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Introduction 

Melanoma is a malignant skin cancer that is primarily caused by excessive exposure to 
UV radiation from sunlight. Although melanoma represents a small proportion of skin 
cancer, its metastatic form is fatal, with a 5-year survival rate between 5%–19% [1]. In 
2020, more than 100,000 new melanoma patients and 6,850 deaths from melanoma are 
expected in the United States [2]. Melanoma has been the focus of modern genomic 
studies and cancer therapeutics since the development of targeted cancer drugs and im-
munotherapies. 
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BRAF inhibitors (e.g., vemurafenib) are widely used to treat metastatic melanoma with the 
BRAF V600E mutation. The initial response is often dramatic, but treatment resistance 
leads to disease progression in the majority of cases. Although secondary mutations in the 
mitogen-activated protein kinase signaling pathway are known to be responsible for this 
phenomenon, the molecular mechanisms governing acquired resistance are not known in 
more than half of patients. Here we report a genome- and transcriptome-wide study in-
vestigating the molecular mechanisms of acquired resistance to BRAF inhibitors. A micro-
fluidic chip with a concentration gradient of vemurafenib was utilized to rapidly obtain 
therapy-resistant clones from two melanoma cell lines with the BRAF V600E mutation 
(A375 and SK-MEL-28). Exome and transcriptome data were produced from 13 resistant 
clones and analyzed to identify secondary mutations and gene expression changes. Various 
mechanisms, including phenotype switching and metabolic reprogramming, have been de-
termined to contribute to resistance development differently for each clone. The roles of 
microphthalmia-associated transcription factor, the master transcription factor in melano-
cyte differentiation/dedifferentiation, were highlighted in terms of phenotype switching. 
Our study provides an omics-based comprehensive overview of the molecular mechanisms 
governing acquired resistance to BRAF inhibitor therapy. 

Keywords: cancer drug resistance, melanoma, microfluidic device, RNA sequencing, target-
ed therapy, whole exome sequencing  



BRAF mutation occurs in more than 80% of melanoma patients, 
with the V600E mutation being the most frequently observed [3]. 
It is also responsible for ~40% of papillary thyroid carcinoma and 
small portion of other tumors (e.g., colon, pancreas, brain, lung, 
etc.), taking ~8% of human tumors in total [4,5]. Vemurafenib, 
targeting BRAF V600 alterations, is among the most well-known 
cancer drugs with rapid and dramatic early responses, but the tu-
mor eventually relapses in most cases [6]. Thus, overcoming resis-
tance to targeted therapy is of prime importance and would re-
quire a detailed understanding of the molecular mechanisms un-
derlying resistance development. Intrinsic tumor heterogeneity 
and the evolution of cancer cells are the major causes of therapy 
resistance [7]. 

Molecular mechanisms of resistance to BRAF inhibitor (BRA-
Fi) have been reported by analyzing the genome and transcrip-
tome data from patient samples [8,9]. Reactivation of the mito-
gen-activated protein kinase (MAPK) pathway by secondary mu-
tations in the RAS/RAF/MEK/ERK signaling cascade is the most 
frequently observed mechanism, occurring in up to 80% of BRA-
Fi-resistant tumors [10]. Many additional mechanisms, however, 
have been found to contribute to the development of therapy re-
sistance, including activation of the phosphoinositide 3-kinase 
(PI3K)–AKT–mammalian target of rapamycin (mTOR) pathway, 
tumor microenvironment reprogramming by the Hippo signaling 
pathway, and phenotype switching by master transcription factors 
(TFs), such as microphthalmia-associated transcription factor 
(MITF), and receptor tyrosine kinase (RTK), such as AXL [11]. 

Although patient tumor samples are highly useful for their clini-
cal relevance, it is difficult to study the details of molecular mecha-
nisms because of various issues in sample quality and quantity. 
Therefore, patient-derived cell lines are important for studying the 
complex interplay among various mechanisms. In the case of cell 
line studies for drug resistance, the most difficult and labor-inten-
sive part usually is obtaining resistant cells. Previously, we demon-
strated that a microfluidic chip with a concentration gradient of 
cancer drugs could induce drug resistance rapidly, thereby being 
designated as the cancer drug resistance accelerator (CDRA) chip, 
and that multiple molecular mechanisms underlying erlotinib re-
sistance could be elucidated by analyzing exome and transcrip-
tome sequencing data [12]. In this study, we applied the same 
principle to investigate the mechanisms governing the resistance 
of melanoma cells to the BRAFi vemurafenib. The aims of our 
study were not only to identify resistance mechanisms but also to 
investigate whether different clones or cell lines acquire drug resis-
tance in different ways, i.e., whether the resistance acquisition pro-
cess is stochastic. 

Methods 

Cell culture and establishment of vemurafenib-resistant 
cells 
Human melanoma cell lines A375 and SK-MEL-28 were pur-
chased from the American Type Culture Collection (Manassas, 
VA, USA) and were maintained in Dulbecco's modified Eagle's 
medium (for A375) or minimum essential medium (for SK-
MEL-28) supplemented with 10% fetal bovine serum (HyClone, 
Logan, UT, USA), 100 units/mL penicillin (Invitrogen, Carlsbad, 
CA, USA) and 100 µg/mL streptomycin (Invitrogen). 

Vemurafenib-resistant A375 and SK-MEL-28 cells were estab-
lished using a microfluidic chip as described previously [12]. 
Briefly, the interior surface of the chip was sanitized with 70% eth-
anol and coated with 10 µg/mL fibronectin (Sigma, St. Louis, 
MO, USA). The cells were seeded carefully onto the surface of a 
chip and incubated to adhere to the surface. One inlet reservoir 
was filled with serum-free media containing vemurafenib, and the 
other inlet reservoir was filled with serum-free media only (i.e., 
without vemurafenib). Two outlet reservoirs were filled with se-
rum-free media. The reservoirs were replaced every day with 
freshly prepared serum-free media with or without vemurafenib. 
After cultivation in the chip, the cells were trypsinized, collected, 
and transferred to a new culture dish and cultured to obtain 
enough cells. To examine the effect of exposure to increasing con-
centrations (0.0001 μM to 10 μM) of vemurafenib (Selleck Chem-
icals, Houston, TX, USA), cell proliferation was measured at 72 
hours using an EZ-Cytox Cell Viability Assay Kit (Daeillab Ser-
vice, Seoul, Korea). Cells were plated at densities of 4,000 cells or 
5,000 cells per well into 96-well plates by hexa-repeat. The results 
are expressed as a percentage of the cell number in drug-untreated 
control wells. The IC50 values for vemurafenib were calculated by 
fitting the plot of percentage inhibition versus the log of drug con-
centration with the nonlinear regression method in GraphPad 
Prism 6 (GraphPad Inc., La Jolla, CA, USA) software. Error bars 
represent the standard error of the mean. 

Production and processing of exome and transcriptome 
sequencing data 
Total genomic DNA was extracted from control cells and vemu-
rafenib-resistant cells by the traditional phenol extraction method. 
One microgram of genomic DNA was used for exome sequencing. 
Total RNA was extracted from individual conditions using an 
RNeasy Mini Kit according to the manufacturer’s protocol (Qia-
gen, Hilden, Germany), and 1 µg of total RNA was used for RNA 
sequencing. The exome-seq and RNA-seq data acquisition process 
have been described previously [12]. 
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Sequencing reads were trimmed with Sickle (ver. 1.33) to re-
move low-quality reads and adaptor sequences [13]. For the RNA 
sequencing data, trimmed reads were mapped to the reference hu-
man genome (UCSC hg19) using STAR (ver. 2.6.1c) [14], and 
the gene expression values were quantified with RSEM (ver. 1.3.3) 
[15] with the default options. Exome sequencing data were 
mapped with the BWA-MEM alignment tool (ver. 0.7.17) [16] 
and indexed with Samtools (ver. 1.11) [17]. Strelka2 (ver. 2.9.10) 
[18], as well as Mutect2 [19], in the Genome Analysis Toolkit 
(GATK ver. 4.1.8.1) were used for calling somatic variants (single 
nucleotide variations and indels). We also calculated copy number 
variations (CNVs) from exome sequencing data using EXCAVA-
TOR2 (ver. 1.1.2) [20]. All resulting variants were annotated with 
ANNOVAR software (ver. 2019Oc24) [21]. 

Transcriptome data analysis 
Most of our analysis was performed with R (ver. 4.0.0) and several 
R-based packages. To obtain subgroups from the samples, variable 
genes were selected within the top 20% in the coefficient of varia-
tion (COV20). Hierarchical clustering with these COV20 genes 
yielded three sample groups, named SK-MEL-28, A375_G1, and 
A375_G2, according to the cellular origin. Differentially expressed 
genes were obtained by comparison with the control sample using 
the edgeR package (ver. 3.30.3) with false discovery rate (FDR) <  
0.05, absolute log2FoldChange >  1, and logCPM >  1 [22]. We 
used the GSVA program (ver. 1.36.3) [23] with the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) subset of canonical 
pathways from MSigDB (c2.cp.kegg.v7.2.symbols.gmt) [24] to 
calculate the gene set activity for each sample. Gene sets with vari-
able activities among three groups were obtained with a t-test sup-
ported in R base functions under the threshold of FDR <  0.01. 

Public transcriptome data of melanoma patients 
We searched the Gene Expression Omnibus (GEO) for transcrip-
tome data before and after vemurafenib treatment in melanoma 
patients. We identified such patients from three GEO records with 
the accession numbers GSE141484 [25], GSE50509 [26], and 
GSE99898 [27]. Normalized expression data were downloaded 
and merged with quantile normalization to reduce the batch effect. 
The fold change in expression was used for heatmap visualization 
and calculating pathway activities for each sample using the GSVA 
program. The correlation with the MITF expression pattern was 
calculated with MITF and its regulators, RTK genes, and the path-
way activities of KEGG pathways. The genes below the correlation 
coefficient of 0.5 were filtered out. We also performed a principal 
component analysis using genes highly correlated with MITF ex-
pression. The R based package factoextra (ver. 1.0.7) was em-

ployed to visualize the principal component analysis (PCA) plot 
of our samples and public patient data.  

Results  

Acquisition of vemurafenib-resistant cells using a microfluidic 
CDRA chip 
We cultured two melanoma cell lines with the BRAF V600E muta-
tion, A375 and SK-MEL-28 specifically, for 8‒47 days on CDRA 
chips with a concentration gradient of vemurafenib (Fig. 1A). The 
cultured product was further maintained in dishes with a relatively 
high dose of vemurafenib to select vemurafenib-resistant cells. We 
obtained 13 samples, specifically four from SK-MEL-28 and nine 
from A375 cell lines, and confirmed that those samples were in-
deed resistant to vemurafenib (Fig. 1B). The extent of resistance, 
however, was notably different between the two cell lines. The av-
erage IC50 values of resistant cells from SK-MEL-28 cells increased 
by 23.7-fold (from 0.143 to 3.3815 μM), whereas those from A375 
cells increased by 6.3-fold (from 0.0655 to 0.4133 μM) (Table 1). 
Thus, the characteristics of drug resistance were highly dependent 
on the original cellular identity. 

Transcriptome data show different mechanisms of acquired 
resistance in the two cell lines 
In an effort to identify the molecular mechanisms of drug-induced 
resistance, we performed exome and transcriptome sequencing for 
two original cell lines and 13 resistant cells obtained from CDRA 
chips. Exome sequencing data identified only one mutation with 
known driver potential (HRAS Q61K) in one of the A375-de-
rived resistant cells (Supplementary Fig. 1). Copy number varia-
tion profiles were mild in all cases. Thus, we focused on the inter-
pretation of transcriptome data. 

Hierarchical clustering of transcriptome data revealed that our 
resistant cells could be divided into two groups according to the 
source cell line (Supplementary Fig. 2). Resistant cells from A375 
were further divided into two subgroups: A375_G1 and A375_
G2. Next, we examined the gene expression of pathway marker 
genes that are known to be associated with vemurafenib resistance, 
including the RTK pathway [28], transforming growth factor β 
(TGF-β) pathway [29], MITF regulation [30], Sonic hedgehog 
pathway [31], MAPK pathway [32-34], and PI3K-AKT-mTOR 
pathway [11,35] (Fig. 2). The expression levels of most of these 
known factors were nearly opposite between the SK-MEL-28–de-
rived cells and the A375-derived cells. 

Most marker genes showed a dichotomous expression pattern 
between the SK-MEL-28–derived cells and A375-derived cells, 
strongly suggesting that the resistance mechanisms are notably dif-
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Table 1. Experimental conditions

Sample name Chip-Conc. (μM) Duration in chip (day) Dish culture IC50 (μM) FC to WT

A375 cell line 0.0655 1.0

  A375-321s-2 25 13 70 nM (3 wk) 0.3623 5.5

350 nM (1 wk)
3.5 μM (1 wk)

  A375-321s-3 25 13 70 nM (3 wk) 0.2412 3.7

350 nM (1 wk)
3.5μM (1 wk)

  A375-321s-4 25 13 70 nM (3 wk) 0.5420 8.3

350 nM (1 wk)
3.5 μM (1 wk)

  A375-328s-1 10 8 70 nM (3 wk) 0.6387 9.8

350 nM (1 wk)
3.5 μM (1 wk)

  A375-328s-2 10 8 70 nM (3 wk) 0.5076 7.8

350 nM (1 wk)
3.5 μM (1 wk)

  A375-328s-3 10 8 70 nM (3 wk) 0.3329 5.1

350 nM (1 wk)
3.5 μM (1 wk)

  A375-328s-4 10 8 70 nM (3 wk) 0.3190 4.9

350 nM (1 wk)
3.5 μM (1 wk)

  A375-503s-1 10 47 3.5 μM (3 wk) 0.1886 2.9

  A375-503s-2 10 47 3.5 μM (4 wk) 0.5874 9.0

SK-MEL-28 cell line 0.143 1.0

  SK-MEL-28-1 4.5 12 0.15 μM (6 wk) 5.617 39.3

1.5 μM (3 wk)
  SK-MEL-28-2 4.5 12 0.15 μM (6 wk) 4.577 32.1

1.5 μM (3 wk)
  SK-MEL-28-3 7.5 12 0.15 μM (6 wk) 1.966 13.8

1.5 μM (3 wk)
  SK-MEL-28-4 7.5 12 0.15 μM (6 wk) 1.366 9.6

1.5 μM (3 wk)

FC, fold change; WT, wild type.

Fig. 1. Acquisition of drug-resistant cells using microfluidic chips. (A) Schematic diagram of microfluidic chips and the experimental setup. (B) 
Cell viability plots to confirm drug resistance (i.e., increased IC50 values) of cells obtained from microfluidic chips.
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Fig. 2. Expression of key genes in drug-resistant A375 and SK-MEL-28 cells. Expression values are the log2FoldChange values converted 
into the row-wise Z-score. RTK, receptor tyrosine kinase; TGFB, transforming growth factor β; MITF, microphthalmia-associated transcription 
factor; SHH, smoothened signaling pathway or sonic hedgehog signaling; MAPK, mitogen-activated protein kinase; PI3K, phosphoinositide 
3-kinase; mTOR, mammalian target of rapamycin.

ferent in the two cell lines. For example, MITF and its regulators 
were downregulated in all SK-MEL-28–derived cells, while they 
were upregulated in all A375-derived cells. We also obtained a few 
markers (e.g., LEF1, CDK1, E2F1, MAP2K1, MAPK3, AKT3, and 
MTOR) showing differences between A375_G1 and A375_G2 
cells. Thus, the resistance mechanisms may vary even within the 
same cell origin, implicating the stochastic nature of the resistance 
acquisition process. 

To further elucidate resistance mechanisms at the pathway level, 
we calculated the pathway activities for KEGG curated pathways 
from MSigDB using the GSVA algorithm (Supplementary Table 
1). The pathway activity pattern again showed the same three 
groups, and differential pathways were obtained by two t-test com-
parisons of (1) SK-MEL-28–derived cells and A375-derived cells 
and (2) A375_G1 cells and A375_G2 cells (Fig. 3). 

A number of pathways appeared different between the two cells. 

SK-MEL-28–derived cells had downregulated metabolism, upreg-
ulated signaling (MAPK, WNT, and Hedgehog pathways), and el-
evated proliferation (cell cycle, DNA replication, and mismatch re-
pair). A375-derived cells mostly exhibited the opposite expression 
pattern. The two subgroups of A375 cells had differential activities 
in mTOR and Hedgehog signaling pathways and RNA homeosta-
sis (basal transcription, spliceosome, and RNA degradation).  

Comparison with clinical samples highlights the roles of 
MITF and accompanying pathways 
Comparison with clinical sample data is critical to in vitro experi-
ments, such as the CDRA chip. We collected public expression 
data of melanoma patients who received vemurafenib treatment 
because of the V600 mutation and whose transcriptome data were 
available before and after vemurafenib treatment. We identified 19 
such pairs from three studies, enabling multiple pairs to be exam-
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Fig. 3. Pathway activities for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The heatmap shows pathway activities for 68 
KEGG pathways obtained from the differential test with false discovery rate < 0.05. The full list is shown in Supplementary Table 1 with 
detailed numbers. mTOR, mammalian target of rapamycin; MAPK, mitogen-activated protein kinase; ECM, extracellular matrix.

ined in the case of time series samples [25-27]. 
The regulatory markers in Fig. 2 can be merged into a unifying 

model where RTK-mediated MAPK and PI3K-AKT pathways af-
fect the expression and nuclear export of MITF [36]. Since MITF 
is the master regulator of melanocyte proliferation and differentia-
tion as well, we searched for regulatory genes and/or pathways 
that would play roles within the context of MITF regulation. Can-
didate genes were selected among the RTK genes and known TFs 
of MITF [30,37-39]. Then, correlation coefficients with MITF ex-
pression were obtained for gene expression or pathway activities 
using the patient sample pairs (Fig. 4A). Positively correlated 
genes included MYC, HIF1A, RYK, KIT, and LEF1, whereas nega-
tively correlated genes were AATK, NFKB2, ROR2, CREB3, 
STYK1, FGFR2, and AXL. We also examined the correlation of 

pathway activities for KEGG pathways. We used the pathways dif-
ferentially scored in our data to patient data. As a result, the MAPK 
pathway and hedgehog pathway showed a high negative correla-
tion tendency, whereas several metabolic pathways had a strong 
positive correlation. Additionally, cell adhesion-related pathways, 
such as gap junctions and extracellular matrix (ECM) receptor in-
teractions, showed slight negative correlations. 

Since our resistant clones from cell lines and patient samples ex-
hibited dichotomous patterns of MITF expression, we performed 
a PCA of samples using regulator genes. The PCA plot again 
showed that the two cell lines formed their own clusters, with pa-
tient samples scattered more dispersedly but with a specific associ-
ation with each cell line (Fig. 4B). Thus, our results with cell lines 
may represent two different classes of patient samples in the mo-
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Fig. 4. Gene expression and pathway activity from patient samples. (A) Microarray expression data are in log2FoldChange. The expression 
and pathway activity heatmaps are shown at the top and bottom, respectively, in different colors. Note that the genes and pathways 
are sorted according to the correlation coefficient with microphthalmia-associated transcription factor (MITF) expression. (B) Principal 
component analysis plot of both patient samples (circles) and cell line-derived resistant cells (triangles) using 20 correlated genes in A. All 
expression values are in log2FoldChange.
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lecular mechanism governing the acquisition of resistance to ve-
murafenib. 

Discussion 

Deciphering the molecular mechanisms of resistance is an import-
ant step in the development of new treatment methods in targeted 
cancer therapy. In this study, we adopted a microfluidic chip to 
rapidly induce drug resistance and applied whole exome and tran-
scriptome sequencing to investigate the molecular mechanisms 
governing resistance to vemurafenib. Chemo-resistant cell lines are 
usually acquired by exposing cells to stepwise increasing concen-
tration of chemo-agents, which is labor-intensive and time-con-
suming. Notably, we obtained resistant cells in 1–7 weeks using 
the CDRA chips in contrast to several months by conventional 
methods. 

In the case of vemurafenib resistance, genomic variations, such 
as mutation and CNVs, were relatively mild, probably due to a rel-
atively short time of drug exposure compared to the actual pa-
tients. On the other hand, the transcriptome signatures demon-
strated that the two cell lines acquired vemurafenib resistance in 
different ways that are highly contrasted in MITF expression. 

MITF is the master TF of melanocytes responsible for regulat-
ing the proliferation, differentiation, and metabolic reprogram-
ming of melanocytes. BRAFi treatment causes melanoma cells to 
change their MITF expression to low or high levels, both of which 
lead to slowly proliferating resistant cells. AXL, an important regu-
lator of apoptosis and epithelial-mesenchymal transition (EMT), 
is usually inversely correlated with MITF expression. Although 
MITF and AXL have been characterized as two primary regulators 
of cellular phenotype switching, many other pathways are also rel-
evant to MITF regulation, including the MAPK, Hippo, TGF-β, 
and autophagy signaling pathways. Our pathway activity data 
showed that many of these pathways were coordinately associated 
with MITF expression in both cell lines and patient tumors, but it 
was difficult to identify consistent behavior. This finding implies 
that MITF regulation is highly complex and dependent on cellular 
contexts, such as the tumor microenvironment.  

We also observed that A375-derived resistant cells were divided 
into two subgroups with differential activities in the cell cycle and 
ECM interactions. These subgroups further highlight the hetero-
geneity of acquired resistance. Further work, probably based on 
the systems biology discipline, is necessary to elucidate the roles 
played by stochastic factors responsible for subgrouping. 

Among the regulators and pathways implicated, the MAPK 
pathway and hedgehog pathways were negatively correlated with 
MITF expression in patients. Hedgehog signaling is known as the 

master regulator of EMT [40]. AXL and ECM-related pathways 
further support their role in phenotype transition to induce drug 
resistance. 

Another important factor in phenotype switching is metabolic 
rewiring. Our data showed that some of the metabolic pathways 
that were differentially expressed between the A375-derived sam-
ples and SK-MEL-28–derived samples were also positively cor-
related with MITF expression in the patient data. This result is 
consistent with the findings of a previous report, which asserted 
that metabolic distractions are the main driver of drug resistance 
[41,42]. 

In conclusion, resistance development to vemurafenib treatment 
is a complex process in which various factors and pathways are in-
volved, including cellular differentiation and dedifferentiation, the 
tumor microenvironment, and metabolic reprogramming. Further 
studies to investigate the interplay of these factors and pathways 
with the master regulator MITF may facilitate the development of 
new therapies to overcome drug resistance problems in melano-
ma. 
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