chr 4 and
chr 6 found for PH were 21.2 Mb
and 9.7 Mb in size, respectively

Haase et al. (2015)

9 Maize ILs 400 10 tolerant and
10 sensitive
extreme
phenotypes

BSR-seq 114,580 Bayes’ theorem Waterlogging In tolerant and sensitive bulks,
354 and 1,094 genes were
differentially expressed,
respectively.
GRMZM2G055704 on
chromosome 1 was identified as

Du et al. (2017)
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TABLE 2 (Continued) Details of the studies utilizing BSA-Seq for the elucidation of trait-specific genomic regions in different crop species.

S.No. Species Pop type Pop size Pool
size

Sequencing
strategy

Number
of SNPs

Bioinformatics
approach
used

Trait Key findings Reference

a candidate gene responsive to
waterlogging

10 Wheat RILs 244 six low- and six
high-TGW

SLAF-seq 132,530 ΔSNP-index method 1,000 grain
weight (TGW)

One candidate gene associated
with TGW was identified on
chr 7A

Hu et al. (2016)

11 Hessian fly
(HF), a wheat
galling
parasite

Non-
structured
Louisiana
field
population

--- 23 virulent and
19 avirulent

WGS 1.5 million Fisher’s exact test using
PoPoolation2

Hessian fly (HF)
virulence to wheat
R genes H6, Hdic,
and H5

One 1.3-Mb region for HF
virulence was mapped to HF
autosome 2

Navarro-Escalante
et al. (2020)

12 Chickpea F4 221 10 individuals of
each low and high
seed weight
forming two pools

Paired-end WGS
using the Illumina
HiSeq
2000 platform

118,321 Δ (SNP index) 100 seed weight One major QTL of 35 kb on
chromosome 1 containing six
genes

Das et al. (2015)

13 Chickpea RILs 92 and
139 for two
populations

10 and 14 extreme
phenotypes for two
populations

WGS 77,938 in one
population and
106,907 in the
other

G-statistic and ΔSNP-
index method

Ascochyta blight
resistance

17 QTLs identified and mapped
on chromosomes Ca1, Ca2, Ca4,
Ca6, and Ca7

Deokar et al. (2019)

14 Tomato F2
populations

549 10 individuals of
each extreme
phenotype

Paired-end WGS
using the Illumina
HiSeq
2000 platform

---------- Δ (SNP index) Fruit weight (FW)
and locule
number (LC)

Three highly significant and
newly mapped FW QTLs on chr
1 and chr 11. 66 candidate genes
for FW. Three LC QTLs of low
significance

Illa-Berenguer et al.
(2015)

15 Groundnut RILs 266 25 individuals with
extreme
phenotypes

Paired-end WGS
using Illumina
HiSeq 2000

259,621 for rust
and 243,262 for LS

Δ (SNP index) Rust and late leaf
spot disease

One 3.06-Mb region on the
A03 pseudomolecule of
A-genome harboring
3,136 SNPs was identified for
rust resistance. A 2.98 Mb
region on A03 pseudomolecule
harboring 66 SNPs was
identified for LS resistance

Pandey et al. (2017)

1F6 Groundnut RILs 366 20 individuals with
extreme
phenotypes

WGS 10,759 ΔSNP-index method Fresh seed
dormancy

Two genomic regions on the
B05 and A09 pseudomolecules
control seed dormancy

Kumar et al. (2020)

17 Potato Diploid
mapping
population

90 10 individuals with
extreme
phenotypes

Paired-end
Illumina HiSeq
2000

6,766,8,152,000 Pearson’s chi-squared
test

Steroidal
glycoalkaloids
(GAs)

One region located on
chromosome 1 ranging from
63.1 to 73.5 Mb was found the
most confident

Kaminski et al.
(2016)

18 Pepper F2 249 30 individuals with
extreme
phenotypes

SLAF-seq 106,848 Euclidean distance first flower node One QTL on chr 12 was
detected, followed by 393 high-

Zhang et al. (2018)
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found five major QTLs determining the trait of interest. Their

results have significance in breeding for improved

thermotolerance in tomatoes. A major QTL on chromosome

1 regulating capsaicinoid biosynthesis in the pericarp of

capsicum was identified by Park et al. (2019) using BSA-Seq

in integration with RNA-Seq. Significant yield losses and

deteriorated fodder quality in groundnut are caused due to

rust and late leaf spot fungal diseases. To address this issue,

Pandey et al. (2017) identified three QTL loci for rust resistance

and one for late leaf spot resistance using the BSA-Seq approach.

Furthermore, Clevenger et al. (2018) also mapped late leaf spot

resistance QTLs in groundnut by BSA-Seq. Identification of these

genomic regions controlling rust and late leaf spot resistance and

their introgression into elite groundnut cultivars would bring

revolution in groundnut breeding. In the case of watermelon,

Fusarium wilt, caused by the fungus Fusarium oxysporum f.

sp. niveum (Fon) leads to significant losses in yield. Using BSA-

seq coupled to QTL mapping, the genomic region controlling

resistance to this fungus was fine-mapped to around the 315-kb

region (Branham et al., 2018). In order to map loci determining

semi-dwarfism in watermelon, Cho et al. (2021) identified a

single recessive gene through BSA-Seq.Watermelons are severely

affected by heat stress. Grafting watermelon to heat-tolerant

bottle gourd rootstocks is one solution to this problem (Yang

Y. et al., 2013a). So understanding of the inheritance and

identification of loci controlling heat tolerance in bottle gourd

may lead to significant breakthroughs in watermelon breeding

for heat tolerance. Using BSA-Seq, seven heat-tolerant QTLs with

one as a major effect QTL for heat tolerance in bottle gourd were

determined (Song et al., 2020). In addition, bottle gourd

rootstock is used to improve cold tolerance and disease

resistance in cucurbits. The aphid-transmitted papaya ringspot

virus watermelon strain (PRSV-W) and zucchini yellow mosaic

virus (ZYMV) are the two most common viruses infecting bottle

gourd. Through BSA-seq, fine-mapping of the Prs locus and

identification of the candidate resistance gene for PRSV-W were

elucidated (Chanda et al., 2018). The red peel of pears is more

attractive and also provides health benefits to consumers. So

genes controlling the skin coloration aid in cultivar selection and

enhance pear breeding. Using BSA-seq, a 582.5-kb candidate

genomic region associated with red/green skin (R/G) locus,

harboring approximately 81 predicted protein-coding genes,

was identified (Xue et al., 2017). Further fine-mapping and

elucidation of the specific casual genes would enhance the

commercial value of pears. An important commercial attribute

of radish is its root shape, measured as the ratio of the root length

to root diameter. Hu et al. (2022) identified seven QTLs

distributed on five chromosomes controlling the root shape.

The results of this study are significant for fine-mapping and

functional analysis of root-shaped QTLs and cultivar breeding

for the root shape in radish (Hu et al., 2022). Among the abiotic

stresses, salt stress negatively affects all crop species, leading to

compromised plant performance and significant losses in cropT
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yield. Seedling survival and overall yield in rice are directly

affected by salt tolerance at the bud burst stage. Using BSA-

seq, a major candidate region on chromosome 7 was identified,

which was further narrowed down to a 222-kb genomic interval.

Furthermore, five differentially expressed genes (DEGs) were

identified in this candidate region through the RNA-seq

approach at the bud burst stage under the salt-treated

condition. In addition, the expression of one gene, (OsSAP16),

was enhanced under drought stress, implying thatOsSAP16 is the

strong candidate gene (Lei et al., 2020). These results are

significant for improving the salt tolerance of rice varieties.

Grain size and weight are important traits that determine the

overall yield in cereal crops. In order to identify the candidate

genomic regions controlling the grain size and weight in rice,

Yaobin et al. (2018 used BSA-seq and identified a 15–20 Mb

region on chromosome 5. Plant height is closely related to

soybean yield. Using QTL-seq, Zhang et al. (2018) identified a

1.73-Mb region on chromosome 13. Linkage mapping was used

to confirm this region in the mapping population. Candidate

gene analysis revealed that Glyma.13 g249400 showed

significantly higher expression in soybean plants with greater

plant height; therefore, it can be a strong candidate gene for this

trait (Zhang et al. (2018).

In addition to its importance in crop plants, BSA-seq is also

widely used in other species as well like yeast (Wenger et al., 2010;

Hu et al., 2015), Tilapia fishes (Gu et al., 2018), etc. Using

MULTIPOOL, Vogel et al. (2021) was able to dissect the

genomic regions controlling the root and crown rot resistance

against phytophthora in squash fish, whereas De Witt et al.

(2019) and Wang et al. (2019) were successful in elucidating the

unique alleles involved in lignocellulosic inhibitor tolerance and

genomic variants linked to high-temperature fermentation

performance in yeast, respectively. Furthermore, Trindade de

Carvalho et al. (2017) successfully used BSA-seq in yeast through

EXPLoRA that relies on the hidden Markov model (HMM).

Potential of BSA-seq in medicinal
plant genomics

Medicinal plants are less explored at the genomic level as

compared to staple crop plants. Even the breeding programs for

the genetic improvement of medicinal plants are at the pioneering

stage, and the development of trait-specific homogeneous lines is far

away from reality. However, BSA-seq can greatly speed up and

facilitate their breeding programs by making the use of F2
generations. Thus, medicinal plant breeders can get a general idea

about the nature of the progenies in the context of a specific trait by

integrating BSA with NGS technologies. This information can then

be used to develop trait-specific homogeneous lines through selfing of

the selected lines. Practically, this approach is feasible for only those

medicinal plants that have less generation time and flower early in

life. Some examples of such medicinal plants that are best suited for

which reference genome is available and hence BSA-seq can serve

their breeding purpose effectively may include stevia, tea, and tulsi.

For longer generation time inmedicinal plants, especially tree species,

the creation of F2 generation is almost impossible.

Conclusion and future prospects

BSA-seq and its related approaches have the potential to quickly

identify the trait-specific genomic regions/QTLs in a high-

throughput manner. It takes the advantage of traditional BSA in

integration with rapidly evolving NGS technologies. The most

admirable attribute of this approach is that it takes only F2
generations to precisely identify trait-specific genomic regions/

QTLs, thereby saving much time. However, this is achieved at

the cost of additional capital investment for deep sequencing.

Therefore, there is a trade-off between time and capital

investment in using BSA-seq. With the rapid advancement of

NGS technologies and a steep decrease in the cost of sequencing,

it is expected that in near future, the sequencing depth would not be

a matter of concern while estimating the overall cost of BSA-seq.
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