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Abstract

RNA sequencing has become widely used in gene expression profiling experiments. Prior to any RNA sequencing
experiment the quality of the RNA must be measured to assess whether or not it can be used for further downstream
analysis. The RNA integrity number (RIN) is a scale used to measure the quality of RNA that runs from 1 (completely
degraded) to 10 (intact). Ideally, samples with high RIN (w8) are used in RNA sequencing experiments. RNA, however, is a
fragile molecule which is susceptible to degradation and obtaining high quality RNA is often hard, or even impossible when
extracting RNA from certain clinical tissues. Thus, occasionally, working with low quality RNA is the only option the
researcher has. Here we investigate the effects of RIN on RNA sequencing and suggest a computational method to handle
data from samples with low quality RNA which also enables reanalysis of published datasets. Using RNA from a human cell
line we generated and sequenced samples with varying RINs and illustrate what effect the RIN has on the basic procedure of
RNA sequencing; both quality aspects and differential expression. We show that the RIN has systematic effects on gene
coverage, false positives in differential expression and the quantification of duplicate reads. We introduce 3’ tag counting
(3TC) as a computational approach to reliably estimate differential expression for samples with low RIN. We show that using
the 3TC method in differential expression analysis significantly reduces false positives when comparing samples with
different RIN, while retaining reasonable sensitivity.
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Introduction

RNA extraction is one of the first steps in gene expression

profiling experiments whether the assay is qPCR, microarrays or

RNA sequencing, but RNA molecules, however, are relatively

unstable and susceptible to degradation. Without specialized

protocols [1], having good quality RNA samples is considered

paramount for meaningful experimental results. Thus it is

imperative to assess the quality of the RNA prior to any

downstream analysis. The RNA integrity number (RIN) algorithm

has become a widely accepted standard for quality measurement

of RNA and was shown to be more meaningful and more robust

than prior methods of UV spectroscopy and pure ribosomal RNA

ratios [2,3]. The RIN is developed from a learning algorithm that

uses the whole trace from capillary electrophoresis (Bioanalyzer)

rather than just the ratio of the large ribosomal peaks, though the

RIN is still heavily dependent on that ratio [2].

For RNA samples to be considered of high integrity and to pass

quality control the RIN usually must be higher than 7 or 8.

Despite following standard RNA sample handling procedures,

acquiring samples of high quality can prove difficult. This is

especially true for post mortem, forensic and certain clinical

samples. We thus find it of utmost importance to determine how

samples with different RINs compare in RNA sequencing, what

constitutes a RIN quality threshold for sequencing and what

measures can be taken when handling samples with low RIN both

in sample preparation and in data analysis.

For qPCR, samples with low but similar RIN have comparable

expression profiles but low RIN samples have significantly lower

expression compared to high RIN samples [3]. For microarrays,

short genes and 5’ end probes show highest effect on gene

expression due to degradation [4]. Originally, when estimating

transcript abundance in RNA sequencing, it was assumed that the

reads were evenly distributed along the transcripts [5]. With the

realization that RNA sequencing reads come from a non-uniform

distribution and that reads can have positional and sequence

specific biases, various improvements have been made in

transcript abundance estimation [6–8]. Degradation can also have

direct impact on transcript estimation and an RNA degradation

model for RNA sequencing was recently published [9]. However,

the direct effect of RNA degradation on differential expression and

its correlation to the RIN has not, to our knowledge, been

reported.

By fragmenting RNA prior to library preparation we system-

atically generate degraded RNA samples with a spectrum of RINs.

A similar model of RNA degradation by fragmentation has been

used before [10]. We show here that degraded samples, prepared

with poly A selection, have 3’ mapping bias and that the more

degraded a sample is the more it deviates in differential expression

from intact samples. On average, these degraded samples show an
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underrepresentation of long transcripts and an overrepresentation

of short transcripts. Finally, we introduce a 3’ tag counting (3TC)

approach, and show that it reduces false positives in differential

expression comparisons between samples of different quality.

Materials and Methods

1. Sample preparation
U251 MG brain gliablastoma cells (Professor Bengt Wester-

mark, Uppsala University) were cultured as described previously

[11]. RNA was extracted from the cells using RNeasy kit (Qiagen).

In total we obtained 64 g of RNA with RIN 10. 4 g were kept

intact while the rest of the RNA was divided into 22 equal batches

and each batch fragmented under different incubation time and

temperature using the NEBNext Magnesium RNA Fragmentation

Module. This fragmentation served as an emulator of degradation

and resulted in RNA with a wide spectrum of RINs which we

categorized into groups of RIN 2, 4, 6, 8 and 10. RNA profiles

were evaluated and RIN calculated using 2100 BioAnalyzer

(Agilent). From these RNA samples we prepared three libraries

each of RIN 10, 8, 6, 4 and one library of RIN 2 using slightly

altered and automated Illumina TruSeq library preparation

protocol [12]; mRNA purification using poly-T oligonucleotides,

mRNA fragmentation, first strand synthesis, second strand

synthesis, carboxyl acid (CA) purification, end repair, adapter

ligation, indexing, PCR amplification and CA purification.

Additional four libraries; one of RIN 6, two of RIN 4 and one

of RIN 2, were made using ribosomal depletion (RiboMinus kit,

Invitrogen) instead of mRNA enrichment. Schematic overview of

library preparation protocols and additional information can be

found in Figure S1.

One of the RIN 8 sample failed in library preparation and was

not sequenced. All the remaining 16 libraries were then clustered

on cBot and sequenced on HiSeq 2000 according to manufactur-

er’s instructions. Base conversion using OLB v1.9, demultiplexed

and converted to fastq using CASAVA v1.8. This gave us 423

million 100 bp paired end reads that passed through Illumina’s

chastity filter, averaging to 26.4 million paired end reads per

sample. All the raw reads have been submitted to the NCBI

Sequence Read Archive under accession SRP023548 (SRA,

http://www.ncbi.nlm.nih.gov/Traces/sra/).

2. Data analysis: Preprocessing/quality control
Before expression analysis the data were processed through a

quality control pipeline consisting of three major steps: i) quality

trimming and adapter removal, ii) mapping to a reference genome

and iii) removal of ribosomal reads. For the quality and adapter

removal the utility program Trim Galore! [6] was used. Trim

Galore is a wrapper script that makes use of the trimming tool

cutadapt [14]. Possible adapter sequences, based on the Illumina

TruSeq Adapter index sequences, were removed from the reads.

The reads were then quality trimmed, with a quality threshold of

30 on the Phred scale, and if either read from a pair was shorter

than 30 bp after trimming that pair was removed from the

analysis. The remaining quality reads were mapped to the

GRCh37.68 primary assembly of the human genome (ensem-

bl.org) using Tophat, version 2.0.2 [15]. When reads mapped to

multiple locations only the primary hits as determined by Tophat

were retained. Then, using the split_bam.py script from the quality

control package RSeQC [16], the reads that mapped to ribosomal

RNA locations in the genome were evaluated and removed from

analysis. The remaining non-ribosomal reads, termed useable reads,

were used for expression analysis.

Additionally, the amount of duplicate reads were quantified

using MarkDuplicates from Picard [17]. However, since duplicate

reads can be wrongly called, especially for highly expressed genes,

these reads were retained in the downstream differential expres-

sion analysis.

3. Data analysis: Differential expression
Htseq-count [18] was used to count how many reads match to

each feature in an annotation file. The annotation file is in gene

transfer format (GTF) and a feature is, in our case, an ensembl

gene ID. We set the -m parameter to intersection-strict. All genes then

went through custom filtering which is defined as follows: If the

average read count of a gene across the sample groups was below

five counts then that gene was removed from analysis due to low

expression; all other genes were retained in the analysis and are

called as expressed genes. This filtering step was included to try

and reduce false positives in the differential expression [19]. The R

package DESeq was used to get differential expression between

sample groups [20]. The DESeq package normalizes for different

sample read depths and is able to carry out differential expression

analysis even if one of the groups in the comparison only contains

one sample, which is why the RIN 2 group is included in the

analysis even though it has no replicates. All genes with a p-value

below 0.05 after Benjamini-Hochberg adjustment (FDR) were

labeled as differentially expressed genes, hereafter referred to as

DEGs. We limited our differential expression analysis to protein

coding genes.

4. Data analysis: 3’ tag counting
Many false positive DEGs arise due to the difference in RIN

between experimental groups. To correct for this false positive rate

we restricted the counting to those reads that mapped to the 3’ end

of the genes, a counting method we call 3’ tag counting (3TC). A

schematic diagram explaining the basic features of our 3TC

counting method is shown in Figure 1. The 3TC method involves

changing the GTF annotation file, that is used when counting, in

two steps; i) isoform filtering and ii) transcript length restriction.

The isoform filtering step selects which isoform of each gene to

retain as to prevent count contamination from overlapping

isoforms. The transcript length restriction limits each isoform in

the annotation file to a certain length N, counting from the 3’ end,

and all bases and exons beyond that length are left out in the

counting process. This is done because the gene coverage of the 5’

end diminishes the more the sample is degraded while the

coverage closer to the 3’ end is greater, regardless of sample

quality.

Deciding which isoforms to retain and which isoforms to filter

out is not straightforward but we opted to retain the isoform which

shows the highest expression within a gene. To determine this

highest expressed isoform, the isoform FPKM value from the RIN

10 group was calculated using Cufflinks [21]. The isoform which

had the highest expression within a gene was retained in the

annotation file. If none of the samples are of high quality we

provide an alternative approach to isoform filtering, shown in

Figure S2, which is independent of the samples used but of

somewhat lower sensitivity.

Applying the 3TC method with length restriction reduces the

number of genes labeled as expressed, i.e. it decreases sensitivity.

We thus evaluate the success of the method as a function of

sensitivity which is defined as: sensitivity = (no. of genes called

as expressed, using N = X)/(no. of genes called as expressed, using

N =?); where N is the length restriction of the 3TC and X, in our

case, is 1500, 1000, 500 and 200 nt (see Table 2).
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For a negative control for the effects of the 3TC method, we

used previously published libraries from the U2OS and U251 cell

lines [20]. These libraries are from high quality RNA and the 3TC

method should not have substantial effect on their differential

expression. Also, as a second control we checked what effects the

3TC method had on differential expression between replicates of

the same quality. Since there were, at most, only three replicates,

denoted R1, R2 and R3, within group this analysis does not have

substantial power. Nonetheless, for the groups RIN 10 and RIN 6,

we performed differential expression analysis by comparing R1 vs.

R2+R3, R2 vs. R1+R3 and R3 vs. R1+R2.

Results

1. Degradation of RNA
Incubation of intact RNA in magnesium ion solution, for

different time periods and at different temperatures, results in

RNA with a spectrum of RIN (see inset in Figure 2). The RIN is

dependent on the ribosomal peaks (18S and 28S) of the RNA and

they progressively diminish the more the samples are degraded

(see Figure 2).

From the degraded RNA, six experimental groups were

prepared; RIN 10, RIN 8, RIN 6, RIN 4, RIN 2 and RiboMinus

(RIN 2–6). Each group contained RNA from three samples except

the groups RIN 2 and RiboMinus which consisted of one and four

samples respectively. The barplot in Figure 3 summarizes

information of the experimental groups.

2. Preprocessing of sequencing data.
A detailed overview of the effects of the preprocessing pipeline

(see Methods) on each of the individual libraries is shown in Table

S1 and summarized for the experimental groups in Figure 4; with

the percentage of useable reads for each group shown above the

Useable reads bar. A noticeable decline in useable reads is observed

with decreasing RIN, an effect that accumulates thorugh the steps

of the preprocessing pipeline. A one-way ANOVA finds a

statistically significant difference in useable reads between the

RIN groups (F = 4.9, pv0.05) and a Tukey HSD test reveals that

the statistical difference is only between the RIN 10 and the RIN 2

groups (pv0.05). As shown in Table S1 and Figure S3 there is a

noticeable increase in duplicate reads with decreasing RIN and the

difference in remaining reads after duplicate removal becomes

more prominent (see Figure S3 for statistical details). In the

downstream differential expression analysis the duplicate reads

were retained.

The strikingly poor performance of the samples treated with the

RiboMinus kit is predominantly due to high ribosomal RNA

(rRNA) contamination in the mapped reads; for the samples in this

group 79% of the reads map to ribosomal RNA genes, on average.

Thus the RiboMinus kit effectively fails to remove ribosomal RNA

from the degraded samples.

3. Gene body coverage
In order to make a reliable comparison between the groups,

which were of different sequencing depth, the reads from each

library were downsampled to 6 million reads using Picard tools

[17]. The gene coverage over the entire gene body for each group

is visulized in Figure 5. There is an increased 3’ mapping bias with

decreasing RIN. This mapping bias formed the basis for the 3’ tag

counting approach used for normalization in differential expres-

sion analysis (see Methods and below). Despite the massive loss of

reads in the RiboMinus group it does show an even gene coverage.

Figure 5 is readily explained on the basis of the enrichment

method used in the sample preparation step. The standard poly-A

selection is a form of positive selection (i.e. selects molecules to

keep in analysis) so if the sample is degraded the data will reflect

that. Ribosomal depletion, however, is a form of negative selection

(i.e. selects molecules to remove from analysis) so even if a sample

is degraded the data should retain even coverage, because

fragments all along the RNA will be collected rather than just

those containing the 3’ end used for polyA selection. Even though

all libraries were downsampled to include equal amount of reads

the RiboMinus group has fewer reads along the gene body; this is

because the RiboMinus group has a higher proportion of reads

mapping to unannotated regions.

4. Effects of degradation on differential expression
In order to make a reliable comparison between the groups the

reads from each library were downsampled to 20 million reads

using Picard tools [17] except when making a comparison to the

RiboMinus group in which case the libraries were downsampled to

6 million reads.

Many DEGs arise between the experimental groups solely

because of different degradation of the samples. For example when

comparing RIN 10 to RIN 8, 4377 genes are differentially

Figure 1. Schematic drawing of the 3TC method. Shown is a graphical representation of the annotation file used for counting. The original
annotation file contains all annotated exons and isoforms for all genes and is shown on the left. The isoforms with the highest expression within a
gene are indicated by a black borderline around its exons. The two steps of the 3TC process are shown in the middle; only those isoforms that have
the highest expression are kept in the annotation file (isoform filtering) and all isoforms are truncated to a specific length N (length restriction, shown
by shading). The final annotation file is shown on the right.
doi:10.1371/journal.pone.0091851.g001
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Figure 2. Effects of degradation on the RNA size distribution for different RINs. The large ribosomal RNA peaks, 18S and 28S, show a
steady decrease with decreasing RIN and completely disappear for RIN 2. Also apparent is an increase of small molecules with decreasing RIN. This is
especially noticable for the RIN 2 sample. The dotted inset shows how the magnesium ions affect the RIN of the RNA as a function of temperature
and incubation time.
doi:10.1371/journal.pone.0091851.g002

Figure 3. Attributes of the experimental groups. The height of
the bars represents the average RIN for each group along with error
bars. The bottom of each bar shows the number of samples in each
group. Below each bar are the group names which both show the
average RIN as well as the enrichment method used for the samples in
the groups. Error bars denote the standard error. One of the RIN 8
samples failed in library preparation thus for the subsequent
sequencing data there are only two samples in the RIN 8 group.
doi:10.1371/journal.pone.0091851.g003

Figure 4. Preprocessing of sequencing data. The barplot shows
how many reads survive through each of the steps of the preprocessing
pipline (see Methods). The step of going from Mapped reads to Useable
reads is removal of rRNA. A large amount of reads are lost due to rRNA
read removal in the RiboMinus group. The pecentage of useable reads
(shown above the dotted lines) shows a steady decline with decreasing
RIN. The poor performance of the RiboMinus samples can be attributed
to high rRNA contamination.
doi:10.1371/journal.pone.0091851.g004
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expressed or around 36% of all the expressed genes. When

comparing RIN 8 to RIN 6, however, only 109 (1%) genes show

up as differentially expressed. Table 1 shows the number of DEGs

between other groups.

To determine the effect of the isoform filtering step of the 3TC

method has, in general, on differential expression the reads were

counted towards an annotation file that had been processed

through the isoform filtering step of 3TC but no length restriction

(effectively the 3TC method with N =?, see Figure 1). The

number of DEGs compare very well between the two methods (the

two methods being no 3TC and 3TC with N =?). Table 1 lists the

number DEGs for the two methods as well as the number of DEGs

that are shared between them. Figure S4 shows graphical

representation of Table 1 using Venn diagrams.

A common feature of these comparisons is that DEGs that have

higher expression in the group with higher RIN are, on average,

longer than the DEGs that have higher expression in the group

with lower RIN. The average length of the selected transcript

isoform of the 2017 DEGs that have higher expression in RIN 8 is

1500 nt while the corresponding average length of the 2327 DEGs

that have higher expression in RIN 10 is 5900 nt. This length

difference is significant (pv0.001, Student’s t-test). This is

illustrated in Figure 6a and Figure 6b for the comparison RIN

10 vs. RIN 8 and in Figure S5 for the rest of the comparisons.

Interestingly, even though the RiboMinus group consists of

samples of low quality RNA (RIN 2–6) only 3778 DEGs are found

when comparing it to the RIN 10 group, which is considerably less

than the 4344 DEGs found when comparing RIN 10 to RIN 8.

This is attributable to the enrichment method used for the

RiboMinus group which gave rise to the even gene body coverage

for that group as discussed above.

The expression profile for the comparison RIN 10 vs.

RiboMinus, displayed in Figure 6c, identifies genes with much

higher expression in the RiboMinus group compared to the RIN

10 group. Many of those genes turn out to belong to histone genes

but histone gene transcripts are known to be without poly A tail

[23]. This led to the conclusion that more genes that have

distinctively higher expression in the RiboMinus group compared

to the RIN 10 group may be genes without, or repressed, poly

adenylation sites. In total there are 18 potentially poly A (-) genes

which are listed in Table S2.

The Venn diagrams in Figure 7 show the overlap of the DEGs

found in the first three comparisons in Table 1. The overlap shows

that the increase in DEGs is mainly additive, i.e. the DEGs found

in the comparison RIN 10 vs. RIN 8 are also found in the

comparison RIN 10 vs. RIN 6 and RIN 10 vs. RIN 4.

5. Effects of 3TC for differential expression
The previous section demonstrated that DEGs arise between

different RIN groups and that isoform filtering, the first step in

3TC, only has minimal effect on the results of differential

expression. Applying 3TC using varying constants for the

maximum isoform length, N: 1500 nt, 1000 nt, 500 nt and

200 nt, realizes the full potential of the method.

There were 4344 DEGs for the comparison RIN 10 vs. RIN 8

without any length restriction. The number of DEGs decreases to

413, 278, 116 and 2 for N = 1500, 1000, 500 and 200 nt,

respectively. This improvement does come at a cost of decreasing

sensitivity but the sensitivity remains remarkably high until the

200 nt length restriction (sensitivity is the ability of the method to

call genes as expressed, see Methods for definition of sensitivity).

The details of the 3TC results for the comparison RIN 10 vs. RIN

8 is shown in Table 2 and for all other comparisons in Table S3. A

graphical overview of how the comparisons fared in the 3TC

method is shown in Figure 8a for all RIN 10 comparisons and

Figure 8b for all other comparisons. The control comparison, from

high quality RNA of two different cell lines, does not show the

substantial decrease in DEGs as the other groups. Also the 3TC

method does not seem to have a significant effect on differential

expression within groups but for the RIN 10 group the number of

DEGs between replicates were, on average: 2, 2, 1, 3, 1 for N =?,

1500, 1000, 500, 200 respectively. Similarly, for the RIN 6 group

the number of DEGs were, on average: 17, 12, 7, 3, 0 for N =?,

1500, 1000, 500, 200 respectively.

Again worthy of attention is the RiboMinus group which,

despite showing even gene body coverage, shows improvement

using the 3TC method; from 3778 DEGs with N~? to 1661

DEGs using N~1500 nt, in the comparison RIN 10 vs.

RiboMinus. Also in this comparison, contradictory to all the

other comparisons, the DEGs overrepresented in the RiboMinus

group are longer than the DEGs overrepresented in the RIN 10

group (see Figure S5). An explanation for this behaviour may lie in

the fact that even if these two groups, RIN10 and RiboMinus,

show even gene coverage on average the gene coverage is not even

for the genes with the largest transcripts. In fact, as shown in

Figure 9, for large transcripts the RIN 10 group has a three prime

bias wheras the RiboMinus group has a five prime bias.

6. Effects of Cufflinks bias correction on differential
expression

Of the methods mentioned (see Introduction) that aim to

improve transcript estimation by assuming non-uniform read

distribution, or take RNA degradation into account [6,7,9], only

the bias correction by Roberts et. al. [8] offers a direct downstream

analysis of differential expression through Cuffdiff. Table 3 shows

the number of differentially expressed genes with and without

Figure 5. Gene body coverage on average for each group. Both
RIN 10 and RiboMinus show even coverage. The percentages in the
paranthesis show the relative amount of reads that map closer to the 3’
end than to the 5’ end, i.e. the amount of reads that map to the right of
the dashed vertical line. Each step of decreasing RIN shows an increase
in 3’ bias.
doi:10.1371/journal.pone.0091851.g005
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using the bias correction from [8]. In all comparisons the bias

correction worsens the outcome of the differential expression.

Discussion

1. Systematic generation of degraded RNA by
fragmentation

RNA degradation in the cell is carried out by endonucleases and

exonucleases. The endonucleases break the phosphodiester bonds

within the RNA fragment while exonucleases degrade the RNA

from either end. RNA degradation can also occur during RNA

extraction and RNA handling by other means, such as physical

shearing. We fragmented intact RNA with magnesium ions prior

to library preparation to achieve degraded RNA as estimated by

the RIN.

While our degradation method does not reflect any exonuclease

activity the data gives us no reason to doubt it emulates in vitro

degradation in other respects. Indeed it has been argued

previously that RNA degradation is random and RNA degrada-

tion models are based on that assumption [10].

2. Sequencing degraded RNA: consequences
There are some issues to be aware of when sequencing degraded

RNA. By following standard fragmentation procedures during

library preparation a degraded sample will result in lower

complexity libraries and thus higher duplication rates. This loss

in complexity may possibly be prevented, at least partly, by

carefully controlling the fragmentation step during libary prepa-

ration but this, however, was not investigated here. Degradation

also leads to a loss of full length transcript as shown by the 3’

mapping bias which can give rise to false positives in differential

expression analysis. Furthermore, long transcripts tend to be

overrepresented in samples of higher quality when compared to

samples of lower quality where short transcripts are overrepre-

sented (Figure 6).

Sequencing protocols often set a certain quality threshold for

RNA samples (RINw7 or 8) to be processed into libraries.

According to our results there does not seem to be any justification

to set a threshold at any specific RIN but rather it is important to

be aware of the effects of low RIN and all samples should

preferably be in close range in terms of quality. Indeed, the only

relevant RIN threshold the data suggests is at RIN 10 since the

most dramatic effect in differential expression is when samples

deviate from RIN 10, i.e. we achieve far more DEGs when

comparing RIN 10 vs. RIN 8 than when comparing RIN 8 vs.

RIN 6.

3. Sequencing degraded RNA: solutions
The 3TC approach we present here is both simple and

straighforward and manages to reduce the number DEGs between

samples of different quality. As such it could be useful for

researchers that work with data from degraded RNA samples.

Which value to set to the length restriction, N, is speculative but

N = 1500 usually shows marked decrease in false positives while

maintaining high sensitivity (sensitivity is the ability of the method

to call genes as expressed, see Methods for definition of sensitivity)

and can be considered as a safe upper limit. Arguably, even

working with relatively good quality RNA, using the 3TC method

for differential expression could be a valid option to decrease false

positives. If analyzing samples where there is a significant

difference in quality between the samples, lowering N below

1500 might be neccessary despite the loss of sensitivity.

The main drawbacks of the 3TC approach is that it is gene

based, i.e. it is not suitable for alternative splicing analysis, and the

genes are represented only by their major isoform. The fact that it

is gene based may introduce some false negatives in differential

expression analysis since a gene can express different isoforms at

different levels between different conditions. However, this is only

of concern when dealing with expressed isoforms other than the

major isoform. If there is an expression difference between major

isoforms of genes it should be picked up by the 3TC method. It is

noted that the major isoform may not be the ideal representative

for a gene, however it has been shown that the major isoform of a

gene with five or less variants usually represents more than 60% of

the gene’s transcript abundance and similarly for genes with 5–15

isoforms the major isoform represents more than 40% of the

gene’s transcript abundance [24]. While not perfect this is an

indicator that the major isoform can be a decent proxy for the

whole gene and if the more abundant isoforms of a gene share

many of their exons it makes this case even stronger. That being

said, there may be situations where the 3TC method, using the

major isoform as a proxy for the gene expression, is unapplicable.

Another solution when working with degraded RNA is to use

ribosomal depletion for enrichment instead of poly-A selection. In

our case we used the RiboMinus kit and those samples perform

better in gene coverage and differential expression. The

RiboMinus kit however failed in removing rRNA from degraded

RNA samples and cannot be claimed as a good option for working

with degraded RNA. While the poor performance of the

RiboMinus kit can partly be explained by the fact that it only

contains two rRNA probes and as such it is not suitable to work

with degraded RNA we do have data showing slightly improved,

but still unacceptable, performance of the RiboMinus kit with high

quality RNA (see Figure S7). Since performing these experiments

the RiboMinus kit has been taken off the market and is now

superseded with the RiboMinus kit v2. Indeed, improved

ribosomal depletion kits are continuously developed which

Table 1. Effects of degradation on differential expression.

Comparison No 3TC 3TC; N =? Shared

RIN 10 vs. RIN 8 4377 (36%) 4344 (36%) 4133

RIN 10 vs. RIN 6 6827 (56%) 6841 (56%) 6501

RIN 10 vs. RIN 4 6886 (56%) 6897 (57%) 6551

RIN 10 vs. RIN 2 6664 (54%) 6795 (56%) 6319

RIN 10 vs. RMa 3943 (33%) 3778 (32%) 3651

RIN 8 vs. RIN 6 109 (1%) 125 (1%) 99

RIN 8 vs. RIN 4 1500 (12%) 1583 (13%) 1396

RIN 8 vs. RIN 2 2663 (22%) 2955 (24%) 2498

RIN 6 vs. RIN 4 270 (2%) 310 (3%) 256

RIN 6 vs. RIN 2 2382 (19%) 2661 (22%) 2214

RIN 4 vs. RIN 2 561 (5%) 764 (6%) 510

Controlb 10484 (76%) 10263 (75%) 10097

aRM = The RiboMinus group (RIN 2–6).
bControl = Two different cell lines (U2-OS and U251) from high quality RNA
[20].
Number of DEGs without 3TC method and with 3TC (isoform filtering only, no
length restriction). The first column shows the comparison, the second column
shows the number of DEGs without 3TC, the third column shows the number of
DEGs with isoform filtering and the forth column shows the number of DEGs
that are shared between the two methods. The percentage in parenthesis is the
percentage of the total number of genes that are labeled as expressed. See also
Figure S4.
doi:10.1371/journal.pone.0091851.t001
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supposedly are more suitable for preparing RNA samples of low

quality. A recent paper, which benchmarks five different protocols

for low quality and/or low quantity samples for RNA sequencing,

reports rRNA read mapping from 0.1% (most efficient protocol,

RNase H) to 23.2% (least efficient protocol, NuGen) [1]. Any of

these methods is presumably an efficacious option when working

with RNA samples with low RIN.

These depletion methods for total RNA sequencing are

sequence dependent and are not available for all species and,

apart from the RNase H method [14], require relatively high

amount of starting material. The standard enrichment method of

poly A selection is the one most readily available and most

frequently used and can be carried out using low amount of

starting material.

Finally, it should be emphasized that the majority of all archived

RNA sequence data to date is derived from poly A selection.

Accordingly, our 3TC method is pertinent to contemporary RNA

sequence analysis as well as for reevaluation of archived RNA

sequence data.

4. Alternative isoform selection in 3TC
As mentioned in the Methods section, our approach for the

isoform filtering step, i.e. selecting the most highly expressed

isoform in the group with the highest RIN, may, for one reason or

another, not always be applicable. In Figure S2 we show an

alternative approach for the isoform filtering step which is solely

dependent on the annotation file and not on the expression on any

of the samples used. For comparison we include the results using

this alternative isoform filtering approach in Figure S8 and on

Table S4. In broad strokes the second approach shows similar

results albeit with a slight decrease in sensitivity. This decrease in

sensitivity is likely due to alternative polyadenylation sites for

different isoforms [26,27] so that sometimes the most highly

expressed isoform does not contain the exon (or exons) most

downstream on a gene.

Figure 6. Differential expression of degraded RNA. (a) A common feature of the differential expression profiles is that long transcripts tend to
be more highly expressed in the group with higher RIN and, reversely, short transcripts tend to be more highly expressed in the group with lower
RIN. Shown here is the expression profile for the comparison RIN 10 vs. RIN 8, with log2 of the fold change (fold change = expr(RIN 8)/expr(RIN 10))
on the y-axis and transcript length on the x-axis. (b) The DEGs shown in (a) are split into two groups; the ones that have higher expression in RIN 10
(red) and the ones that have higher expression in RIN 8 (blue). The average transcript length in the RIN 10 group is significantly higher than the
average transcript length in the RIN 8 group (Student’s t-test, pv0.001). Error bars denote the standard error. The distribution of these gene lengths
is shown in Figure S6. (c) Expression profile of the comparison RIN 10 vs. RiboMinus. In total there are 3778 DEGs; with 2081 upregulated in the RM
group and 1697 upregulated in the RIN 10 group. Some of the genes upregulated in the RM group show markedly high fold change. Many of those,
marked with a circle, are histone genes. The transcripts of histone genes lack a poly A tail which explains why they show a markedly higher expression
in the samples prepared with ribosomal depletion compared to samples prepared with poly A selection. Additionally, genes that show similar trend
have been marked with a triangle. These data indicate that those genes may lack or have repressed poly adenylation sites.
doi:10.1371/journal.pone.0091851.g006

Figure 7. Overlap of DEGs between the first three comparisons
from Table 1. Majority of the DEGs found in the comparison RIN 10 vs.
RIN 8 are also found in the other two comparisons. While there is not an
increase in DEGs when comparing RIN 10 to RIN 6 and RIN 4 the overlap
between those two comparisons are considerable.
doi:10.1371/journal.pone.0091851.g007
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5. Comparison to other methods
We performed differential expression analysis on degraded

samples using both the 3TC method and the Cufflinks bias

correction. The 3TC method decreases the number of false

positives substantially while the Cufflinks bias correction actually

performs worse than Cufflinks without bias correction. It should,

however, be stated that the Cufflinks bias correction was not

directly designed to model RNA degradation but it still raises some

concern to the validity of the module. While there have been other

published methods on improving transcript estimation they do not

seem to offer any direct downstream analysis for differential

expression and thus were not compared to our 3TC method.

There exist interesting laboratory protocols, in the context of

3TC, which show promise or have potential in working with low

quality RNA samples[26–30]. These protocols work by sequencing

only the portion of the transcripts close to the polyadenylation sites

and involve fragmenting good RNA samples prior to poly A

enrichment, effectively probing the 3’ ends of the transcripts.

Working only with 3’ ends, comparison between high and low

quality samples becomes feasible. These protocols are in some

ways comparable to our 3TC method, however by using the 3TC

method there is no need to intentionally fragment quality samples

or change the library preparation protocol. Also, the 3TC method

is scalable through the length restriction step.

Finally, the authors of the PAS-Seq mehtod identify a list of 22

poly adenylated histone genes[26]. Surprisingly 19 of these 22

genes show up as significanly differentially expressed in our RIN

10 vs RiboMinus comparison indicating that they are not poly

adenylated. The other three genes (HIST1H4J, HIST1H4K and

HIST2H4A) show up as unexpressed in both groups.

Figure 8. Effects of 3TC method on differential expression. The y-axis shows the percentage of DEGs and the x-axis shows the sensitivity. The
colors denote different comparisons while different shapes of points denote the varying N used in the length restriction process. (a) All RIN 10
comparisons. All comparisons demonstrate a sharp decrease in DEGs going from no length restriction to N = 1500 nt. Lowering N further results in
fewer DEGs but at the expense of sensitivity. The control, which compares two different cell lines, does not show any abrupt decrease in DEGs but
rather follows a straight line. (b) All non-RIN10 comparisons. All comparisons, except RIN 4 vs. RIN 2, show improvement with the 3TC (N = 1500)
method. This is even true for the two comparisons, RIN 8 vs. RIN 6 and RIN 6 vs. RIN 4, where originally there were very few DEGs. [DEGs =
differentially expressed genes].
doi:10.1371/journal.pone.0091851.g008

Table 2. Details of the 3TC method performance for the comparisons RIN 10 vs. RIN 8.

Length restriction Expressed genes DEGs DEGs (%) Sensitivity

none 12212 4344 35.8% 1.00

1500 11827 413 3.5% 0.97

1000 11458 278 2.4% 0.94

500 10210 116 1.1% 0.84

200 5065 2 0.0% 0.41

By setting the length restriction to 1500 nt the percentage of DEGs go from 35.8% down to 3.5% with little loss of sensitivity, from 1.00 to 0.97. When the length
restriction is set to 200 nt the loss of sensitivity becomes considerable. Details of the other comparisons are found in Table S2.
doi:10.1371/journal.pone.0091851.t002
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Supporting Information

Figure S1 Flowchart of the two library preparations
protocols used. a) poly-A enrichment and b) ribosomal

depletion. The steps shaded with blue have been automated on

a Magnatrix 1200 Biomagnetic Workstation. After RNA extrac-

tion the RNA is run through a quality check (QC) with a

BioAnalyzer and Qubit quantification fluorometer. The dotted

QC line indicates that it is only safe to continue with the procedure

depending on the results from the quality check. The cDNA

libraries go through the same quality check procedure after the CA

purification (The CA purification is a washing step based on

carboxil acid beads). The alterations from the standard protocol lie

in the automation and the CA purification as well as the ribosomal

depletion for the protocol in b).

(PDF)

Figure S2 Schematic diagram of the alternative isoform
filtering for 3TC. Alternative isoform filtering for 3TC,

independent of samples used. Instead of determining the highest

expressed isoform, within a gene, from the group with the highest

quality, we select the isoforms that are closest to the three prime

end. This approach is simpler in the sense that here it is not

necessary to determine the highest expressed isoform within a gene

and it is independent of the expression of the samples used.

However it does not perform as well since it will, occasionally,

select isoforms that are lowly or not expressed. For results using

this isform filtering approach, see Figure S8.

(PDF)

Figure S3 Preprocessing of sequencing data with dupli-
cate removal. The barplot shows how many reads survive

through each of the steps of the preprocessing pipline, as Figure 4

in the main text, with an additonal step of removing duplicates -

from Non rRNA read to Useable reads. A large amount of reads

are lost due to rRNA read removal in the RiboMinus group. The

percentage of useable reads (shown above the dotted lines) shows a

steady decline with decreasing RIN. This is a cumulative effect of

each step but is mostly due to increasing amount of duplicates with

lower RIN. A one-way ANOVA finds a statistically significant

difference in useable reads between the RIN groups (F = 64.4,

p&0.00001) and a Tukey HSD test reveals a statisitical difference

between all groups (pv0.05) except between the RIN 10 and RIN

8 groups and between the RIN 8 and RIN 6 groups. The poor

performance of the RiboMinus samples can be attributed to high

rRNA contamination.

(PDF)

Figure S4 Venn diagrams showing the effects of isoform
filetering on differential expression. The number and

overlap of DEGs between two methods counting for differential

expression. One method ’No 3TC’ (light green) counts towards an

unaltered gtf annotation file as downloaded from ensembl.org.

The other method ’3TC - isoform filtering’ (light red) uses an

annotation file that has gone through the isoform filtering step of

the 3TC method but no length restriction. In general there is good

agreement with the two methods but the ’3TC - isoform filtering’

usually has more unique DEGs than the ’No 3TC’ method. (These

Figure 9. Gene body coverage for transcripts longer than
5000 nt. For transcripts longer than 5000 nt, the RIN 10 group shows a
three prime bias and the RiboMinus group shows a five prime bias.
Compare that to the even gene body coverage for all transcripts shown
in Figure 5. These biases may explain why the 3TC method decreases
the number of false positives found in the RIN 10 vs RM comparison as
shown in Figure 8a.
doi:10.1371/journal.pone.0091851.g009

Table 3. Number and percentage of DEGs as found by Cuffdiff with and without bias correction.

Comparison No bias correction Bias correction

RIN 10 vs. RIN 8 2266 (20%) 2962 (26%)

RIN 10 vs. RIN 6 4185 (37%) 4724 (42%)

RIN 10 vs. RIN 4 4471 (39%) 5130 (45%)

RIN 10 vs. RIN 2 6845 (60%) 8494 (73%)

RIN 8 vs. RIN 6 209 (2%) 293 (3%)

RIN 8 vs. RIN 4 1021 (9%) 1183 (11%)

RIN 8 vs. RIN 2 4221 (37%) 7127 (63%)

RIN 6 vs. RIN 4 203 (2%) 242 (2%)

RIN 6 vs. RIN 2 3809 (34%) 7232 (64%)

RIN 4 vs. RIN 2 1944 (17%) 6093 (55%)

In all comparisons the bias correction increases the instances of false positives.
doi:10.1371/journal.pone.0091851.t003
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Venn diagrams are effectively visualizations of Table 1 from the

main text.).

(PDF)

Figure S5 Differential expression profiles between the
experimental groups. In almost all instances the DEGs that

are more highly expressed in the group with higher RIN are, on

average, significantly longer than the DEGs that are more highly

expressed in the group with lower RIN. The two exceptions are

the comparison between RIN 10 and RiboMinus where it is the

opposite and the control group where there is no difference in the

length of DEGs.

(PDF)

Figure S6 The length distribution of up and down
regulated DEGs from the comparison RIN 10 vs. RIN
8. The dotted vertical lines show the means depicted in Figure 6b.

(PDF)

Figure S7 Effects of RiboMinus of low and high quality
samples. Ribosomal RNA in samples with low and high RIN

values after being treated with the RiboMinus kit. The samples in

the Low RIN bar are the same RiboMinus samples used in the

current study. The sampels representing the High RIN are from

another unpuplished study using the same ribosomal depletion

method. The Low RIN bar is the average from four samples while

the High RIN bar is an average from six samples. The error bars

show the standard error. The RiboMinus kit performs signficantly

better on high quality samples (pv0.05, Student’s t-test) but the

High RIN samples still contain above 65% of rRNA reads which is

must be considered unacceptable.

(PDF)

Figure S8 Comparison between two versions of the
isoform filtering step of the 3TC method. a) and b) is a

reproduction of Figure 8 from the main text. c) and d) show the

results using the alternative isoform selection explained in Figure

S2. The versions show similar results but scrutinization reveals

lower sensitivity and a slightly poorer performance (more DEGs) of

the alternative version. Table S3 contains the details for this

alternative approach.

(PDF)

Table S1 Data for each library in units of millions of
reads. The raw reads are split into quality reads and low quality/

short reads. The quality reads are split into unmapped reads and

mapped reads. The mapped reads are split into ribosomal reads

and non-ribosomal reads. Finally the non-ribosomal reads are split

into duplicate reads and useable reads. The low quality/short

reads, unmapped reads, ribosomal reads and the duplicate reads

are all discarded from analysis.

(XLSX)

Table S2 List of non-histone protein coding genes
without poly A tail. From the differential expression between

the groups RIN 10 and RiboMinus (RIN 2-6) we identify genes

that have much higher expression in the RiboMinus group than in

the RIN 10 group. Many of those genes are histone genes, known

to be without poly A tail. This table lists other genes that

potentially also lack a poly A tail judging from their expression

profile (Figure 6c).

(XLSX)

Table S3 Effects of the 3TC method on differential
expression for various length restrictions. Here the

isoform filtering is done by selecting the isoform which has the

highest expression in the RIN 10 group.

(XLSX)

Table S4 Effects of the 3TC method on differential
expression for various length restriction using alterna-
tive isoform filtering approach. Here the isoform filtering is

done by selecting the isoform/s which is/are closest to the 3’ end

of the gene.

(XLSX)
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