
Frontiers in Oncology | www.frontiersin.org

Edited by:
Francesca Sanguedolce,
University of Foggia, Italy

Reviewed by:
Santosh Panda,

Washington University in St. Louis,
United States

Felice Crocetto,
Federico II University Hospital, Italy

Karolina Garbas,
Medical University of Warsaw, Poland

*Correspondence:
Kaifa Tang

tangkaifa@gmc.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Genitourinary Oncology,
a section of the journal
Frontiers in Oncology

Received: 30 October 2021
Accepted: 22 November 2021
Published: 10 December 2021

Citation:
Che B, Zhang W, Xu S, Yin J, He J,

Huang T, Li W, Yu Y and Tang K (2021)
Prostate Microbiota and Prostate

Cancer: A New Trend in Treatment.
Front. Oncol. 11:805459.

doi: 10.3389/fonc.2021.805459

REVIEW
published: 10 December 2021

doi: 10.3389/fonc.2021.805459
Prostate Microbiota and Prostate
Cancer: A New Trend in Treatment
Bangwei Che1†, Wenjun Zhang1†, Shenghan Xu1†, Jingju Yin2, Jun He1, Tao Huang1,
Wei Li1, Ying Yu1 and Kaifa Tang1,3*

1 Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China, 2 Department of Stomatology,
The First Affiliated Hospital of Fujian Medical University, Fuzhou, China, 3 Institute of Medical Science of Guizhou Medical
University, Guiyang, China

Although the incidence and mortality of prostate cancer have gradually begun to decline in
the past few years, it is still one of the leading causes of death frommalignant tumors in the
world. The occurrence and development of prostate cancer are affected by race, family
history, microenvironment, and other factors. In recent decades, more and more studies
have confirmed that prostate microflora in the tumor microenvironment may play an
important role in the occurrence, development, and prognosis of prostate cancer.
Microorganisms or their metabolites may affect the occurrence and metastasis of
cancer cells or regulate anti-cancer immune surveillance. In addition, the use of tumor
microenvironment bacteria in interventional targeting therapy of tumors also shows a
unique advantage. In this review, we introduce the pathway of microbiota into prostate
cancer, focusing on the mechanism of microorganisms in tumorigenesis and
development, as well as the prospect and significance of microorganisms as tumor
biomarkers and tumor prevention and treatment.
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INTRODUCTION

Prostate cancer is the most common urinary system tumor in men, and its biological characteristics
lead to late clinical diagnosis. The 5-year survival rate for prostate cancer is close to 100 percent,
thanks to breakthroughs in early identification and treatment made possible by increasing prostate
cancer screening (1). However, around one-third of patients will inevitably suffer biochemical
recurrence/progression, eventually progressing to metastatic disease (2). Although conventional
treatments like as surgery, chemotherapy, radiation, and androgen deprivation therapy have
improved overall survival rates in these individuals, the 5-year survival rate remains about 30%
(3, 4). In recent years, the direct or indirect relationship between microorganisms and tumors has
been continuously studied and reported. There is an extensive relationship between cancer and
specific microflora of different cancer types (5). It is not only reflected in the correlation of specific
microflora in slowing down tumor growth or promoting tumor metastasis (6), but also in the use of
microbial targeting to treat tumors (7).

The relationship between prostate microflora and prostate cancer has always been a direction
worthy of consideration. The increased risk of cancer caused by changes in microbiota has been
confirmed in other tumors (8). The correlation between prostate microbiota and the occurrence and
metastasis of prostate cancer has also been preliminarily reported (9, 10). Although there is a lack of
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in-depth studies to explain the mechanism of its involvement in
the disease process of prostate cancer, it is undeniable that
prostate microbiota may be an important breakthrough to
explore the pathogenesis of prostate cancer, new treatment
strategies, and improve the prognosis of patients.

In this review, we summarize previous studies on prostate
cancer microbiota to clarify the potential role of prostate
microflora in the occurrence and development of prostate
cancer and new strategies for the prevention and treatment of
prostate cancer based on microbiota.
GUT MICROBIOTA AND PROSTATE
CANCER

The gut microflora is the largest bacterial bank in the human
body. Changes in the composition of gut microflora and/or
biological imbalances may have an impact on the occurrence
and development of tumors (11). As a result, nearly all past
research has concentrated on prostate cancer and gut bacteria.
Previous research has demonstrated that the gut microorganisms
of prostate cancer patients differ from those of healthy or benign
prostate disease patients, with a higher relative abundance of
Bacteroides massiliensis in prostate cancer patients’ intestines.
Faecalibacterium prausnitzii, on the other hand, has a lower
relative abundance (12). Acetic acid can be metabolized by
Faecalibacterium prausnitzii to butyric acid, the most prevalent
short-chain fatty acid in the colon (13). It possesses anti-tumor
activities, mostly through inducing apoptosis and decreasing
proliferation (14), as well as enhancing cell differentiation and
mechanically inhibiting histone deacetylase in cancer cells (15).
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Furthermore, a study of fecal microbiota revealed a significant
difference in the abundance of bacteria and streptococci between
prostate cancer and non-prostate cancer, with the metabolic
pathways related to folic acid and arginine being the most
significant (16). Folic acid is essential for nucleotide synthesis
and DNA methylation. Folic acid deficiency causes DNA
instability and a high mutation rate (17). According to one
study, folic acid-producing microflora is more abundant in
non-cancer patients than in cancer patients, implying that
natural folic acid sources may protect against prostate cancer
(18). In other words, gut microbes and their metabolites have an
effect on the occurrence and progression of prostate cancer. By
modifying the composition of gut microbes, it is possible to
prevent and treat prostate cancer.
PROSTATIC MICROORGANISMS AND
THEIR POTENTIAL SOURCES

Obviously, the genitourinary tract is not a sterile environment
(19). Due to normal voiding activity, making most of the time in
an asymptomatic state. Over the last few decades, a number of
studies have found evidence of the presence of microbes in
tissues with prostate diseases, including bacteria (20–22) and
viruses (10, 23, 24), which may result from bacterial
translocation such as the skin and intestines or infections
through high-risk sexual behavior (Figure 1) (25, 26). Given
that most studies used a variety of techniques, such as culture,
confocal microscopy for microorganism visualization, and
analysis of bacterial 16Sr RNA gene using environmental
hybridization, immunohistochemistry, and PCR, the results
FIGURE 1 | The main source of prostate microorganisms. The source of prostate microorganisms is mainly from the external environment of microorganisms
through the urethra into the urinary system and implanted in the prostate due to various factors, mainly divided into iatrogenic pathway and non-iatrogenic pathway.
(A) Skin-derived microbial infections are mainly microorganisms located in the vulva or other parts through the urethral orifice with the help of bad/unclean living
habits (including sexual life), such as Propionibacterium acne and staphylococci. (B) Intestinal-derived bacteria such as Escherichia coli are the most common
bacteria in UTIs, so they are also the most common bacteria in the prostate, mainly from retrograde infections. (C) Non-standard medical procedures may bring
microorganisms from the external environment into the urethra through instrument consumables to cause microbial colonization. (D) Patients who need urinary tract
surgery often have microorganisms in their urinary system, and microorganisms can be transferred with the help of surgical procedures. Non-standard surgical
procedures can also bring microbes from the external environment into the urinary tract system.
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show that the composition of prostate microflora is similar to
that of urethra (20, 27–29). The main pathogen of urinary tract
infection (UTI) is Escherichia coli, represented by Gram-
negative bacteria, and it is generally believed that the main way
is retrograde infection, that is, because there is no valve
protection in the urethra, some bad living habits (hand
hygiene, high-risk sexual behavior) allow them to enter the
urethra through the urethral orifice and then colonize in the
prostate. In addition, there may be other ways for
microorganisms to enter the urethra, that is, intestinal bacterial
translocation. The process by which bacteria and their products
migrate from the gastrointestinal tract to the blood and other
organs is called “bacterial translocation”, which was first
described in the 1960s (30). The risk factors for bacterial
translocation primarily comprise three aspects: intestinal
microflora imbalance, damage or increased permeability of the
intestinal epithelial barrier, and host health status. Although so
far, no direct studies have shown that bacteria can reach the
prostate from the intestinal tract through Bacterial translocation,
this guess is possible. Some Escherichia coli in the intestinal tract
have the ability to adhere to and invade intestinal epithelial cells
and survive in macrophages. These Escherichia coli can reach the
lamina propria of the intestinal tract through paracellular or
cross-cellular pathways (31–33). Macrophages may then transfer
bacteria from the intestines to lymph nodes, systemic circulation,
or even distant organs to produce inflammation (34, 35). This
may also explain why some clinical studies have found that the
same kind of E. coli has been detected in the intestines, blood,
and urine (36, 37). Although the translocation of bacteria mainly
occurs in people with low immunity, it also occurs as a normal
phenomenon in healthy people, and most of them do not have
obvious clinical manifestations, with a translocation rate of about
5%-10% (38). These results suggest that under natural
conditions, the source of prostate microflora may be mainly
affected by the external microenvironment, especially the urinary
tract microflora and intestinal microflora.

Second, iatrogenic UTI, particularly catheter-related
infections, is a significant source of prostate microbiota (25).
The use of a urethral catheter or urethral stent is a significant risk
factor for UTI, and the incidence of bacteriuria linked with it can
increase by 3% to 8% every day (39). Studies have shown that
bacteria entering the urinary tract can be colonized by bacteria in
distant organs through catheters and indicate the formation of
biofilms in the mucous membranes of the organs, such as the
prostate (40, 41). Although studies have shown that the most
common microorganism of catheter-related infection is
Escherichia coli, it is often found that some drug-resistant
bacteria can also enter the genitourinary tract through the
catheter (42). Therefore, it is not surprising that bacteria in
biofilms tend to be highly resistant to antibiotics and host
immune defense mechanisms. In addition, biofilms have
complex components, including not only microorganisms, but
also a variety of major biological macromolecules, such as
proteins, polysaccharides, DNA, RNA, peptidoglycan, lipids,
and phospholipids, which can produce a variety of complex
reaction mechanisms to invade cells and tissues (43, 44). In short,
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iatrogenic catheter-related microorganisms can overcome the
host defense mechanism, regulate the host immune response
through a variety of mechanisms, and help escape the host
immune system, establish or aggravate bacterial infection, and
cause persistent and chronic inflammation.

However, not all microbes can cause bacterial colonization of
the prostate after entering the urinary tract, because the human
body has a certain ability of self-defense against the invasion of
bacteria into the urinary tract (45). When the urinary tract is
unobstructed, the urine can wash away most of the bacteria (46).
At the end of urination, the prostatic fluid excreted from the
posterior urethra has a certain killing effect on bacteria, which
may be due to the high concentration of zinc ions in the prostatic
fluid. It has been proved to have bactericidal effect on a variety of
Gram-positive and Gram-negative bacteria in vitro (47, 48).
Urinary tract mucosa can play a bactericidal effect by secreting
organic acids, IgG, IgA, and phagocytes (49). Under normal
circumstances, the pH value of urine is low, contains high
concentrations of urea and organic acids, and the urine itself is
too low or high tension, which is not conducive to bacterial
growth (50). Therefore, microorganisms are easy to colonize and
grow only when there is urinary tract obstruction, injury,
deformity, and decreased body resistance.
EFFECTS OF DRUG THERAPY AND
DIETARY THERAPY ON PROSTATIC
MICROORGANISMS

According to the guess of the possible origin of the prostate
microflora (urethra and intestinal tract), it is undeniable that
drugs and diet may also have an effect on prostate microbes.
Previous studies have shown that some drugs or diets can alter
the structure of urethral and gut bacteria (51, 52). The microflora
in the human body activates a variety of stress mechanisms in
response to antibiotic therapy, including genomic mutations/
modifications and the production of enzymes to degrade
antibiotics (53). Long-term use of antibiotics will interfere with
the activities of normal bacteria, thus changing the structure of
microbial communities. When the microbial community
structure of the urethra or intestines changes, the prostate
microflora may also change. In addition, there are differences
in the ability of different drugs to permeate prostate tissue. In a
study of quinolones, it was found that the ability of the drug to
penetrate into the prostate tissue was norfloxacin < fluidixacin <
ciprofloxacin < ofloxacin < fleroxacin (54). Different quinolones
also have differences in the types of microorganisms that can act,
resulting in differences in the structure of the bacteria. The effect
of diet on prostatic bacteria also depends to a large extent on
the regulation of gut bacteria (55). Previous studies have shown
that the structural types dominated by Bacteroides and
Bifidobacterium are positively correlated with high-fat diet,
high animal protein, amino acid and saturated fat intake, and
negatively correlated with fiber intake. The main structural type
of Prevotti is related to the high consumption of carbohydrates
and monosaccharides (56). In addition, animal studies have
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shown that a long-term high-salt diet is not only a risk of high
blood pressure, but also leads to a reduction in the number of
Bacteroides and Proteus in the intestinal tract (57). Although
there is a lack of direct research on the effects of drugs or diet on
the microbial composition of the prostate, this will be clear as the
concern of the prostate microbiota increases. In the future, drug
therapy (antibiotics)/diet therapy may prevent and treat prostate
cancer by regulating the microflora.
PROSTATE MICROFLORA AND
PROSTATE CANCER

Microbes have been shown to be involved in the process of
prostate disease (58–60). Normal prostate tissue contains a
variety of immune cells, including lymphocytes in the stroma
or epithelium (61). So, regulating the immune process may be
one way in which microorganisms participate in affecting tumor
development (62, 63). Although the exact mechanism of this
approach in driving the transformation of prostate cells into
tumors is unclear, there is sufficient evidence to link it to the
potential role of microorganisms and their metabolites, which
may directly lead to prostate cell genetic instability. This leads to
abnormal cell proliferation and tumor development (64–66). In
addition, microorganisms in the tumor microenvironment also
seem to regulate the apoptosis of prostate cancer through a
variety of mechanisms (60, 67) (Table 1).
INFLAMMATORY PATHWAY OF
PROSTATE MICROBIOTA (INDIRECT
PATHWAY)

Inflammation is generally thought to be associated with
malignant tumors (79), and little is known about how these
microbes promote prostate cancer in the prostate
microenvironment. However, from previous studies, it has
been found that microbes implanted in the prostate may
promote tumorigenesis by inducing chronic inflammation and
related immune responses. It is well known that in the process of
Frontiers in Oncology | www.frontiersin.org 4
chronic inflammation, microorganisms can induce and regulate
the expression of various cytokines and chemokines in
inflammatory cells (80). These cytokines, secreted in the
prostate microenvironment, can further regulate a variety of
mechanisms. For example, inflammatory factors IL-6, IL-8 and
TNF-a can induce the expression of vascular endothelial growth
factor (VEGF) and activate NF- kB, EGFR, TLR and other signal
pathways, thus stimulating tumor cell proliferation. These
pathways have carcinogenic and anti-apoptotic activities (73,
81–85). Because the NF- kB signaling pathway is widely used by
eukaryotic cells as a genetic regulator to control cell proliferation
and cell survival, it may be the key to microbial induction of
prostate cancer (Figure 2). Through in vitro studies, it is found
that in the early stages of inflammation, inflammatory factors
will increase due to the stimulation of microorganisms and their
metabolites (86). And the transcriptional activities of p65 and
IkBa genes in infected prostate epithelial cells were significantly
higher than those in uninfected cells, indicating that the NF-kB
signaling pathway was involved in the occurrence of prostate
cancer in the early stage of inflammation, and the activation
of NF-kB was time-dependent with the stimulation of
inflammation (68, 73). In an animal experiment, mice infected
with polyomavirus developed prostatic intraepithelial neoplasia
on the ventral and dorsal sides of the prostate, and
transcriptional map analysis showed regulation of multiple
pathways, including NF-kB (87). In other words, the use of
some means to regulate the activity of NF-kBmay lead to the loss
of the cancerous potential of prostate cells.

In addition, in the previous study, using the mouse prostatitis
model established by Escherichia coli, it was found that there
were different degrees of atypical and dysplastic prostate tissue,
and the DNA oxidative damage and epithelial cell proliferation
in these abnormal tissues were stronger than those in normal
prostate tissue. This suggests that specific bacteria can induce
prostatic hyperplastic inflammatory atrophy (PIA) and prostatic
intraepithelial neoplasia (PIN) through inflammation and
oxidative stress (88). PIA and PIN are considered to be the
precursors of prostate cancer (89). At present, it is believed that
reactive oxygen species (ROS) and reactive nitrogen (RNS)
released by inflammatory cells repeatedly cause oxidative stress
damage to normal prostate tissue, and the reactive changes of
TABLE 1 | Study on the pathways related to the carcinogenesis of some microorganisms.

Microbial species stimulus Cellular Target Mechanism/Effect Refs

Bacteria Escherichia coli LPS, CNF1 NF-kB, Cdc42, TLR Promote value-added, Promote distant
metastasis, inhibit apoptosis,

(66, 68,
69)

Propionibacterium
acne

PG VEGF, NF-kB, MAPK, cGAS-STING Increased inflammation (70, 71)

staphylococcus SEH lncRNAs Promote apoptosis of tumor cells (72)
Chlamydia
trachomatis

Intracellular
parasitism

IL-6, FGF-2, VEGF, ICAM-1, NF-kB Progress, transfer, Increased inflammation (73, 74)

Virus HPV CpG DNA, E2,
E6, E7

NF-kB, TLR, P53, Rb, Bcl-2, survivin, E-cadherin, N-
cadherin, Twist, PTPN13 and SLUG

Promote value-added, transfer inhibit
apoptosis,

(68, 75,
76)

HSV CpG DNA, NF-kB, TLR, Promote value-added, inhibit apoptosis (68)
MRV VAP RACK1, caspase8 Induce apoptosis of tumor cells (77)
BKV LT Ag P53 Promote growth (78)
December 2021 | Volume 11 | Article
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prostate cells occur in the process of continuous injury and
regeneration. In addition, chronic inflammation caused by
bacterial infection in the microenvironment can not only lead
to the occurrence of PIA and PIN, but also accelerate the PIN
process by activating macrophages. Further studies also found
that in the region where PIN occurs, PIN cells can recruit
macrophages to gather by secreting ICAM-1 and CCL2, while
recruited macrophages can activate ERK and JNK signals in
PIN cells by secreting C5a, CXCL1, and CCL2 to promote the
proliferation of PIN cells (90). Therefore, chronic inflammation
of the prostate caused by bacteria may play a role in initiating the
progression of prostate cancer.
DIRECT PATHWAY OF PROSTATIC
MICROBIOTA

Typical Bacteria
Specific bacteria can participate in the occurrence and
development of prostate cancer by producing toxins. For
example, lipopolysaccharide (LPS) is the main component of the
cell wall of bacteria such as Escherichia coli and Neisseria
gonorrhoeae. It belongs to a bacterial endotoxin and is released
after bacterial cleavage. It has been found that there is a significant
relationship between LPS and prostate invasiveness (91).
Frontiers in Oncology | www.frontiersin.org 5
When continuously activated by bacterial LPS, a series of
closely related genes such as cell proliferation, differentiation,
and apoptosis are abnormally overexpressed, including
stimulating several pathways downstream of TLR4, namely IL-
6/STAT3, AKT/GSK-3b, and b-catenin pathways, to induce
epithelial-mesenchymal transformation (EMT) of prostate cells
(92). In addition to endotoxins, exotoxins secreted by bacteria
can also promote the progression of prostate cancer. Toxic
necrosis factor (CNF1) can accelerate the progression of
prostate cancer by activating the Cdc42-PAK1 signal axis (69).
Additionally, in some in vivo and in vitro studies, it has been
found that some bacterial toxins show anti-tumor properties,
such as alpha toxins (93) and enterotoxins (94–96). In these
studies, it is shown that bacterial toxins can regulate the
apoptosis of tumor cells through a variety of mechanisms.
Enterotoxin expressed by Staphylococcus aureus can induce
apoptosis of PC3 cells, which involves changes in the
expression of lncRNAs, including Gas5, PCA3 and NEAT1
genes (72). Botulinum toxin A may enter the cell through the
SV2 receptor of neurotoxin and induce phospholipase A2
(PLA2) phosphorylat ion to inhibit the growth and
proliferation of prostate cancer cells (97). Thus, it can be seen
that bacterial toxins have great potential in the treatment of
cancer. However, the mechanism of bacterial toxins in the
occurrence and development of human prostate cancer has not
been fully elucidated. More research is needed to explore its
potential molecular mechanisms in order to find more effective
cancer prevention and treatment strategies.

Mycoplasma
Mycoplasma is one of the most common atypical bacteria.
Mycoplasma infection may play an important role in the
pathogenesis of prostate cancer, probably because it itself and
its proteins are common components of the tumor
microenvironment (98). The effect of mycoplasma on prostate
cancer is mainly realized by its protein. Balanced subcellular
localization (BaCeILo) is a predictor of the subcellular
localization of eukaryotic proteins (99). In the past, this system
has been used to predict the subcellular localization of
mycoplasma hominis proteins in different parts of the host,
including 320 cytoplasmic proteins, 77 mitochondrial proteins,
29 nuclear proteins, and 137 secretory proteins. These proteins
may have potential effects on prostate cancer (100). The
chaperone protein DnaK of mycoplasma has carcinogenic
activity by binding to poly (ADP-ribose transferase) and p53,
thus inhibiting DNA repair and p53 function (101). Exogenous
DNAK in the tumor microenvironment can activate some
kinase-related transduction pathways in a cell-specific way,
such as the Akt1/2/3 group and p70S6 kinase group of the
AGC family, the AMPKERK2 group of the CAMK family, and
a-1-2-3 group of the CMGC family, so as to promote
carcinogenesis and cancer progression (102). In addition, the
protein p37 encoded by mycoplasma can promote the invasion
of cancer cells in a dose-dependent manner (103). In vitro, p37
can not only induce the expression of inflammatory cytokines,
but also activate multiple signal pathways by activating
protein kinases, including the phosphatidylinositol 3-kinase
FIGURE 2 | NF-kB classical signal pathway under the action of
microorganisms. Microorganisms stimulate inflammatory cells to secrete
inflammatory factors that bind to related receptors and cause configuration
changes, such as IL- a (IL-6, IL-8), TNF- a, CD40, lipopolysaccharide and so
on, thus activating IkB kinase. This leads to the phosphorylation and ubiquitin
of IkB protein, the degradation of IkB protein and the release of NF-kB dimer.
Through various post-translational modifications, NF-kB dimer is further
activated and transferred to the nucleus to bind the target gene and promote
the transcription of the target gene.
December 2021 | Volume 11 | Article 805459
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(PI3K)/AKT cascade, protein kinase C (PKC) family and
mitogen-activated protein kinase (MAPK)/RAS signal cascade,
which increases the invasiveness of prostate cancer (104, 105).
However, there is little literature on mycoplasma and prostate
cancer, and more research on mycoplasma protein in the future
may help to understand its role in prostate cancer in the
tumor microenvironment.

Virus
The prostate microflora contains many specific viruses, which
have a potential pathogenic mechanism in the process of prostate
cancer. In the past few decades, studies on human papillomavirus
(HPV), adenovirus, BK polyomavirus (BKPyV) and EB viruses
have preliminarily shown the possible carcinogenic and
metastatic mechanisms of the viruses in the prostate (23, 87,
106, 107).

More and more studies suggest that there is a close link
between the virus and prostate cancer. Recent studies have
suggested that early detection of the virus may help reduce the
risk of prostate cancer caused by the virus (108, 109). Previous
studies have found that the prostate may be the site of HPV
replication (110), and most studies have shown that HPV is
closely related to prostate cancer (111, 112). Studies have shown
that the incidence of high-risk HPV in benign prostate tumors is
similar to that found in prostate cancer (112). At the same time,
after a systematic review of 26 studies, it was found that the
proportion of high-risk HPV in prostate cancer was significantly
higher than that in benign tumors and healthy prostates (113). In
addition, recent case-control studies supported this view, which
found that the average expression levels of inflammatory
mediators (IL-17, IL-6, TNF-a, NF- kB, VEGF, ROS, and
RNS), anti-nesting factors (N-cadherin, slug, and twist) and
anti-apoptotic mediators (Bcl2 and Survivin) were significantly
increased in HPV positive samples. The average expression levels
of tumor suppressor proteins (p53 and pRb) and E-cadherin
(inhibitor of apoptosis) were significantly down-regulated,
suggesting that HPV infection may participate in the
metastasis of prostate cancer by regulating the behavior of
prostate cancer cells (75, 84). In addition, some studies have
also found that HPV and EBV may interact with each other to
promote the survival and proliferation of cancer cells (114).
Other functional proteins such as polyomavirus large T antigen
(LTag) can interfere with the infected cell cycle by binding to
p53, thus inactivating its tumor suppressor function. This
inactivation enables infected cells to activate carcinogenic
transformation (115, 116). Unlike HPV or adenovirus, BK
virus participates in the growth of prostate cancer by isolating
p53 into a protein complex (LTAG-p53 complex) in the
cytoplasm, thereby disabling its function (117). In addition, the
study also reported that there was a significant correlation
between a special regulatory feature caused by LTag peptide
pool stimulation and evidence of biochemical recurrence in
BKPyV-positive prostate cancer patients (63).

Of course, viruses do not always have a positive effect on
prostate cancer, although initial studies have shown that
adenoviruses have a carcinogenic effect on animals (118).
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However, with the deepening of research, the results often
suggest that some adenoviruses can inhibit the development of
prostate cancer, so it is generally considered that it may be one of
the breakthroughs in the targeted therapy of prostate cancer
(119). Previous studies have found that adenoviruses can
produce at least 50 serotypes. Through the study of various
serotypes, it is found that serotype 12E1A inhibits AR-mediated
transcription and prostate cancer cell survival, suggesting that
E1A12-targeted AR may have a potential therapeutic effect on
the treatment of advanced prostate cancer with increased AR
(120). In addition to its serotype affecting the development of
prostate cancer, adenovirus expressing Fas ligand (FasL) can
induce apoptosis in a group of prostate cancer cell lines. At the
same time, the apoptotic bodies and cell fragments produced by
cells infected with this type of adenovirus can continue to induce
FasL-mediated apoptosis in uninfected neighboring cells (121). It
can be seen that the virus plays an important role in the
occurrence and progression of prostate cancer, and increasing
research in the field of the virus may be of great significance to
the understanding and prevention of prostate cancer.

In short, bacteria and viruses both play positive and negative
roles in the formation and progression of prostate cancer,
although this complex interaction remains unknown. A more
specific characterization of the role of prostate microflora in
prostate cancer may open up new avenues for prostate cancer
prevention and treatment in the future.
EFFECT OF SEXUALLY TRANSMITTED
PATHOGENS ON PROSTATE CANCER

Although there are many controversial conclusions about the
impact of sexually transmitted diseases on prostate cancer, it is
undeniable that they may have potential effects on the
susceptibility and recurrence of prostate cancer, including
trichomonas vaginalis, HPV, Neisseria gonorrhoeae, HIV,
cytomegalovirus, and human herpesvirus (21, 122–125). A
prospective study showed that patients diagnosed with prostate
cancer had significantly higher than those in the control group in
terms of the number of partners, ejaculation frequency, and
serum inflammatory parameters (126). The reason for this result
may be that high-risk sexual behavior increases the chances of
sexually transmitted infections (125, 127, 128). In the case of
men having sex with multiple heterosexual partners or having
sex with same-sex partners, the results were unexpectedly
consistent, with a significantly increased risk of prostate
cancer (129).

Trichomoniasis caused by Trichomonas vaginalis infection is
the most common sexually transmitted disease. Studies have
shown that Trichomonas vaginalis increases the risk of prostate
cancer. When Trichomonas vaginalis infection causes
inflammation, a variety of cytokines are expressed, such as IL-
6, IL-8, KF- k B. These cytokines will interact with macrophage
migration inhibitory factor, PIM-1, and prostate specific antigen
(PSA) to polarize macrophages into M2 and induce prostate
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cancer cell proliferation and migration (130, 131). Another
common vaginal microbe is Gardnerella vaginalis. When
infected by Gardnerella vaginalis, LPCAT2, TLR3, and TGFB2
genes will be down-regulated or deleted, and the loss of the
function of these genes will directly promote the progression of
prostate cancer (6, 132). Chlamydia trachomatis is an atypical
bacterium that can be transmitted sexually. A recent in vitro
study showed that Chlamydia trachomatis can proliferate in
prostate cancer cells, resulting in enhanced transcription of IL-6
and FGF-2 genes, while FGF-2 can promote vascularization
and metastasis of primary prostate cancer (133). In addition,
after Chlamydia trachomatis infection, NF- kappa B was
activated, TLR2 and TLR4 were significantly up-regulated,
which promoted tumor progression (73). Therefore, early
popularization of healthy sexual knowledge and safety
measures may help to prevent the occurrence of prostate cancer.
TREATMENT OF PROSTATE CANCER
BASED ON MICROORGANISM

Early diagnosis of prostate cancer includes PSA testing and rectal
biopsy, and treatment includes surgical resection, hormone
therapy, chemotherapy, and radiotherapy. However, these
methods have some limitations. For example, prostate
cancer can occur even if PSA levels are lower than 4.0ng/ml,
and this is not uncommon (134). Therefore, it is of great
significance to find new auxiliary means or auxiliary methods
for diagnosis, treatment, or monitoring. Prostate microbes
are almost involved in the whole process of prostate cancer.
The combination of microbiology and cancer may bring
new breakthroughs.
MICROBIAL COMPONENTS AS
BIOMARKERS

PSA is a widely used biomarker for prostate cancer. However,
due to the pathological characteristics of PSA, the results have
some limitations (135). Therefore, more biomarkers are needed
as complementary tools for prostate cancer prediction and
monitoring. In view of the important relationship between
tumors, immunity, and microorganisms, it may help us to find
more potential biomarkers in the field of microbiology (136).
The increased expression of the human endogenous retrovirus
(HERV) sequence is associated with prostate cancer, which
suggests that it may be used as a new marker for the diagnosis
or prognosis of prostate cancer (137). By detecting the HERV
transcripts of matched cancerous and benign tissues in patients
with prostate cancer and comparing them with men without
prostate cancer, it was found that the high expression of HERV-
K Gag was limited to malignant cells, indicating the potential
utility of HERV-K Gag as a prostate cancer marker in diagnosis,
prognosis, and treatment (138). In addition, unlike tissue
biopsies, biofluid analysis is a non-invasive method for
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screening for prostate cancer. The excretion of urine needs to
pass through the prostate and will be mixed with some prostate
fluid, so the microRNAs (MiRNAs) of urine microorganisms
may become a potential biomarker for the diagnosis and
evaluation of prostate cancer. Previous studies have initially
confirmed this possibility. HSV1-miR-H18 and HSV2-miR-
H9-5p derived from herpes simplex virus (HSV) in urine are
superior to serum PSA in detecting the gray area of prostate
cancer (109). Interestingly, some studies have shown that with
the help of special recombinant viruses, it seems to be able to
label circulating tumor cells. That is, it may help to determine
whether there is a very early metastasis, which will be greatly
conducive to the choice of treatment and prognosis (139).
Therefore, it is possible to find more reliable tumor biomarkers
in the field of microbiology.
MICROBIAL DIAGNOSTIC TOOLS

The use of microorganisms as a tool for disease diagnosis is a
new field. Biomarkers have always been used as the basis for
disease diagnosis, but because of the limitations of their
accuracy, the early diagnosis of many diseases is still
challenging. The human microbiome, on the other hand,
functions like a dynamic recorder, constantly capturing data
on physical health, sub-health, and disease status. As a result,
detection of human microbiota may make disease diagnosis
more reliable, effective, and timely. A new study confirms the
feasibility of using the characteristics derived from a group of
intestinal microflora to accurately diagnose liver cirrhosis in
people with non-alcoholic fatty liver disease (140). This result is
based on the fact that key microbial species may play a causal
role in the pathophysiology of liver cirrhosis. Another study uses
the detection of oral microbiota to make a more detailed
classification of halitosis so as to provide a more accurate
treatment (141). Unfortunately, there are few studies on
microorganisms as diagnostic tools, and there is still a lot of
room for development in this field. Perhaps in the future, the
structural characteristics of microflora in prostate puncture
tissue samples or prostatic fluid may help us diagnose early
prostate cancer and predict its malignant degree.

Microbial Immunotherapy for
Prostate Cancer
Tumor microenvironment is typically beneficial to inflammation
and immunosuppression, owing to the function of cancer-related
fibroblasts in promoting tumor development and an increase in
TGF- secreted by prostate tissue, which inhibits the function of
NK cells and lymphocytes (142, 143). Through the study of
microbial metabolomics, most of the body’s microbes and
their metabolites have the ability to stimulate the body to
produce immunomodulatory effects. They may treat tumors
through mechanisms that affect immune responses through
their effects on host immune cells. In addition, it has been
reported that prostate tissue-specific microorganisms may
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improve the immunogenicity of tumors and make drug-resistant
cancer types sensitive to immunotherapy (144). In fact,
the immunotherapy of microorganisms should not
be underestimated.

Therapeutic virus vaccine can activate the immune system,
induce specific cellular and humoral immune responses through
tumor cells or tumor antigen substances, enhance the anti-cancer
ability of the body, and prevent the growth, proliferation and
recurrence of tumors, thus achieving the purpose of eliminating
or controlling tumors. Recombination of some special viruses
into virus vaccines, such as vaccine viruses based on adenovirus,
also shows great potential in the research of prostate cancer
treatment (145–147). For example, in a clinical study, the gene of
PSA was loaded into adenovirus type 5 (Ad5) to make a viral
vaccine to treat patients with mCRPC. Most of the patients
detected anti-PSA immune response, especially the increase in
the proportion of PSA-specific T cells (148). Of course, the use of
viral vaccines may be accompanied by adverse events associated
with them (149), including mild adverse reactions (local pain,
swelling or induration and systemic fever) and severe adverse
reactions (thrombosis and/or allergies) (150, 151). However,
with the application of covid-19 adenovirus vaccine, biosafety
problems may be forced to be solved, which may promote the
development of viral vaccines.

Bacterial immunotherapy for prostate cancer: most of the
current research is limited to gut bacteria, and there are few
studies for prostate cancer bacteria (152). But prostate bacteria
are indispensable in prostate cancer immunotherapy. In a recent
animal experiment, it was discovered that the facultative
anaerobe Escherichia coli could specifically produce TNF-a in
mouse tumors (153). Although TNF-a can induce tumor cell
apoptosis (154), it has been abandoned as a cancer treatment
due to systemic side effects (155). Research on bacterial
immunotherapy may now avoid this side effect and allow
TNF-a to be reapplied to cancer therapy.

Targeted Therapy of Prostate Cancer
by Microorganisms
The use of microorganisms to prevent and treat prostate cancer
may be a popular treatment strategy in the future. Based on the
characteristic that specific microorganisms can deliver
exogenous genes to prostate cancer cells to interfere with the
proliferation of prostate cancer cells (67), or through the
microorganisms themselves or their metabolites to activate
some protein kinases to regulate the apoptosis of prostate
cancer cells (156), in order to achieve the purpose of treating
prostate cancer. At present, the microorganisms that can
potentially become targeted therapies are mainly non-
pathogenic bacteria and viruses.

Because the tumor microenvironment is usually accompanied
by hypoxia and insufficient blood supply, conventional
treatments such as chemotherapy and immunotherapy often
cannot achieve the desired effect (157), and hypoxia is closely
related to local biochemical recurrence. Therefore, the combined
or single use of bacteria targeting therapy for prostate cancer is
one of the most feasible ways in the future, especially for
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anaerobes or facultative anaerobes. Salmonella typhimurium,
which belongs to anaerobic bacteria, can express green
fluorescent protein (GFP) and induce the death of PC-3,
LNCaP, and DU-145 prostate cancer cells through different
mechanisms (158). Serratia marcescens, which belongs to
facultative anaerobes, can inhibit the growth of prostate cancer
cells by down-regulating IAP family inhibitors XIAP, CIAP-1,
and CIAP-2, activating caspase-9 and caspase-3, and this is
accompanied by the degradation of poly-ADP-ribose
polymerase (156). The research and discovery of more specific
bacteria will lay the foundation for the targeted treatment of
prostate cancer.

An oncolytic virus is a kind of tumor-killing virus with
replication ability, whether naturally occurring or genetically
engineered, that can specifically infect and dissolve cancer cells
without damaging normal cells. Some of them can bind to tumor
cells through abnormally expressed or up-regulated surface
receptors in tumor cells, while others can only replicate in
tumor cells with defective signal pathways due to the loss of
virulence genes (159). Furthermore, some oncolytic viruses
enhance the immune response and attract more immune cells,
allowing leftover cancer cells to be killed (160). Mammalian
orthovirus (MRV) is one of the oncolytic viruses targeting tumor
cells. It can down-regulate HIF-1a and induce apoptosis of
prostate cancer cells under hypoxia by activating caspase-8 and
caspase-9 (161). MRV infection can reduce the activity of
activated Akt and AR proteins and the expression of PSA in
prostate cancer cells, so it may inhibit the progression of prostate
cancer to CRPC (162). MicroRNAs were also inserted into the 3’
untranslated region (3’-UTR) of the HSV-1 basic viral gene,
allowing the virus to selectively target cancer cells and reduce
toxicity to normal tissues (163). In addition, it is also a suitable
way to induce apoptosis of prostate cancer cells by inserting
different protective antigen genes to regulate the apoptosis
mechanism, including Caspase family, IAPs family, and Bcl-2
family (164, 165). Because the recombinant genome does not
enter the chromosome, there is no risk of insertion mutation
(166, 167). At the same time, considering that viral therapy is
mainly aimed at anoxic sites or extensive metastatic sites with
high resistance to traditional therapy, some studies have also
focused on the characteristics of mesenchymal stem cells
differentiating into various cells (such as macrophages). With
the help of new techniques such as ultrasound targeting to
transport the virus to the target cells, this may greatly improve
the effectiveness of tumor therapy and reduce possible side effects
(168, 169). Although most clinical trials on adenovirus-mediated
gene therapy and viral therapy have shown good anti-tumor
effects, this potential treatment is under consideration because of
possible biosafety problems.

Microbial-based prostate cancer prevention and treatment
strategies may run through the whole course of treatment in the
future, making up for the shortcomings of traditional prostate
cancer treatment methods, such as prostate cancer diagnosis,
tumor resection, chemotherapy, radiotherapy, endocrine
therapy, and so on. It can greatly improve the prognosis and
prognosis of prostate cancer.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Che et al. Prostate Microbiota and Prostate Cancer
CONCLUSIONS AND FUTURE
PERSPECTIVES

Based on previous studies, it is not difficult to find that the
microflora in the prostate microenvironment is constantly
emphasized in tumorigenesis, invasion, metastasis, and
biochemical recurrence. A variety of biological mechanisms
regulated by various microorganisms and their metabolites
may be involved in the process of prostate cancer. These
processes include the well-known indirect effects mediated by
immune surveillance and direct effects in the early stages of
research. These mechanisms not only regulate the
transformation of prostate epithelial cells from benign to
malignant, but also promote or inhibit prostate cancer. This
indicates that it is a future research trend to explore the etiology
and mechanism of prostate cancer in the field of microbiology.

At present, there are obvious defects in the treatment of
prostate cancer; that is, the residual cancer cannot be completely
eliminated, and there is a high risk of local biochemical
recurrence after the treatment of prostate cancer. Microbial
immunotherapy and targeted therapy can make up for the
limitations of traditional therapy. The single or combined
application of medical methods in the field of microbiology
may herald the dawn of cancer patients. In the future, we
should conduct a more in-depth study of the microflora of
prostate cancer, explore its potential role in the prostate
microenvironment, and continue to carry out microbial tumor
Frontiers in Oncology | www.frontiersin.org 9
therapy, which has positive significance for the prevention, early
diagnosis, treatment, and prognosis of prostate cancer.

There are potential biosafety problems in the use of
microorganisms, especially recombinant viruses or bacteria
that are widespread in laboratories. In clinical trials, it is often
accompanied by some side effects. However, it is undeniable that
with the application of live attenuated measles vaccine, live
attenuated hepatitis A vaccine, COVID-19 inactivated vaccine,
and other viral vaccines, these biosafety problems will be solved.
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