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The development of drug resistance remains one of the major challenges to current

chemotherapeutic regimens in gestational trophoblastic neoplasia (GTN). Further

understanding on the mechanisms of drug resistance would help to develop more

effective therapy to treat GTN. Herein, tandem mass tag-based (TMT) quantitative

proteomic technique was used to establish drug resistance-related proteomic profiles

in chemoresistant GTN cell models (JEG3/MTX, JEG3/VP16, JEG3/5-Fu). In total, we

identified 5,704 protein groups, among which 4,997 proteins were quantified in JEG3

and its chemoresistant sublines. Bioinformatics analysis revealed that multiple biological

processes/molecular pathways/signaling networks were involved in the regulation of

drug resistance in chemoresistant JEG3 sublines. SOX8 was upregulated in all the

three chemoresistant sublines, and its function was further investigated. Knockdown of

SOX8 significantly reduced cell viability, impaired soft agar clonogenesis, and increased

caspase-3 activities after drug treatment in JEG3 chemoresistant sublines. In addition,

over-expression of SOX8 promoted cell survival, enhanced soft agar clonogenesis,

and attenuated caspase-3 activities after drug treatment in GTN cells. Importantly,

SOX8 might be a potential regulator of reactive oxygen species (ROS) homeostasis,

as SOX8 regulated the expression of antioxidant enzymes (GPX1, HMOX1) and

reduced drug-induced ROS accumulation in GTN cell models. Collectively, SOX8 might

promote drug resistance through attenuating the accumulation of ROS induced by

chemotherapeutic drugs in GTN cells. Targeting SOX8 might be useful to sensitize GTN

cells to chemotherapy.

Keywords: gestational trophoblastic neoplasia, drug resistance, quantitative proteomics, SOX8, reactive

oxygen species

INTRODUCTION

Gestational trophoblastic neoplasia (GTN, including invasive mole, placental site trophoblastic
tumor, choriocarcinoma, and epithelioid trophoblastic tumor) is one of the most successfully
treated cancers due to its intrinsic sensitivity to chemotherapy (1). Low-risk GTNs could be
treated with single-agent methotrexate (MTX) or actinomycin D (ACT-D); while high-risk GTNs
are routinely treated with multi-agent regimens such as EMA/CO (etoposide, methotrexate,
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actinomycin D, cyclophosphamide, vincristine) (2, 3). However,
resistance to chemotherapy represents a major problem to the
successful management of high-risk GTN. About 20∼30% of
low-risk GTN fails to achieve complete remission after treatment
with single-agent MTX or ACT-D (4, 5). Nevertheless, about
10∼20% of high-risk GTN patients fails to render a complete
response to routinely used EMA/CO regimen, which always
results in cancer recurrence and distant metastasis (6, 7).
Therefore, further understanding on the mechanisms of drug
resistance would help to develop more effective therapy for GTN.

The phenomenon of drug resistance in GTN is well-
recognized but yet not fully understood. Some earlier studies
showed that membrane ATP-binding-cassette (ABC) transporter
including MRP1 and ABCG2 contributed to drug efflux in
GTN cell lines (8–10). However, extended lists of mechanisms
responsible for drug resistance were also elucidated in GTN,
including upregulation of drug target gene (11), inhibition of
cell death/apoptosis (12), activation of interferon signaling (13),
involvement of cancer stem cells (14), and dysregulation of Long
non-coding RNAs (15). Recently, we showed that STAT3/NFIL3
signaling axis might regulate drug resistance to 5-Fu, MTX, and
VP16 in GTN cells (16). Therefore, multiple genes/pathways
might be involved in regulating drug resistance in GTN, which
needs to be comprehensively characterized and functionally
validated in future study.

Quantitative proteomic techniques have been developed to
precisely determine the global protein expression in body fluids,
cells, and tissues (17). New generations of quantitative proteomic
techniques such as tandem mass tag (TMT) based tandem mass
spectrometry have been utilized to quantify proteins in different
biological samples (18). Recently, TMT labeling and liquid
chromatography-tandem mass spectrometry (LC-MS/MS) was
used to search for potential proteins involved in drug resistance
in cancer cells. Zhao et al. (19) identified potential signaling
determinants of acquired resistance to nanoparticle Abraxane
in lung cancer cells. Wang et al. (20) established functional
proteomic profiles associated with resistance to cisplatin in
ovarian cancer cells. Our recent study obtained the proteomic
profiles associated with radioresistance in nasopharyngeal cancer
cells (21). In this study, TMT-based quantitative proteomic
technique was used to establish drug resistance related proteomic
profiles, and to identify novel regulators of drug resistance in
chemoresistant GTN cell models.

MATERIALS AND METHODS

Reagents and Cell Lines
Primary antibodies against SLAMF1, TTN, GRIA2, UBIAD1,
SOX8, and β-actin were obtained from Abcam (Cambridge,
MA, USA). Five-Fu, MTX, VP16, N-Acetyl-L-cysteine (NAC),
and 2,7-Dichlorodi-hydrofluorescein diacetate (DCFDA) were

Abbreviations: GTN, Gestational trophoblastic neoplasia; TMT, Tandem mass

tag; MTX, Methotrexate; 5-Fu, Fluorouracil; VP16, Etoposide; ROS, Reactive

oxygen species; LC-MS/MS, Liquid chromatography-tandem mass spectrometry;

DCFDA: 2,7-Dichlorodi-hydrofluorescein diacetate; NAC, N-Acetyl-L-cysteine;

SOX8, SRY-Box Transcription Factor 8; GPX1, Glutathione Peroxidase 1; HMOX1,

Heme Oxygenase 1.

obtained from Sigma-Aldrich. Human GTN cell line JAR and
JEG3 were provided by ATCC culture collection (Manassas, VA,
USA). JEG3 chemoresistant sublines (JEG3/MTX, JEG3/5-Fu,
and JEG3/VP16) were established as we described previously
(16). All the GTN cell lines were grown in DMEM media
supplemented with 10% fetal bovine serum. Lentiviral plasmids
expressing non-targeting scramble and shSOX8 (shRNA
sequences are provided in Supplementary File) were purchased
from Genecopoeia Inc. (Rockville, MD, USA). Lentiviral
plasmids LV105 expressing empty vector and SOX8 open
reading frames (ORFs) were also provided by Genecopoeia Inc.
The production of lentiviral particles was performed as described
previously (22).

TMT Labeling, LC-MS/MS Analysis, and
Database Search
JEG3 and its chemoresistant sublines (JEG3/MTX, JEG3/5-
Fu, and JEG3/VP16) were used for quantitative proteomic
analysis with two biological replicates for each cell line. Protein
extraction, trypsin digestion, and TMT labeling of the peptides
were conducted as we described previously (21). The resulting
peptides were analyzed by tandem mass spectrometry (MS/MS)
coupled with high performance liquid chromatography (HPLC).
Tandemmass spectra were searched against the reference Human
Swissprot database.

Pathway and Process Enrichment Analysis
Pathway and process enrichment analysis was conducted
in Metascape (http://metascape.org/gp/index.html) with the
following ontology sources: gene ontology (GO) biological
processes, kyoto encyclopedia of genes and genomes (KEGG)
pathway, canonical pathways and CORUM, and reactome gene
sets (21).

Soft Agar Assay
Soft agar assay was used to examine the in vitro clonogenesis of
GTN cells after drug treatment (23). Briefly, the 2mL culture
medium with 0.5% agar was first plated into each well of a
6 cm culture dish. After the agar solidified, each well-received
another 2mL of 0.35% agar in culture medium containing 1 ×

105 cells with or without drugs. After 10∼12 days, colonies were
fixed by 4% paraformaldehyde, stained with 0.1% crystal violet
and counted.

Cell Viability Analysis
Cell viability was evaluated with CCK-8 assay as we described
previously (16). Briefly, GTN cells were seeded in a 24-well-
culture plates in triplicate (2 × 104/well). Cell viability was
monitored by CCK-8 viability assay at 48 h after drug treatment.
IC50-values (the concentration of a drug that is required to
suppress 50% of the cell viability) were calculated in SPSS
software as described previously (16).

Western Blotting
Western blotting was conducted as we described previously
(21). Protein lysates (15 µg) was separated by Sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and
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transferred to polyvinylidene fluoride (PVDF) membranes. Blots
were blocked and incubated with diluted antibodies, followed
by incubation with horseradish peroxidase (HRP)-conjugated
secondary antibody for 1 h at room temperature. The signal was
visualized by enhanced chemiluminescence (ECL).

Caspase-3 Activity Assay
Cell apoptosis was determined by Caspase-3 Colorimetric Assay
(21). Briefly, GTN cells (5× 105 cells) were lysed and centrifuged,
followed by enzyme reactions with chromogen. The absorbance
was measured at 405 nm wavelength.

Real-Time PCR
The mRNA levels of antioxidant enzymes (GPX1, HMOX1)
were analyzed using real-time PCR (22). Briefly, total RNA was
extracted from GTN cells using TRIzol reagent and further
purified using the RNeasy kit (QIAGEN, USA). Total RNA
(1 µg) was used to generate cDNA, which was then used for
the quantitative PCR using SYBR Green PCR expression assays
(Invitrogen, USA). Relative gene expression was determined
based on the threshold cycles (Ct-values) of GPX1/HMOX1 and
of the internal reference gene β-Actin. PCR Primers for GPX1,
HMOX1, and β-Actin genes are listed (in Supplementary File).

ROS Measurement
Intracellular ROS levels were evaluated by DCFDA fluorescence
as we described previously (21). Briefly, GTN cells were
incubated with 25µM DCFDA for 30min after drug treatment
for 48 h. Florescence DCF was measured using F97Pro
fluorospectrometer (Lengguang Technology, Shanghai, China).

Statistical Analysis
Statistical analysis was conducted with SPSS 16.0 (SPSS Inc.,
Chicago, IL, USA). Error bars throughout the figures indicate
standard deviation. The means of two groups were compared
by Student’s t-test. The means of three or more groups were
compared by One-way ANOVA analysis. The difference was
considered statistically significant when P < 0.05 in all the tests.

RESULTS

Drug Resistance-Associated Proteomic
Profiles in Chemoresistant JEG3 Sublines
In our previous study, we established three chemoresistant
JEG3 sublines JEG3/MTX (JEG3M), JEG3/5-Fu (JEG3F), and
JEG3/VP16 (JEG3V) (16). These chemoresistant sublines
exhibited cross-resistance to chemotherapeutic drugs MTX,
5-Fu, and VP16, respectively (Figure 1A). TMT-based
quantitative proteomic analysis was conducted on JEG3
and its chemoresistant sublines as illustrated in (Figure 1B). In
total, we identified 5,704 protein groups, among which 4,997
proteins were quantified (Table S1). The distribution of mass
error is near zero and most of them are <10 ppm, suggesting the
mass accuracy of the MS data fit the requirement (Figure S1A).
The detection and quantification of proteins showed good

distribution of peptide length and peptide sequence coverage
(Figures S1B,C).

Among the 4,997 quantifiable proteins, criteria were set for
up-regulation (JEG3 sublines vs. JEG3, fold change ≥ 1.5)
and down-regulation (JEG3 sublines vs. JEG3, fold change
≤ 0.67). The number of proteins up- or down-regulated
in JEG3/MTX, JEG3/5-Fu, and JEG3/VP16 was 126/131,
109/114, and 105/143, respectively (Figure 1C, Table S2). KEGG
pathway analysis revealed differential patterns of pathway
activation in three chemoresistant JEG3 sublines (Figures 1D–F).
Our proteomic analysis also revealed differential patterns of
expression of some known drug resistance-related proteins in
these chemoresistant sublines compared to JEG3. As shown
in (Figure 2A), ABC transporter MRP1/ABCC1 expression
increased in both JEG3/VP16 and JEG3/MTX, while ABCG2
were up-regulated in all the three chemoresistant JEG3 sublines.
Dihydrofolate reductase (DHFR), a well-known regulator of
MTX resistance (24), was only up-regulated in JEG3/MTX.
Consistent with our previous study (16), increased NFIL3
expression was observed in all the three chemoresistant
JEG3 sublines.

Our study also identified 52 up-regulated and 33 down-
regulated proteins across three chemoresistant JEG3 sublines
(Figure 2B, Table S2). Pathway and process enrichment analysis
for these 85 differentially expressed proteins was carried out
in Metascape in order to identify common biological processes
and signaling pathways associated with drug resistance in
these sublines. Our findings showed that the GO biological
processes such as response to toxic substance (ASS1, CES1,
GPX1, GPX3, GSN, HMOX1, MAPK1, ABCG2, SETX, UBIAD1,
SRXN1, TP53, AKR1C1, C1QTNF6), myeloid cell activation
involved in immune response (ANXA3, GSN, HMOX1, CXCR2,
MAPK1, S100P, SLAMF1, MVP, METTL7A, TP53, PFN2, TTN),
cellular response to oxidative stress (GPX1, GPX3, HMOX1,
MAPK1, TP53, SETX, SRXN1), ameboidal-type cell migration
(ANXA3, ARHGDIB, DPP4, GPX1, HMOX1, PFN2, S100P,
SOX8), and muscle organ development (ASS1, FHL1, GPX1,
MAPK1, TTN, AKAP6, SOX8) were highly enriched in the
up-regulated proteins (Figure 2C). In contrast, the down-
regulated proteins were shown to enrich reactome gene set such
as collagen formation (COL12A1, CTSV, COL21A1, SLC7A7,
CRIM1), and GO biological processes such as lipid catabolic
process (LIPA, SMPDL3A, PLCH1, ABHD6, GOT1, VLDLR),
cellular response to starvation (CTSV, DSC2, GABARAPL2,
GOT1, VLDLR, ISG15, N4BP1, ACSL1), cell morphogenesis
involved in differentiation (COL12A1, VLDLR, EVL, ENAH,
COL21A1), and alpha-amino acid metabolic process (GOT1,
SLC7A7, RIDA; Figure 2C).

Drug Resistance-Associated Signaling
Networks in Chemoresistant
JEG3 Sublines
The signaling networks encoded by drug resistance-related
proteins were revealed by Protein-Protein interaction
enrichment analysis. As shown in (Figure 3A), proteins
up-regulated in JEG3 chemoresistant sublines usually interacted
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FIGURE 1 | (A) IC50 concentrations of JEG3 and its chemoresistant sublines treated with MTX, 5-Fu, or VP16, respectively. n = 3, *P < 0.05, JEG3 sublines vs.

JEG3. (B) Experimental scheme for the quantitative proteomic analysis on JEG3 and its chemoresistant sublines. (C) The number of differentially expressed proteins

identified by TMT labeling and LC-MS/MS in JEG3 and its chemoresistant sublines. Criteria were set for up-regulation (JEG3 sublines vs. JEG3, fold change ≥ 1.5)

and down-regulation (JEG3 sublines vs. JEG3, fold change ≤ 0.67). (D) Top enriched molecular pathways/biological processes of up-regulated or down-regulated

proteins in JEG3/MTX. (E) Top enriched molecular pathways/biological processes of up-regulated or down-regulated proteins in JEG3/5-Fu. (F) Top enriched

molecular pathways/biological processes of up-regulated or down-regulated proteins in JEG3/VP16.

with each other to constitute a signaling network. These
proteins might have important functions in exocytosis,
cellular response to oxidative stress, and amyotrophic lateral

sclerosis. In contrast, proteins down-regulated in JEG3
sublines exhibited the enriched signaling networks involved
in protein-containing complex localization, actin filament
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FIGURE 2 | (A) Relative expression levels of known drug resistance-related proteins in JEG3 and its chemoresistant sublines (JEG3 sublines vs. JEG3). (B) Venn

diagram of up- or down-regulated drug resistance-related proteins across JEG3 chemoresistant sublines. (C) Top five commonly enriched molecular

pathways/biological processes of up-regulated (n = 52) or down-regulated (n = 33) drug resistance-related proteins in JEG3 chemoresistant sublines.

organization, and regulation of cellular protein localization
(Figure 3B).

SOX8 Might Be a Candidate Regulator of
Drug Resistance in Chemoresistant
JEG3 Sublines
Our proteomic analysis identified several proteins highly
expressed in JEG3 chemoresistant sublines compared to JEG3
(Figure 4A). Consistently, western blotting validation showed
that protein levels of SLAMF1, TTN, GRIA2, UBIAD1, and
SOX8 were markedly higher in three JEG3 chemoresistant
sublines than those in JEG3 (Figure 4B). SLAMF1, TTN, GRIA2,
UBIAD1 genes have important physiological function in normal
tissues. SLAMF1 is involved in modulating the activation and
differentiation of immune cells (25); TTN is a key component
in the assembly and functioning of vertebrate striated muscles
(26); GRIA2 is the predominant excitatory neurotransmitter

receptors in the mammalian brain and are required for normal
neurophysiologic processes (27); UBIAD1 presents at high
concentrations in the brain, kidney, and pancreas, and is required
for vitamin K metabolism (28). SOX8 exhibits low expression in
normal adult human tissues, and has recently been proven to be
a potential oncogene in several cancers, despite its function in
the regulation of drug resistance still remains poorly understood
(29). Therefore, we further investigated the function of SOX8 in
drug resistance in GTN cells. The mass spectrum of SOX8 unique
peptide (TELQQAGAK) was shown in Figure 4C.

Knockdown of SOX8 Attenuated Drug
Resistance Phenotype in Chemoresistant
JEG3 Sublines
To address the function of SOX8 in regulating drug resistance
phenotype, JEG3 chemoresistant sublines were transduced with
scramble (Scr) or specific shRNA targeting SOX8. The SOX8
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FIGURE 3 | Signaling networks based on Protein-Protein interaction enrichment analysis on drug resistance-related proteins. (A) Signaling networks identified in

up-regulated drug resistance-related proteins in JEG3 chemoresistant sublines. (B) Signaling networks identified in down-regulated drug resistance-related proteins in

JEG3 chemoresistant sublines.

expression was significantly decreased in three JEG3 sublines
infected by SOX8 shRNA lentiviruses, as compared with Scr
control (Figure 5A). The effect of SOX8 expression on the
chemosensitivity of JEG3 sublines was assessed by CCK-8
assay. As shown in (Figure 5B), knockdown of SOX8 exhibited
lower IC50-values, as compared with Scr in three sublines. Soft
agar clonogenesis of JEG3 sublines was decreased in shSOX8
groups compared to Scr control groups (Figure 5C). Moreover,
compared with Scr, knockdown of SOX8 reduced soft agar
clonogenesis of JEG3 sublines after drug treatment (Figure 5C).
Knockdown of SOX8 increased apoptosis-related caspase-3
activities in three sublines (Figure 5D). Impressively, more
caspase-3 activities were detected in JEG3 sublines transduced
with shSOX8 than in JEG3 cells transduced with Scr shRNA after
drug treatment (Figure 5D).

Over-Expression of SOX8 Promoted Drug
Resistance in GTN Cell Lines
We also constitutively expressed SOX8 in JEG3 and JAR
cells in order to evaluate the effect of SOX8 expression
on the chemosensitivity of GTN cells (Figure 6A). As
shown in (Figure 6B), higher IC50 was observed 48 h after

drug treatment in SOX8 groups than in EV groups in
JEG3 and JAR cells, respectively. Further, SOX8-expressing
GTN cells exhibited increased soft agar clonogenesis
compared with EV following drug treatment (Figure 6C).
Nevertheless, less caspase-3 activities were detected in cells
expressing SOX8 than in cells expressing EV 48 h after drug
treatment (Figure 6D).

Attenuation of ROS Induced by Drugs
Might Be Associated With Drug Resistance
in GTN Cells
Most of chemotherapeutic drugs could induce the accumulation
of intracellular ROS to kill cancer cells (30). Attenuation of
drug-induced ROS generation might be one of the important
mechanisms of drug resistance in cancer cells (30). Our
KEGG pathway and protein-protein interaction analysis
indicated that signaling networks associated with cellular
response to oxidative stress were commonly enriched in
all the three chemoresistant JEG3 sublines (Figures 2C,
3A). Consistently, higher levels of ROS were detected in
JEG3 than those in chemoresistant JEG3 sublines following
drug treatment for 48 h (Figure 7A). To confirm the role
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FIGURE 4 | (A) Relative protein levels of top 10 up-regulated drug resistance-related proteins in JEG3 and its chemoresistant sublines (JEG3 sublines vs. JEG3). (B)

Western blotting validation on protein levels of SLAMF1, TTN, GRIA2, UBIAD1, and SOX8 in JEG3 and its chemoresistant sublines. β-actin was used as loading

control. (C) The mass spectrum of SOX8 unique peptide (TELQQAGAK) identified by TMT labeling and LC-MS/MS.

of ROS on drug-induced cytotoxicity, we co-incubated
drugs with ROS scavenger NAC for 48 h in JEG3 and JAR
cells. The addition of NAC greatly increased cell viability
following drug treatment in both JEG3 and JAR cells
(Figures 7B,C).

SOX8 Regulated the Expression of
Antioxidant Enzymes and Reduced the
Drug-Induced ROS Accumulation in
GTN Cells
Further studies were conducted to evaluate the effect of
SOX8 on intracellular ROS accumulation in GTN cells. As

shown in (Figure 8A), knockdown of SOX8 markedly increased
intracellular ROS levels compared to Scr control in JEG3
chemoresistant sublines. Higher ROS levels were also detected
in JEG3 chemoresistant sublines expressing shSOX8 than those
in Scr after drug treatment for 48 h (Figure 8A). In contrast,
lower ROS levels were detected in GTN cells (JEG3, JAR)
expressing SOX8 than those in EV after drug treatment for
48 h (Figure 8B). Glutathione peroxidase (GPXs) and heme
oxygenase (HMOXs) are important antioxidant enzymes which
metabolize intracellular ROS and promote drug resistance in
cancer cells (31). Our proteomic analysis identified several
upregulated antioxidant enzymes (GPX1, HMOX1, etc.) in
chemoresistant JEG3 sublines (Figures 2C, 3A, Table S1). We
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FIGURE 5 | Knockdown of SOX8 attenuated drug resistance in JEG3 chemoresistant sublines. (A) Western blotting analysis on protein expression of SOX8 following

lentivirus-mediated shRNA knockdown in JEG3 sublines. β-actin was used as loading control. (B) IC50-values of chemotherapeutic drugs in JEG3 chemoresistant

sublines expressing Scr or shSOX8 shRNAs. n = 3, *P < 0.05. (C) Knockdown of SOX8 impaired soft agar clonogenesis after drug treatment (MTX: 10µg/mL; 5-Fu:

50µg/mL; VP16: 10µg/mL) in JEG3 sublines. The colony formation in Scr group without drug treatment was regarded as 100%, respectively. n = 4, *P < 0.05. (D)

Knockdown of SOX8 increased caspase-3 activity following drug treatment (MTX: 10µg/mL; 5-Fu: 50µg/mL; VP16: 10µg/mL) for 48 h in JEG3 sublines. The

caspase-3 activity in Scr group without drug treatment was regarded as 100%, respectively. n = 4, *P < 0.05.

further evaluated the effect of SOX8 on the expression of two
antioxidant enzymes (GPX1, HMOX1) in GTN cells. As shown
in (Figure 8C), knockdown of SOX8 reduced the expression

of GPX1 and HMOX1 in JEG3 chemoresistant sublines. In
contrast, over-expression of SOX8 increased GPX1 and HMOX1
expression in JEG3 and JAR cells (Figure 8D).
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FIGURE 6 | Over-expression of SOX8 promoted drug resistance in GTN cell lines. (A) Lentiviral transduction of SOX8 considerably increased their protein expression

in JEG3 and JAR cells. β-actin was used as loading control. (B) IC50-values of chemotherapeutic drugs in JEG3 and JAR cells expressing SOX8 or EV. n = 3, *P <

0.05. (C) Over-expression of SOX8 rescued soft agar clonogenesis after drug treatment (MTX: 1µg/mL; 5-Fu: 5µg/mL; VP16: 2µg/mL) in JEG3 and JAR cells. The

colony formation in EV of each cell line without drug treatment was regarded as 100%, respectively. n = 4, *P < 0.05. (D) Over-expression of SOX8 attenuated

caspase-3 activity following drug treatment (MTX: 1µg/mL; 5-Fu: 5µg/mL; VP16: 2µg/mL) for 48 h in JEG3 and JAR cells. The caspase-3 activity in EV of each cell

line without drug treatment was regarded as 100%, respectively. n = 4, *P < 0.05.

DISCUSSION

Resistance to chemotherapeutic protocols poses a significant
challenge for GTN treatment (2, 32, 33). Currently, the

mechanism of drug resistance in GTN still remains poorly
understood. Recently, the advent of label-free quantitative

proteomics has enabled robust quantification of proteomic

experiments, albeit lack of data on drug resistance in GTN
cell model. Herein, using TMT-based quantitative proteomic

technique, we identified 5,704 proteins and quantified 4,997
proteins in JEG3 and its chemoresistant sublines and established
drug resistance-related proteomic profiles, highlighting the
advantage of quantitative proteomic technique in identifying
drug resistance-related proteins. Although KEGG pathway
analysis revealed differential patterns of pathway activation
associated with drug resistance to individual drugs (MTX, 5-
Fu, VP16), some common genes/pathways/signaling networks
were indeed activated in all the three chemoresistant sublines.
Several earlier reports indicated that ABCG2 could confer

drug resistance to GTN cells by facilitating drug efflux
(10, 34, 35). Consistently, increased ABCG2 expression was
observed in our drug resistance-related proteomic dataset.
Nevertheless, multiple molecular pathways/biological processes
(response to toxic substance, cellular response to oxidative
stress, myeloid cell activation involved in immune response,
ameboidal-type cell migration, etc.) were also identified in all the
three chemoresistant GTN cells. Therefore, multiple regulatory
mechanisms might potentially contribute to the development of

drug resistance in GTN cells. Elucidating these mechanisms may
help to develop more effective therapeutic strategies for GTN
treatment in the future.

SOX8 exerts an important biological function during
embryonic brain development, despite its expression is low in
normal adult human tissues (36, 37). Recently, SOX8 has been
shown to be highly expressed in several cancers, and has been
shown to be a potential oncogene. Zhang et al. (38) showed
that SOX8 promoted cellular proliferation and enhanced tumor
growth in hepatocellular carcinomas. SOX8 is also found to
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FIGURE 7 | Attenuation of ROS induced by drugs might be associated with drug resistance in GTN cells. (A) ROS levels of JEG3 and JEG3 chemoresistant sublines

after drug treatment. JEG3 and JEG3 sublines were treated with MTX (1µg/mL), 5-Fu (5µg/mL), or VP16 (2µg/mL) for 48 h, respectively. ROS levels in JEG3 without

drug treatment were regarded as 100%. n = 4, *P < 0.05. (B) Cytotoxicity induced by drugs was associated with ROS accumulation in JEG3 cells. JEG3 cells were

treated with MTX (1µg/mL), 5-Fu (5µg/mL), or VP16 (2µg/mL) alone or with NAC (5mM) for 48 h, followed by CCK-8 assay to assess the cell viability. Cell viability in

JEG3 without drug treatment was regarded as 100%. n = 4, *P < 0.05. (C) Cytotoxicity induced by drugs was associated with ROS accumulation in JAR cells. JAR

cells were treated with MTX (1µg/mL), 5-Fu (5µg/mL), or VP16 (2µg/mL) alone or with NAC (5mM) for 48 h, followed by CCK-8 assay to assess the cell viability. Cell

viability in JAR without drug treatment was regarded as 100%. n = 4, *P < 0.05.

be a signature of basal-like immune-suppressed triple-negative
breast cancer; amplification of SOX8 significantly shortens the
survival of patients with breast cancer (39, 40). Xie et al.
(41) indicated that SOX8 could activate Wnt/β-catenin pathway
to promote cisplatin-induced EMT in tongue squamous cell
carcinoma. However, the regulatory role of SOX8 on drug
resistance of cancer cells still awaits further investigation. In
this study, we showed that SOX8 might play an important
role in regulating drug resistance in GTN cells, as knockdown
of SOX8 could attenuate drug resistance through reducing
cell viability, impairing soft agar clonogenesis, and inducing
apoptosis following drug treatment in JEG3 chemoresistant
sublines. In contrast, over-expression of SOX8 promoted drug
resistance through enhancing cell survival, promoting soft agar
clonogenesis, and attenuating apoptosis in JEG3 and JAR cells.
Therefore, targeting SOX8 could potentially sensitize GTN
cells to chemotherapeutic drugs, which may warrant further
investigation as potential therapeutic targets for GTN.

ROS production plays an important role in mediating
cytotoxicity induced by chemotherapy (30, 42, 43). Lim et al.

(43, 44) showed that chrysophanol and coumestrol could induce
apoptosis through regulation of ROS in GTN cells. Ham et al.
(45) showed that silibinin stimluated apoptosis partly by inducing
ROS in GTN cells. Zhao et al. (46) showed that selenocystine
inhibits GTN cell line JEG3 growth by inducing ROS-mediated
cell cycle arrest and apoptosis. Our bioinformatics analysis
indicated that ROS-related mechanisms might be associated with
drug resistance in GTN cells. Consistently, compared with JEG3,
reduced ROS generation was observed in JEG3 chemoresistant
sublines after drug treatment. Therefore, attenuation of ROS
accumulation induced by chemotherapeutic drugs might be
crucial for the development of drug resistance and cell survival in
GTN cells. Our further findings also suggested that SOX8 might
be a potential regulator of ROS homeostasis, as SOX8 expression
affected ROS accumulation following drug treatment in GTN cell
models. Therefore, SOX8might promote drug resistance through
modulating ROS homeostasis in GTN cells. Further, our findings
showed that SOX8 regulated the expression of antioxidant
enzymes (GPX1, HMOX1) in GTN cell models, which might
help to attenuate drug-induced ROS accumulation and promote
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FIGURE 8 | SOX8 regulated the expression of antioxidant enzymes and reduced the drug-induced ROS accumulation in GTN cells (A) Knockdown of SOX8 increased

drug-induced ROS in JEG3 sublines. JEG3 sublines expressing Scr or shSOX8 shRNAs were treated with MTX (10µg/mL), 5-Fu (50µg/mL), or VP16 (10µg/mL) for

48 h. The DCFDA fluorescence in Scr group of three JEG3 sublines without drug treatment was regarded as 100%, respectively. n = 4, *P < 0.05. (B) Over-expression

of SOX8 attenuated drug-induced ROS in GTN cell lines. GTN cells (JEG3, JAR) expressing EV or SOX8 were treated with MTX (1µg/mL), 5-Fu (5µg/mL), or VP16

(2µg/mL) for 48 h. The DCFDA fluorescence in EV group of JEG3 or JAR cells without drug treatment was regarded as 100%, respectively. n = 4, *P < 0.05. (C)

Knockdown of SOX8 reduced the expression of antioxidant enzymes GPX1 and HMOX1 in JEG3 chemoresistant sublines. The gene expression of GPX1 or HMOX1

in Scr group of three JEG3 sublines was regarded as 100%, respectively. n = 3, *P < 0.05. (D) over-expression of SOX8 increased GPX1 and HMOX1 expression in

JEG3 and JAR cells. The gene expression of GPX1 or HMOX1 in EV group of JEG3 or JAR cells was regarded as 100%, respectively. n = 3, *P < 0.05.
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GTN cell survival after drug treatment. Future studies on SOX8
function might be valuable toward the development of novel
drugs for GTN.

In summary, our study established drug resistance related
proteomic profiles, and revealed multiple genes/molecular
pathways/signaling networks potentially involved in regulating
drug resistance in GTN cells. We further showed that
SOX8 might be a potential regulator of drug resistance
through attenuating the accumulation of ROS induced by
chemotherapeutic drugs in GTN cells. Our findings might have
potential clinical value in targeting SOX8-regulated signaling
pathway to overcome drug resistance in GTN.
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