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Abstract: The gonadal steroids, including androgens, estrogens and progestogens, are involved
in the control of body fat distribution in humans. Nevertheless, not only the size and localization
of the fat depots depend on the sex steroids levels, but they can also highly affect the functioning
of adipose tissue. Namely, the gonadocorticoids can directly influence insulin signaling, lipid
metabolism, fatty acid uptake and adipokine production. They may also alter energy balance
and glucose homeostasis in adipocytes in an indirect way, e.g., by changing the expression level
of aquaglyceroporins. This work presents the recent advances in understanding the molecular
mechanism of how the gonadal steroids influence the functioning of adipose tissue leading to a set
of detrimental metabolic consequences. Special attention is given here to highlighting the sexual
dimorphism of adipocyte functioning in terms of health and disease. Particularly, we discuss the
molecular background of metabolic disturbances occurring in consequence of hormonal imbalance
which is characteristic of some common endocrinopathies such as the polycystic ovary syndrome.
From this perspective, we highlight the potential drug targets and the active substances which can
be used in personalized sex-specific management of metabolic diseases, in accord with the patient’s
hormonal status.

Keywords: sex hormones; adipose tissue; metabolic disorders; insulin sensitivity; lipid metabolism;
adipokines; microRNA; microRNA-oriented therapy; polycystic ovary syndrome; aquaporins

1. Introduction
1.1. Adipose Tissue Function

Adipose tissue plays an important physiological role as a central metabolic organ in
the regulation of whole-body energy homeostasis in mammals and some non-mammalian
animal species [1,2]. The white adipose tissue (WAT) functions as the main energy reservoir
of the body, where the energy is stored in the form of triglycerides. In turn, the brown
adipose tissue (BAT) accumulates lipids for cold-induced adaptive thermogenesis.

The adipose tissue is also recognized as a major multitasking endocrine organ due to its
ability to produce and secrete hormones, cytokines and microRNAs, as well as a wide range
of proteins of multiple functions including immune-related proteins, complement-related
proteins or the proteins involved in lipid metabolism or transport [3,4]. As a consequence,
the dysfunction of adipose tissue frequently leads to obesity and other metabolic abnor-
malities [5], as well as other health problems such as non-alcoholic fatty liver disease
(NAFLD) [6–10]. Improper adipose tissue functioning affects even the relatively remote
organs and tissues, leading to many detrimental health consequences. Adipose tissue
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impairment is a notable factor in cardiovascular diseases (mainly via inducing obesity-
related hypertension) [11,12], has deleterious effects on microvascular and macrovascular
functions [13] and promotes thrombosis [14]. Adipocytes’ malfunction affects secretion
of a wide range of bioactive molecules: adipocytokines, microRNAs and inorganic com-
pounds such as hydrogen sulfide (H2S), which directly influence the functioning of the
cardiovascular system [15–20]), evoke inflammatory illnesses (e.g., inflammatory bowel
disease [21] and Crohn’s disease [22]) or have other long-range consequences, for example
osteoarthritis [23–25].

The adipose tissues are recognized as significant sites for transformation of sex steroid
hormones and their action, as recently summarized in [26,27]. In turn, gonadal steroids
are important factors in the determination of fat distribution and accumulation [28–32].
Moreover, sex steroid hormones clearly exert detrimental effects on adipocytes functioning,
including lipolysis and lipogenesis, insulin sensitivity and its endocrine role (e.g., adipokine
production and regulation of microRNAs expression) [26,27,33], as briefly summarized in
Figure 1.

The primal factor that controls the function and metabolism of adipocytes (as all other
cell types) is the level of gene expression, which can be post-transcriptionally regulated
by microRNA. In turn, the expression of microRNAs is controlled by biochemical agents,
including gonadal steroids and adipokines [34–38].

Figure 1. Schematic representation of the most important processes of adipocyte functioning affected
by gonadal steroids and the main sex-differences. Sex hormones influence the expression levels of
microRNAs, lipolysis and lipogenesis, insulin sensitivity and endocrine function of adipocytes (e.g.,
adipokine production). One of the most prone connecting links between sex-hormonal imbalance and
the disruption of adipose tissue functions is the expression level of aquaporins (AQPs) (in particular,
aquaglyceroporins) and, consequently, the effectiveness of the glycerol efflux from adipocyte.

1.2. Gonadal Steroids

The group of gonadocorticoids, commonly known as sex hormones or sex steroids, is
constituted by progestogens, androgens and estrogens. The first representatives of the sex
hormones are progestogens, with progesterone as the major and most physiologically im-
portant in the human body. Progesterone is produced from cholesterol through a series of
reactions and intermediates (Figure 2). In the initial step, cholesterol is converted into preg-
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nenolone, which serves as the precursor to the progesterone and 17α-hydroxyprogesterone.
Along with another steroid, 17α-hydroxypregnenolone, these progestogens are the precur-
sors of all other endogenous steroids [39,40] (Figure 2). Progesterone is mainly recognized
as the hormone required for maintaining pregnancy.

Figure 2. Adipose tissue is an important side for sex hormone interconversions. This figure summa-
rizes the most prominent reactions of this kind. All sex hormones can be synthesized de novo from
cholesterol in presence of active steroid hormones. However, more frequently in adipose tissue, the
hormones are taken up from plasma and further transformed into other ones. The direction and effi-
ciency within the steroid biosynthetic pathways in adipose tissue depends on the relative expression
and activity of steroidogenic enzymes, which are gender-, age- and depot-specific. Abbreviations:
CYP11A1, cholesterol side-chain cleavage enzyme; CYP17A1, steroid 17α-monooxygenase; 3β-HSD,
3β-hydroxysteroid dehydrogenase; 17β-HSD, 17β-hydroxysteroid dehydrogenase; SULT2A1, dehy-
droepiandrosterone sulfotransferase; DHT, dihydrotestosterone.

Among the most potent androgens in human organism are testosterone (T), dihy-
drotestosterone (DHT), androstenedione, dehydroepiandrosterone (DHEA) and dehy-
droepiandrosterone sulfate (DHEA-S) [41]. Within the estrogenes the most prominent
physiological role in the human body is played by the 17β estradiol (E2), followed by
estrone (E1) and estriol (E3) [42]. E2 is produced from androgens through the pathway
involving formation of androstenedione, which is subsequently converted by aromatase
(CYP19A1) into estrone and then transformed into estradiol (Figure 2). It can also be syn-
thesized through the second pathway that is based on the interconversion of steroids from
androstenedione into testosterone in the presence of 17β-hydroxysteroid dehydrogenase
(17β-HSD), which is then converted into estradiol [40] (Figure 2).

1.3. Perspectives

In this review, the effects of androgens, progestogens and estrogens on adipose tissue
functioning are examined considering the recent advances addressing the molecular as-
pects of that phenomenon. The direct biochemical mechanisms of gonadal steroids action
on the adipocyte functioning are here discussed as well as the most notable possibilities
of their indirect modulation. In addition, considering the involvement of aquaporins
(AQPs), particularly aquaglyceroporins, in adipocyte biology [43] (Figure 1), we discuss the
indirect effects of gonadal steroids on energy metabolism via modulation of aquaglycero-
porins. It may give a mechanistic substantiation of the observed impairment of adipocyte
functioning in terms of sex-hormonal imbalance that has not been broadly discussed in
the context of gonadal steroids action in adipose tissue, hitherto. In this work, the hor-
monal imbalance pathogenic impact is also analyzed taking into consideration the possible
post-transcriptional regulation of gene expression via microRNA.

The identification of at-risk populations taking into account the gender differences in
obesity and metabolic dysfunctions, e.g., the worldwide female predominance in obesity
or the male prevalence in the total cases of type 2 diabetes (T2D) [44], will foster new thera-
peutic procedures for diseases leading to sex steroids’ imbalance, which are often gathered



Int. J. Mol. Sci. 2021, 22, 5226 4 of 32

by metabolic disturbances, including endocrinopathies (e.g., polycystic ovary syndrome
(PCOS) [45,46] and hypogonadism in men [47,48]) or autosomal recessive disorders (e.g.,
congenital adrenal hyperplasia [49,50]). Other health conditions, such as the case of the
overweight men with visceral adipose tissue accumulation who are at relatively high risk
for low androgen levels and developing T2D [51–53] or the decreased estrogen and proges-
terone levels accompanied by increase in overall adiposity due to visceral adipose tissue
accumulation in menopausal women, clearly underscore the importance of sex steroid
hormones in proper functioning of adipose tissue [54]. Moreover, this work highlights the
sexual dimorphism in the regulation of energetic, glucose and lipid homeostasis, shedding
new light on the need of development personalized sex-specific approaches in therapies
against metabolic diseases.

The design of efficient therapies to alleviate metabolic abnormalities taking into
account the sex dimorphism programmed by the hormonal disparities in men and women
should be preceded by unraveling the mechanism of their pathogenesis at the molecular
level in a step-by-step manner. From such a perspective, we summarize here the most
promising scientific developments in the search of novel drug targets, as well as active
substances, which can act on the initial causes of the metabolic disorders at a molecular
level. The potential sex-specificity of their therapeutic efficiency is also discussed.

2. Effects of Gonadal Steroids on Body Fat Distribution in Humans and
Adipocyte Morphology

One of the most evident impact of the gonadal steroids on the body refers to the adipose
tissue distribution [31]. There are significant sex differences in body composition [31,44,55]
(Figure 3), where women have a higher percentage body fat than men and accumulate fat
mainly in the form of subcutaneous adipose tissue (SAT), creating a “gynecoid” type of
distribution (in gluteal-femoral depots) [56]. In turn, men tend to accumulate their fat as
visceral adipose tissue (VAT) around the abdominal organs [57]. The abdominal VAT depo-
sition correlates with an increased susceptibility for cardiometabolic complications [58,59].
On the contrary, the gluteal-femoral adipose tissue distribution plays a protective role
against the adverse health effects of metabolic diseases [60,61].

Sex-specific fat distribution is influenced by several factors, including genetical factors
as well as hormonal and diet status [31,62,63]. The most prominent effect is, however,
exerted by the hormonal bias, which is clearly visible by comparison of premenopausal
and postmenopausal women. The reduction in the levels of estrogen after menopause
results in increased fat storage in abdominal depots [64–66].

The effects of sex steroid hormones on adipocyte differentiation and morphology, and
consequently on fat deposition, are mediated by the presence of their receptors including
α-ER and β-ER estrogen receptors, α-PR and β-PR (progesterone receptors) and the α-
AR and β-AR adrenergic receptors [28,67,68]. These receptors are expressed in sex- and
depot-dependent manner in preadipocytes and adipocytes within the human body [69].

As suggested by the analysis of a mouse model, the impairment in estrogen signaling
evoked by the knockout of ERα results in obesity, insulin resistance and diabetes regardless
of gender [70–73]. According to the literature [28], the AR gene expression is affected by
the gonadal steroids in both preadipocytes and adipocytes, which is important in shaping
the sex-related differences in adipose tissue regional distribution. It turns out that α2A-AR
is the prevailing AR subtype expressed in preadipocytes, whereas, in mature adipocytes,
the β3-AR is dominant [28].

Although the sex hormone receptors are expressed in preadipocytes as well as in
adipocytes of VAT and SAT depots in human body, some sex-dependent differences of ex-
pression level occur. The subcutaneous adipose tissue has higher concentrations of ERs and
PRs compared to ARs in females, and E2 downregulates AR expression in SAT [70,74,75].
In contrast, visceral adipose tissue has a higher concentration of ARs [74,76]. These differ-
ences in expression level of sex steroid receptors may highly influence the differentiation
and morphology of adipocytes [27].
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Figure 3. Schematic representation of sex-dependent differences in the fat deposition patterns. The
visceral adipose tissue (VAT) is located around the abdominal organs and is the main type of fat
depots in men. On the contrary, women distribute fat mostly in the form of subcutaneous fat. In
general, increased visceral mass predominantly results from adipocyte hypertrophy, whereas subcu-
taneous fat (SAT) grows through both hypertrophy and hyperplasia (with prevailing hyperplastic
mechanism) [77,78]. Considering sex-dependent differences in growth of gonadal fat depots, it is
observed that, in response to energy excess, male gonadal depot grows mainly through hypertrophy,
while female gonadal depots expand both hypertrophy and hyperplasia [79].

In terms of energy excess, the adipose tissue expands by increasing the number (hyper-
plasia) and/or size (hypertrophy) of adipocytes [80,81]. Hyperplastic growth is considered
to be healthier in opposition to the hypertrophic expansion, which leads to adipocyte death,
lipotoxicity, insulin resistance and high inflammation [82–85]. In response to energy excess,
the typical male VAT depots expand mainly through hypertrophy [82], while female go-
nadal and subcutaneous depots grow through both hypertrophy and hyperplasia. This has
reasonable grounds considering the hormonal bias. Namely, proliferation of preadipocytes
is upregulated by estrogens with greater effects in preadipocytes isolated from SAT vs.
VAT and females vs. males [79]. In turn, androgens hamper adipogenesis in in vitro and in
vivo trials and the effects are greater in preadipocytes from VAT vs. SAT [79,86–90].

Considering the role of progesterone in body fat accumulation, it was proposed that
this sex hormone might be responsible for gynoid fat distribution in premenopausal women
in an indirect mechanism. It may attenuate the effects of cortisol in WAT via glucocorticoid
receptor, therefore, it hampers cortisol-related central fat accumulation [91]. The analysis of
progesterone action on murine and human preadipocytes differentiation gave inconsistent
results. It was found that progesterone stimulated adipogenesis in the 3T3-L1 adipose cell
line [92], however it was without effect on cultured human preadipocytes [93].

An important contributor to sex bias in adipose tissue distribution and adipocyte
size may be the rate of direct fatty acid uptake by tissues. Direct fatty acid uptake is
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higher in the abdominal depot in men and in the gluteal-femoral depot in women [94].
Another potential factor that contributes to sex differences in adipose tissue expansion is
nourishment [27]. In a mouse model, the number of adipocyte precursor cells in gonadal
or subcutaneous fat is highly dependent on diet [95].

3. The Direct Influence of Sex Steroids on Adipocyte Functionality

This section summarizes the molecular mechanisms of the direct effects of gonadocor-
ticoids on versatile aspects of adipose tissue functioning. Sex hormones frequently act on
adipocytes in a sex-dimorphic, dose-dependent and depot-specific manner.

3.1. Lipolysis and Lipogenesis

The processes of lipolysis and lipogenesis within adipose tissue control the energy
release and energy storage in the body. During lipolysis triglycerides are hydrolyzed into
glycerol and free fatty acids (FFA). There are significant differences between men and
women in basal lipolysis rates in terms of resting energy expenditure which occur in a
depot-specific manner [75]. There are also sex-differences in stimulated lipolysis, being
greater in women’s abdominal SAT and in men’s VAT [31,75].

Consistent with an inhibitory effect on adipogenesis, androgens have been shown to
increase lipolysis, and consequently support adipocyte hypertrophy [68,96]. In a rat model,
isoproterenol and noradrenaline-stimulated lipolysis were increased by T (but not DHT) in
male preadipocytes [97]. An additional stimulating effect is exerted by DHEA via upregula-
tion of adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) mRNA [98].
In humans, lipolysis is enhanced by androgens in a dose-dependent and depot-specific
manner. The in vitro studies have found that testosterone and dehydroepiandrosterone
stimulate norepinephrine-stimulated lipolysis and depresses lipoprotein lipase activity
(LPL) in adipose cells [99].

The results presented in [100,101] indicate that castrated rodents display reduced
basal and catecholamine-stimulated lipolysis, but introduction of the testosterone sup-
plementation allowed to fully normalize their lipolytic activity. Another study showed
that androgens can downregulate hormone-sensitive lipase (HSL) and β2-AR expression,
and consequently reduce catecholamine-stimulated lipolysis, particularly in subcutaneous
adipocytes [102]. The investigation of the effects of dihydrotestosterone on differentiation
and proliferation of human mesenchymal stem cells and preadipocytes by Gupta et al. [87]
showed that DHT decreased differentiation of fat cell precursors, increased lipolysis and
reduced lipid accumulation. The androgenic effects on lipolysis are believed to be medi-
ated by the AR since flutamide (being the AR antagonist) significantly abolished these
effects [103]. However, other additional mediators are also considered, e.g., hormone-
sensitive lipase and adenylate cyclase [97,100,101,104].

Analyzing the effects of estrogens on lipid storing and mobilization, it is reported that
E2 allows to suppress lipogenesis and lipogenic gene expression and promote both basal
and catecholamine-induced lipolysis [26]. As mentioned above, lipolysis is controlled to a
large degree by hormone receptors. The effects of estradiol on lipogenesis are mediated
by α-ER receptor activation, which reduces LPL activity (fundamental for fat uptake
into the adipocytes) and increases β-AR and α2A-adrenergic receptors in SAT [105]. The
examination of women with low estrogen levels also indicated reduced LPL activity
when the hypogonadal women obtained estrogen replacement therapy [106]. In contrast,
estradiol exerts no effects on α2A-adrenergic receptors mRNA expression in adipocytes from
the visceral fat depots [105]. Thus, the effects of estrogens on lipolysis are depot-specific,
facilitating the typical female subcutaneous fat accumulation.

Estradiol also exerts additional effects on lipid metabolism. Namely, the E2 downreg-
ulates adipogenic peroxisome proliferator-activated receptor γ (PPARγ) expression and
the key lipolytic genes including the ones encoding stearoyl-CoA desaturase 1 (SCD1),
fatty acid synthase (FAS) and acetyl-CoA carboxylase 1 (ACC1) [68,107]. E2 also enables
increasing muscle oxidative capacity [54,108] through the regulation of acyl-CoA oxi-
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dase and uncoupling proteins (UCP2-UCP3), which enhances fatty acid uptake without
lipid accumulation.

The effects of progestogens, especially progesterone, on lipid metabolism are not as
broadly described as the influence of other corticosteroids. There are contradictory reports
of the role of progesterone in lipogenesis and lipolysis, with the dominating view that this
hormone supports lipogenesis and hampers lipolysis. As indicated in [109], in diabetic rats,
progesterone stimulates lipogenesis in adipose tissue without any increase in food intake
or serum insulin concentrations. Moreover, the results presented in the work of Stelmańska
et al. [110] indicate that the elevated blood progesterone concentration is associated with
significant increase in expression of lipogenic enzyme genes (Srebf1 and S14 genes) in
inguinal WAT of female rats. Another rodent study demonstrated that progesterone acts in a
sexually-dimorphic way in rats [111]. In female rats, progesterone induced downregulation
of hormone sensitive lipase and upregulation of G0/G1 switch 2 (G0s2) genes expression in
inguinal white adipose tissue, which was reflected by lowered rate of stimulated lipolysis.
In turn, in male WAT, progesterone has no effect on the expression of aforementioned
genes. The last inference is in agreement with in vivo studies [112,113] that indicated that
progesterone has no influence on lipid metabolism in male rats’ adipose tissue. The former
studies indicated that progesterone inhibits lipogenesis [114] and enhances lipolysis [115],
whereas another study indicated that progesterone stimulates lipogenesis [116].

3.2. Insulin Sensitivity

Men are less sensitive to insulin than BMI- and age-matched women [26,117–119].
Obesity is one of the main risk factors for T2D. Although obesity is more frequently diag-
nosed in women than men, T2D occurs with increased prevalence in men [44]. Considering
the molecular effects of gonadal steroids on insulin sensitivity, one has to realize that
glucose-insulin homeostasis is systemically regulated in both sexes through hormone
receptors [26,70].

The regulatory role of α-ER is mediated by modulation of the tyrosine phosphorylation
of insulin receptor substrate 1 (IRS-1) protein [120]. Estradiol is able to activate adenosine
monophosphate-activated protein kinase through ER, and consequently enhance the ac-
tivity of protein kinase B (AKT) via 5′ AMP-activated protein kinase (AMPK), according
to the in vitro studies presented in [121]. The role of androgens in glucose homeostasis
is highly dimorphic in men and women, which is evident by the liability of hyperan-
drogenemic women (e.g., in the case of PCOS) and hypoandrogenemic males (suffering
hypogonadism) to insulin resistance and obesity [122,123]. Administration of testosterone
to differentiated, subcutaneous preadipocytes from lean women causes insulin resistance
via insulin-stimulated phosphorylation of protein kinase C ζ (PKCζ), which initiates the
translocation of glucose into the cell via glucose transporter type 4 (GLUT4) [26,124]. In
turn, in men, the insulin sensitivity can be modulated by 5α-reductase (an enzyme involved
in interconversion of T to DHT (Figure 2)) [125,126].

The studies on a mouse model of PCOS indicated that the low-dose DHT causes
lowering of the components of insulin signaling (e.g., GLUTs) in energy storage tissues
but a simultaneous increase in the levels of insulin signaling components in reproductive
tissues [127]. Another androgen, DHEA, is reported to increase glucose-stimulated insulin
secretion in animal models [26,128,129]. Nevertheless, the data obtained from human stud-
ies significantly vary [129]. The general opinion states, however, that DHEA should evoke
insulin sensitization and counteract obesity through downregulation of 11β-hydroxysteroid
dehydrogenase type 1 (11β-HSD1). Thus, DHEA might be considered as a promising target
for the treatment of obesity and diabetes [130–132].

3.3. Endocrine Function of Adipocytes

In recent years, metabolic diseases including obesity, metabolic syndrome and T2D
have become even more common. They result in the excess adiposity, which sustains a
state of chronic low-grade inflammation characterized by infiltration of immune cells (mainly
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macrophages) into adipose tissue [133]. The infiltrated immune cells are, in turn, able to release
inflammatory cytokines and chemokines [134]. Moreover, the presence of pro-inflammatory
cytokines impairs insulin signaling, further leading to insulin resistance [134–136], among
others. It can also result in endothelial dysfunction and subsequent atherosclerosis [27]. VAT,
which is the predominant type of excess adipose tissue in men, has a greater number of adipose
tissue resident macrophages in comparison with SAT depots, which is the predominant fat
depot in women. Thus, obese men are more prone to produce pro-inflammatory cytokines
than BMI-matched women, and, further, these sex-differences are also preserved in the relative
number of insulin resistance cases and endothelial dysfunction morbidity. Nevertheless, the
presence and functional impairment of abdominal fat are significant risk factors for sexual
dysfunction in both genders [137,138].

3.3.1. Leptin Production

Leptin is an endocrine hormone able to regulate immunity and energy homeostasis (by
exerting an anorectic effect related to its action in the hypothalamus and, further, by enhanc-
ing lipolysis). Gonadal steroid hormones are able to determine the sexual dimorphism in
serum leptin level, which is higher in women than men regardless of age [79]. The literature
suggests that the estradiol increases leptin secretion from omental adipocytes in women by
controlling synthesis of transcripts encoding leptin and the expression of leptin-specific
receptors [79,139], but the E2 exerts no effects on men adipocytes [140]. Additionally, leptin
concentrations in postmenopausal women are lower than in premenopausal women [54].
The positive influence of estrogen on leptin level in females was also confirmed in an
animal model [141].

An opposite effect is exerted by androgens. Both testosterone and dihydrotestosterone
decrease leptin gene expression and secretion from human adipocytes [142]. As can be
inferred from the in vitro studies on 3T3-L1 murine adipocytes, DHT probably reduces the
level of secreted leptin by decreasing its transcript abundance [139].

3.3.2. Adiponectin Production

One of the crucial anti-inflammatory adipokines is adiponectin, which improves
insulin sensitivity by suppressing hepatic glucose production and enhancing fatty acid
oxidation in the liver and skeletal muscles. The plasma adiponectin concentrations are
inversely correlated with the size of adipose tissue reservoir [143]. There is an evident
sexual dimorphism in circulating adiponectin levels, i.e., men have lower adiponectin levels
than women when matching BMI and age groups are compared [144]. This discrepancy
between sexes is related to androgen levels, confirmed in cell culture models as well as
in an animal model where castration increases adiponectin level that additionally could
be attenuated by testosterone supplementation [144]. In line with these observations,
men with hypogonadism have significantly higher total serum levels of adiponectin in
comparison to healthy controls, which lowers along with the introduction of testosterone
replacement therapy [79,145]. In turn, women suffering from PCOS have relatively low
adiponectin levels [146,147] which makes them prone to insulin resistance.

3.3.3. Resistin Production

Resistin is a hormone produced by adipocytes and contributes to obesity and T2D. In
a mouse model this peptide hormone caused insulin resistance when it was exogenously
supplied [148]. In the same study, administration of anti-resistin antibodies improved blood
sugar and insulin action in mice with diet-induced obesity. Human studies showed that
resistin is relatively high in adult women, but does not differ in boys and girls throughout
the stages of puberty [149].

Some observations were made during the analysis of human endocrinopathies.
Munir et al. [150] showed that serum resistin concentration was positively correlated with
BMI and testosterone level in PCOS women, but not in controls. In turn, the mean serum
resistin concentration was increased (of 40%) in women with PCOS. The results presented
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by Seow et al. [151,152] show that the mRNA resistin level in adipocytes was higher in
PCOS women than in controls [147], although other reports suggest no PCOS-related effects
on resistin concentration or expression [153,154]. In the case of hypogonadal men, introduc-
tion of testosterone replacement therapy does not affect circulating resistin concentrations
in serum [155].

3.3.4. Production of Pro-Inflammatory Adipocytokines

There are some sex-related differences in human immunity, which partially stem from
the influences of different gonadal steroids on leukocyte biology but also are inclined by
genes on sex chromosomes [156]. The levels of gonadal corticoids may deeply influence
the adipose tissue immune cell populations via regulation of their proliferation, differentia-
tion and apoptosis [157–160]. Further, estrogens and androgens regulate the secretion of
bioactive molecules by immune cells, which are related to inflammation, endothelial func-
tionality and insulin sensitivity in adipocytes [26,27,79,158,160,161]. The effects of estrogens
and progestogens on cytokine and immunoglobulin production in different immune cell
types (e.g., T lymphocytes, monocytes, B lymphocytes, granulocytes, natural killer cells
and dendritic cells) were summarized by Oertelt-Prigione [160], and an analogous detailed
analysis of the androgen effects on immune cells is provided in [157,159,161].

As mentioned above, sexual dimorphism in immunity manifest itself in the disparate
abilities to produce inflammatory biomarkers in men and women, which include C-reactive
protein (CRP), tumor necrosis factor (TNFα) and some interleukins (IL-1, IL-6 and IL-12). In
addition, there are notable differences in responsibility and activity of other molecules and
molecular complexes regulating the immune response to infection such as the nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB) [137,156]. The in vitro studies from
Ghisletti et al. [162] showed that the estradiol administration blocks the inflammatory
response. According to the study on ovariectomized female mice, administration of estro-
gens significantly lowers the mRNA levels of IL-6, TNFα and CD68. In addition, estrogen
prevented female mice from developing liver steatosis and from becoming resistant to
insulin [54,163]. Nevertheless, chronic estradiol administration to ovariectomized mice
enhances pro-inflammatory cytokine production of IL-1β, IL-6 and TNFα [164,165]. Con-
sidering the mechanism of the anti-inflammatory effects of estradiol, one of the component
processes is that E2 prevents transcription of genes encoding pro-inflammatory media-
tors (inhibiting intracellular transport of p65, which is a member of NF-κB family, to the
nucleus) [162,166]. This activity is selectively mediated by α-ER receptor [156,162,167].

Most innate immune inflammatory cytokines (IL-6, IL-8, TNFα), are inhibited in
women by periovulatory dosages of estrogen. The studies on postmenopausal women
show that low levels of estradiol can augment inflammatory mediators, which could
explain the pro-inflammatory states in this group of women [168].

Considering the role of androgen in the immune system, androgens administration in
hypogonadal men may reduce systemic inflammation. Testosterone is reported to have
immunosuppressive and anti-inflammatory functions. In fact, this hormone was found to
lower IL-6 and TNF-α levels through inhibition of the NF-κB pro-inflammatory pathway,
analogously to estrogen [169]. Consequently, testosterone replacement in hypogonadal
men can give rise to increased serum levels of IL-10 and reduced TNFα and IL-1β [170].

3.4. Sex-Related Discrepancies in Immunological Responses

The immunological responses mediated by adipose tissue functioning present some
sex-related discrepancies. Cytokine secretion by the peripheral blood mononuclear cells
(PBMCs) occurs in a gender-dependent manner, which coincides with elevated estrogen
levels [171]. The PBMCs from men produce more pro-inflammatory TNFα and less protec-
tive IL-10 than PBMCs from women, which may explain a better outcome of diseases such
as sepsis in females.

Susceptibility to viral infections as well as their severity are higher in men than in
women, which was broadly discussed due to the current COVID-19 crisis [156,172–175].
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This variability could be partly explained by the sex-differences in the activity of the Toll-
Like Receptors (TLR) which are involved in the virus recognition. Higher male liability
to viral infection can be in part attributable to higher cytokine secretion by the PBMCs
leading to enhanced TLR9 activation and increased IL-10 production, which is positively
correlated with androgen concentrations [172].

The results from Channappanavar et al. [173] based on a mouse model of SARS-
CoV infection matched the appropriate epidemiological data from SARS outbreaks and
indicated a notable male bias in disease susceptibility. It also demonstrated a protective
effect for estrogen receptor signaling in mice infected with SARS-CoV (ovariectomy or
treating female mice with an estrogen receptor antagonist increased mortality). The recent
data describing the profiles of SARS-Cov-2-infected patients show that the levels of several
important pro-inflammatory innate immunity chemokines and cytokines (e.g., IL-8 and
IL-18) are higher in male patients. However, more robust T cell activation is exhibited
by women than men. A poor T cell response is negatively correlated with patients’ age
and is related to worse disease outcome in male, but not female, patients [174]. From
this perspective, it is possible that estrogen plays a similarly protective role against SARS-
CoV-2 as in the case of SARS-CoV. Analogously, relatively high testosterone exerts an
anti-inflammatory effect in men and frequently protects younger men against adverse
outcomes of SARS-CoV-2 infection.

4. Modulation of Aquaporins by Sex Steroids as an Indirect Mechanism of Adipose
Tissue Regulation

The studies on pathogenesis of metabolic diseases requires detailed analysis of the
molecular mechanisms of the gonadal steroids on adipose tissue. We are convinced that in
this case not only the direct biochemical pathways already broadly discussed in literature
should be analyzed. As in every scientific discussion, one should also consider a global view
of the research problem and point out its critical components which shape the main cause
and effect relationships. One of the connecting links between sex-hormonal imbalance and
the disruption of adipose tissue function is the activity of aquaporins.

As a fundamental property of life, the flow of water and small solutes across cell mem-
branes is crucial for the correct course of physiological processes. Aquaporins (AQPs) are
transmembrane proteins responsible for bidirectional transport of water and small solutes
(including ammonia, CO2, glycerol and urea) across biological membranes in response to
osmotic or solutes’ gradients [176]. Thus far, thirteen AQP isoforms have been identified
(AQP0–AQP12) in human [177]. They can be divided into two main classes based on their
permeability characteristics [178]. The “classical” ones are mainly selective to water (AQP0,
AQP1, AQP2, AQP4, AQP5, AQP6 and AQP8). The other group is formed by aquaglyc-
eroporins (AQP3, AQP7, AQP9 and AQP10), being able to transport small non-charged
solutes such as glycerol and urea. The structure and function of the remaining AQP11
and AQP12, sometimes called “unorthodox” or “superaquaporins”, are relatively poorly
understood. Moreover, among aquaporins, the group of ammoniaporins (AQP3, AQP6,
AQP7, AQP8 and AQP9) is recognized for their ammonia transport ability [179,180] while
peroxiporins (AQP3, AQP5, AQP8, AQP9 and AQP11) guarantee the efficient transport of
H2O2 across the plasma and organelle membranes [181–186].

The members of the aquaglyceroporin subfamily exert a high impact in the crucial aspects
of adipose tissue functioning, mentioned in the former sections of this work. Namely, AQP7
is considered as the main glycerol channel in adipose tissue, facilitating the release of lipolytic
glycerol from adipocytes in response to the energy demand [43,187–190]. AQP7 deficiency
results in reduced membrane glycerol permeability which leads to increased triglyceride
accumulation inside adipocytes and adipocyte hypertrophy contributing to the onset of
obesity [188,191–193]. AQP7 is not the sole aquaglyceroporin in adipose tissue [43]. Recently,
AQP3, AQP9, AQP10 and AQP11 were additionally identified in human adipocytes and
suggested as additional glycerol pathways in these cells, unveiling their role as key players
in lipid balance and energy homeostasis [194]. However, AQPs are differentially expressed
in the two types of fat depot. Whereas visceral fat show increased AQP3 and AQP7 levels
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which can be correlated with increased lipolysis and glycerol release, in subcutaneous fat,
AQP7 expression is lower, favoring fat accumulation and adipocyte hypertrophy [43,187].
In addition, gender differences in glycerol metabolism have also been reported in healthy
and obese humans, with women showing higher fasting circulating glycerol levels and
higher AQP7 expression than men in both subcutaneous and visceral adipose tissue probably
due to hormonal regulation of adipose and liver aquaglyceroporins [195,196]. The sexual
dimorphism in fat distribution and the gender-specific AQP7 levels may contribute to the
lower prevalence of insulin resistance and metabolic disorders found in premenopausal
women compared to men [196].

Aquaglyceroporins involvement in adipose tissue dysfunction and lipotoxicity in liver
and muscle highlights their potential as therapeutic targets for the metabolic
syndrome [197]. The literature reports indicate a close relationship between AQP7 and in-
sulin sensitivity [188,198]. AQP7 is downregulated in terms of insulin resistance according
to the in vitro studies on mice adipocytes where insulin resistance was induced by dex-
amethasone or TNFα [198]. Furthermore, overexpression of AQP7 contributes to improve
sensitivity to insulin [198]. According to the results obtained in mice [199], the suppression
of AQP7 expression by insulin proceeds through an insulin negative response element (IRE)
located on the promoter region of the Aqp7 gene and is mediated by the phosphatidyli-
nositol 3-kinase (PI3K) pathway. The human studies showed that the AQP7 gene was also
negatively regulated by insulin via an insulin response element [200]. Moreover, the gene
encoding AQP7 is localized in a chromosomal region (9 p13.3–p21.1) with reported linkage
to the metabolic syndrome and to T2D [201,202].

It is also worth mentioning that peroxiporins are especially important in functioning
of the immune system [203]. Due to their ability to facilitate hydrogen peroxide fluxes
across biological membranes, they are tightly involved in redox balance and modulation of
oxidative stress [186] and were reported to regulate immunological processes including
inflammasome priming and activation [204].

Moreover, the water transport via aquaporins in immune cells enables them for shape
and volume changes as well as maintaining an appropriate osmotic gradient across cell
membrane, which are critical factors in cell-to-cell communication (via chemokines) and
induction of changes in shape for migration, phagocytosis or antigen uptake [203]. Thus,
aquaporins provide also a direct hydromechanical support for immune cells which is
essential for their proper functioning.

Considering the merit of this work, it is worth emphasizing that aquaporins play an
important role in female and male reproductive systems [205–207], and the alteration of
their expression can be frequently linked with infertility [206,208], among others. Hormonal
alterations are a known factor leading to reduced reproductive health and might frequently
be associated with altered AQPs expression and function not only at a gonadal level, but
such effects can occur systemically.

The regulation of AQPs level by estrogen is relatively well documented in literature.
This steroid hormone can regulate AQP expression in the female reproductive system
(uterus, vagina, ovary, cervix and placenta) [209,210], as well as in the men reproductive
system (efferent ducts, epididymis and Sertoli cells) [206,211–214]. Rodent and human
studies suggest that there is a positive correlation between aquaporin expression levels
(particularly AQP1–APQ3) and the 17β-estradiol concentration in gonads and in serum
in females [207]. The opposite relation between E2 and AQPs is found in men, where the
levels of AQP1, AQP3 and AQP9 were broadly studied [206]. In that case, however, the
downregulation of AQPs expression (AQP3 and AQP9) by E2 in men is thought to be
partly restored by testosterone administration [213,214].

There are sparse data describing the direct effects of testosterone on the abundance
of aquaporins within the body. To shortly sum up, testosterone is reported to increase
the AQP1, AQP5 and AQP7 expression in ovariectomized rats, which may explain the
observation that the T hormone is linked to a decrease in uterine fluid volume [215]. In male
rats, APQ9 abundance in epididymal epithelium is modulated by testosterone [216]. In
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addition, the rate of ductus deferens fluid secretion under testosterone influence is mediated
via the upregulation of AQP1, AQP2 and AQP9 [217]. In turn, decreased prostatic and
seminal vesicle secretions during the ongoing deprivation in androgen level is related
to the decrease in AQP0, AQP1, AQP4, AQP5, AQP6 and AQP8 in prostatic tissue and
seminal vesicles [218].

Additionally, higher blood pressure is recorded in males as compared to females. In
turn, within women, there are also changes in tendencies to hypertension between the pre-
menopausal and postmenopausal ones, where the later are more prone to high blood pressure.
There is a hypothesis that these phenomena can be explained by the testosterone-induced
increase in blood pressure mediated by the changes in aquaporin expression in kidneys. The
studies on a rat model confirm that hypothesis [219]. Testosterone administration causes
exaggerated AQPs expression in kidneys which results in H2O retention and further gives rise
to changes in the blood pressure [219]. Testosterone is also thought to influence brain edema
via altering the osmotic fragility of astrocytes through AQP4 regulation [220].

Progesterone may also influence the aquaporins expression level, and this kind of
influence plays a critical role during pregnancy. According to the results obtained in [221],
progesterone upregulates the expression of AQP1 in the rat placenta and enhances abun-
dance of AQP1 and AQP5 in the uterine tissue [222]. Progesterone exerts a similar effect
in women to estrogen [207]. There is a positive correlation between progesterone level
in serum and the AQP2 expression levels in endometrium [223]. Interestingly, an AQP3
functional genetic polymorphism was found associated with hypertension in women only
after pregnancy [224].

What are the additional potential mechanisms of how the changes in steroid hormone
levels may affect the AQPs expression within the organism (and particularly in adipose
tissue)? A key to answer that question is the fact that the AQP7 expression in fat cells is
sensitive to glucocorticoids, fasting–refeeding, insulin, TNFα, adrenoceptor agonists and
peroxisome proliferator-activated receptor (PPAR) stimulation [192,199,225]. As summa-
rized in the previous part of this work, most of the mentioned factors are deeply affected
by the level of gonadal steroids. Thus, hormonal imbalance exert an indirect effect on aqua-
porins. This effect is, however, an important factor contributing to the observed metabolic
complications in patients suffering abnormal sex hormone levels. For example, the excess
amount of androgens in women (e.g., in PCOS) leads to the development of metabolic
complications including global adiposity, adipocyte hypertrophy and its dysfunction—
frequently leading to central obesity. In turn, obesity leads to genetic polymorphism
(A-953G SNP) causing underexpression of AQP7 in adipocytes [226]. Furthermore, AQP7
deficiency results in increased glycerol concentration inside adipocytes and increased activ-
ity of glycerol-3-phosphate leading to preferential re-esterification of FFAs. This sequence
of events enhances progressive triacylglycerol accumulation and adipocyte hypertrophy.

5. MicroRNAs Expressed in Adipose Tissue Are Involved in Molecular Mechanism of
Metabolic Diseases

The function and metabolism of cells are tightly controlled and depend on gene expres-
sion, regulated both at the transcriptional and post-transcriptional levels. Small, noncoding
RNA molecules called microRNAs play an important role in the post-transcriptional reg-
ulation of gene expression and have been shown to play an important role in all cellular
processes. Deregulation in the expression of microRNAs leads to cell dysfunction and the
development of disease states [227].

The biology of adipose tissue cells has been found to be regulated by microRNA [228]. In
adipocytogenesis, microRNAs control all stages of cell differentiation. For example, the switch
between the differentiation of mesenchymal stem cells towards adipogenic vs. osteogenic
lineages is controlled by miR-204 through suppressing of Runx2 and DVL3 expression [229].
Preadipocyte differentiation can be both inhibited (e.g., by miR-125a-5p, which negatively reg-
ulates STAT-3 [230]) and enhanced (e.g., by miR-183 which targets LRP6 [231]) by microRNAs.
Many studies highlight the importance of microRNAs in the regulation of brown, brite and
white adipose tissue differentiation [228]. Moreover, in mice with adipose tissue specific DICER
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(a key protein in microRNA biogenesis) knockout whitening of brown adipose tissue was
observed [232]. In addition to the single examples of microRNAs involved in adipocytogenesis
are given above, there are several dozen other microRNAs in the literature, the expression
level of which depends on the degree of differentiation of fat cells [233]. The expression of
microRNAs, as well as the expression of genes encoding proteins, must therefore be controlled.
One of the factors regulating the level of microRNA expression are gonadal steroids [33–37].
As shown in Table 1, the level of several microRNAs important in the development and
differentiation of adipose tissue can be regulated by sex hormones.

Table 1. Gonadal steroid-regulated microRNAs involved in adipogenic differentiation.

miRNA Regulation Study Model References

let-7a A; E 3T3-L1 [234]

let-7c A; E 3T3-L1 [234]

miR-9 E 3T3-L1 [235]

miR-17-5p A; E; P 3T3-L1 [236]

miR-21 A; E; P BMSCs [237]

miR-22 A knockout mice; primary brown adipocytes [238]

miR-23b A; E; P knockout mice; primary pre-adipocytes [239]

miR-24 E 3T3-L1 [240]

miR-26 E; P C57Bl/6 mice; SVF [241]

miR-27a A; E mature adipocytes; SVCs; MSC [242]

miR-29 A; E hMADS [243]

miR-30d A; E hMADS [244]

miR-32 A MCPIP1; 3T3-L1 [245]

miR-124 A hMSC [246]

miR-128 A hMSC [247]

miR-129 E C57BLKS/J mouse [248]

miR-133 A 3T3-L1 [249]

miR-143 E 3T3-L1 [250]

miR-144 E 3T3-L1; mice [251]

miR-150 E pre-adipocytes from Qinchuan cattle [252]

miR-182 A; E 3T3-L1; VAT [253]

miR-203 A; E Knockout mice; SVF [84]

miR-204 A 3T3-L1 [254]

miR-206 E 3T3-L1 [255]

miR-221 A SGBS [256]

miR-342 E hMSC; 3T3-L1 [257]

miR-363 A ADSCs [231]

miR-375 A; E 3T3-L1 [258]

miR-378 E Bovine preadipocytes [259]
Abbreviations: A, androgens; E, estrogens; P, progesterone. Table 1 is based on [34–37] (Regulation) and references
given in the table (miRNA, Metabolic Disorders).
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The function of microRNA in fat cells is not limited to controlling cell differentia-
tion. Numerous works document the influence of microRNAs on the metabolism and
function of fat cells [228]. For example, the level of UCP1 protein that modulates glu-
cose metabolism and heat production has been shown to be regulated by miR-191a-5p,
miR-204 and miR-455 [260–262]. The level of GLUT4, the protein responsible for glucose
uptake in BAT cells, is regulated directly by miR-93 and miR-218 [263,264]. A correla-
tion between the expression level of miR-222, the estrogen receptor and GLUT4 has also
been demonstrated [265]. microRNAs which expression can be regulated by androgens
(miR-124 and miR-145) and estrogens (miR-30c) are implicated in thermogenesis regulation
by targeting MCT1, LDH and RIP140, respectively [266–268]. MCT1 expression is also
modulated by miR-342-3p [269]. On the other hand, miR-124 is one of the modulators of fat
metabolism by inhibiting TLG expression [270]. Another androgen-regulated microRNA
(miR-128) is involved in lipid accumulation via repressing SIRT1 expression [271]. In WAT
cells, progesterone-regulated miR-193b controls adiponectin production [272].

Apart from maintaining the proper energy balance of the body, adipose tissue also
performs a secretory function. Autocrine, paracrine or endocrine communication in adi-
pose tissue occurs via exosomes—vesicles produced and released, among others, by
adipocytes [273]. Exosomes participate in intercellular and interorgan communication
by transporting bioactive molecules produced in fat cells to their target cells. One type of
active molecule transported by exosomes are microRNAs. Studies on mice with a knockout
of the DICER protein coding gene and on patients with lipodystrophy have shown that
fat cells (especially BAT) are the major source of circulating exosomal microRNAs [15].
Exosomes secreted by adipose tissue can be identified in biological fluids by measuring
adipocyte-enriched microRNAs (let-7b, miR-16, miR-103, miR-146b, miR-148a, miR-201,
miR-221 and miR-222) [274]. Although a direct relationship between sex hormones and
microRNAs expressed in adipocytes has not been established in adipocyte cells, the expres-
sion of most of them can be regulated by gonadal steroids [34–37]. There is evidence that
adipocyte-derived extracellular vehicles can influence the function of liver, skeletal muscle,
heart, lungs, hypothalamus and ovary [274,275]. The composition and content of exosomes
strongly depend on the physiological state of the body and there is increasing evidence
that adipose-derived vehicles play an important role in the dysregulation of the body’s
energy balance and metabolism [273]. Knowledge on the role of miRNAs in the regulation
of metabolism and development of metabolic diseases is developing intensively [276]. The
role of miRNAs in the development of metabolic diseases such as obesity, T2D, polycystic
ovary syndrome, nonalcoholic fatty disease, cardiovascular and inflammatory diseases
was recently reviewed [277–283]. Moreover, the expression of aquaporin isoforms asso-
ciated with metabolic diseases is also regulated by microRNAs [284]. Studies describing
the regulation of microRNAs expression by gonadal steroids [34–37] and the association
of microRNAs with metabolic diseases [277–281,283–285], allowed to identify the most
important microRNAs in metabolic diseases which expression level may be regulated by
sex hormones (Table 2).

Table 2. Gonadal steroid-regulated microRNAs involved in metabolic diseases and AQPs functioning.

miRNA Regulation Metabolic Disoders References

let-7a E PCOS [279]

let-7b E O, T2Ds, PCOS [277–279]

let-7c A, E O, T2Ds, PCOS [277–279]

miR-1 A T2D, AQP [278,284]

miR-9 E PCOS, NAFLD [279,280]

miR-15 E PCOS, NAFLD, CVD [279,280,282]

miR-16 E PCOS,NAFLD, AQP [279,280,284]
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Table 2. Cont.

miRNA Regulation Metabolic Disoders References

miR-19 A PCOS, NAFLD, AQP, CVD [279,280,282,284]

miR-20 P T2D [278]

miR-21 A, E, P PCOS, NAFLD, AQP [279,280,284]

miR-22 A O, AQP [277,284]

miR-23a P PCOS, AQP, CVD [279,282,284]

miR-24 E PCOS, NAFLD, CVD [279,280,282]

miR-26a A O, PCOS, NAFLD [277,279,280]

miR-27 A, E PCOS, NAFLD, CVD [279,280,282]

miR-29 A, E, P O, T2D, PCOS, NAFLD, AQP [277–280,284]

miR-30d A, E T2D, PCOS, NAFLD [278–280]

miR-32 A PCOS, AQP, CVD [279,282,284]

miR-92 E PCOS [279]

miR-99 A PCOS, NAFLD [279,280]

miR-100 A PCOS [279]

miR-124a A T2D, PCOS, AQP [278,279,284]

miR-125 A, E PCOS, NAFLD, CVD [279,280,282]

miR-128 A PCOS [279]

miR-133a A T2D, PCOS [278,279]

miR-135 A, E PCOS [279]

miR-141 A, E PCOS [277,279]

miR-142 P O, PCOS, CVD [277,279,282]

miR-143 E O [277]

miR-144 E O, PCOS, NAFLD, AQP [277,279,280,284]

miR-145 A T2D, AQP [278,284]

miR-146 P PCOS, NAFLD [279,280]

miR-148 A O [277]

miR-149 E PCOS, NAFLD [279,280]

miR-151 E PCOS [279]

miR-182 A, E PCOS, NAFLD, CVD [279,280,282]

miR-185 A PCOS, AQP [279,284]

miR-193 P PCOS [279]

miR-195 E PCOS, AQP [279,284]

miR-200 P T2D, PCOS, NAFLD [278–280]

miR-203 A, E PCOS, NAFLD, AQP [279,280,284]

miR-221 A O, PCOS, NAFLD, CVD [277,279,280,282]

miR-222 A O, PCOS, NAFLD, CVD [277,279,280,282]

miR-320 E PCOS, AQP [279,284]

miR-342 E PCOS [279]
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Table 2. Cont.

miRNA Regulation Metabolic Disoders References

miR-365 E PCOS [279]

miR-375 A, E O, T2D [277,278]

miR-423 A, E O [277]

miR-432 E O [277]

miR-486 E PCOS [279]

miR-504 E O [277]

miR-520 E O [277]

miR-548 E O [277]

miR-690 A T2D [278]
Abbreviations: A, androgens; E, estrogens; P, progesterone; O, obesity; T2D, type 2 diabetes; PCOS, poly-
cystic ovary syndrome; NAFLD, non-alcoholic fatty liver disease; AQP, aquaporins; CVD, cardiovascular
diseases. Table 2 is based on [34–37] (Regulation) and the other references are given in the table (miRNA,
Metabolic Disorders).

6. Discussion

Several aspects of adipose tissue biology are regulated differently in males and females,
influencing their predisposition to metabolic disorders. Moreover, disturbances in gonadal
hormone homeostasis can deeply affect energy balance, glucose and lipid metabolism,
reinforcing the need for personalized sex-specific approaches in management of metabolic
abnormalities. This kind of approach should take into account the possibilities of regulation
of gonadal steroids action at adipose tissue level. Below, we summarize the most promising,
relatively novel therapeutic tactics fitting into the trend of personalized management of
metabolic disorders. We also place a great emphasis here on these drug targets which are
still uncommonly considered in the field.

Aquaporins are emerging drug targets to prevent and counteract metabolic abnor-
malities [43,286]. Among the substances that could improve adipocyte functioning in both
sexes are thiazolidinediones (being insulin sensitizers) acting as PPARγ agonists, which
are proven to upregulate AQP7 [43,199,200,287].

Considering the effects of gonadal hormones on the ability of the organism to respond
to insulin, it is reasonable to consider the use of insulin sensitizers to alleviate the steroid-
tuned insulin resistance. One of them is metformin which is commonly used in T2D [288].
As mentioned in Section Insulin sensitivity, estradiol is able to enhance the activity of
adenosine monophosphate-activated protein kinase (AMPK) through ER [121]. In turn, one
of the molecular mechanisms of metformin action includes AMPK activation [288]. From
this perspective, metformin administration seems a reasonable choice in case of prevention
of insulin resistance especially in patients with E2 deficits.

Other promising substances are inositols, which not only improve insulin sensitiv-
ity but also regulate steroidogenesis in women, and consequently may refine ovulatory
function in hyperandrogenic females [289,290]. Interestingly, the use of myoinositol im-
proves sperm function, boosting sperm motility in patients with altered semen parameters
(in asthenozoospermia) [291]. It is worth noticing that the sperm motility and volume,
affecting the observed fertility, are regulated by aquaporins [292]. In connection with
the above, male patients with idiopathic infertility could also take advantage of inositol
supplementation. Thus, inositols may find clinical applications in assisted reproductive
treatment and counteracting metabolic dysfunctions in both men and women [293].

Other active substances that can be used to improve endocrine function of adipocytes
in cases of corticosteroid imbalance are those affecting the immune system. Considering
the significant role of adiponectin in counteracting inflammatory processes and increas-
ing the sensitivity of tissues to insulin, this adipokine may be considered as a potential
drug [147,290]. Exogenous adiponectin supplementation in early pregnant individuals
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may help to avoid the metabolic syndrome of adult female offspring, according to the
recent studies on a mouse PCOS model [294]. A probable mechanism underlying this effect
is related to the activation of the AMPK/PI3K-Akt signaling pathway in PCOS offspring
mice [294].

Since AQPs have been recognized as functionally involved in immune cell activity
such as priming and inflammasome activation, transendothelial migration and phagocyto-
sis, development of AQP-oriented drugs gives a promising opportunity in future therapies
against metabolic diseases [203]. Up to date, several AQP modulators have been proposed
and even patented for use for diagnostic and therapeutic purposes [295,296]. Nevertheless,
the lack of selectivity and toxic side effects prevent most of these substances from being
subjected to extensive clinical testing. Among the most promising AQP modulators, which
are relatively safe and able to effectively prevent inflammation, are the gold(III) bipyridyl
compound Auphen and compounds DFP00173, Z433927330 and HTS13286. The physiolog-
ical effects of their administration are summarized in [203]. An alternative AQPs-targeted
approach can be based on modulation of aquaporins at the post-transcriptional level.

A global regulator of gene expression are microRNAs. Although sex-related differ-
ences in the expression profile of microRNAs are still poorly understood [282], there is
evidence that both sex chromosomes and sex hormones can cause differences in microRNAs
expression [33]. At the same time, microRNAs can be a link between coexisting metabolic
diseases, as each microRNA can interact with dozens of targets. Thus, microRNAs rep-
resent promising therapeutic target itself. Our analysis (Table 2) suggests that miR-29
may be one of the therapeutic targets, as its deregulation is associated with all analyzed
metabolic disorders. Equally interesting, in the context of the role of adipose tissue in the
development of metabolic diseases, are adipocyte-enriched microRNAs (let-7b, miR-16,
miR-146b, miR-221 and miR-222) associated with metabolic disorders.

Recently, significant attention has been drawn to application of flavonoids to attenuate
chronic inflammation [297,298]. It has been reported that natural flavonoids (e.g., narin-
genin, rutin and quercetin) can influence modulatory effects on inflammasomes associated
with the initiation and progression of chronic disorders, including metabolic ones. Re-
gardless of sex, inflammasome targeting via flavonoids can bring advantageous effects on
health. As an example, naringenin increases the concentration of enzymes removing reac-
tive oxygen species and exhibits cytoprotective and anti-inflammatory effects via targeting
mitochondrial potassium channels [299]. Naringenin can also modulate the activity of en-
zymes involved in interconversion of steroid hormones (3β-hydroxysteroid dehydrogenase
and 17β-hydroxysteroid dehydrogenase), as summarized in [290]. Thus, it can be useful in
downregulation of androgen production in women suffering hyperandrogenemia.

Other possible strategy to improve functioning of adipose tissue in metabolic diseases
is to target adipocyte mitochondria, due to their substantial roles in the regulation of whole-
body energy homeostasis, control of insulin sensitivity and glucose metabolism or crosstalk
between muscles and adipose tissues [300]. Here, possible therapeutic solutions include
the activation of BAT thermogenesis and WAT browning [301] and the application of
mitochondrial-targeted antioxidants (such as vitamin E, N-acetylcysteine, glutathione and
coenzyme Q10). It is worth noticing that WAT browning may be induced by the chronic
treatment with β3-adrenergic activators or the PPARγ agonist thiazolidinedione [300],
which was also reported in this review as an AQP-oriented drug. In turn, affecting the
adaptive thermogenesis in brown adipose tissue can also be achieved by the administration
of β-adrenergic agonists affecting sympathetic nervous system and promoting increased
BAT activity [301]. Women have more active brown adipose tissue (BAT) than men [302],
and this relation may be partly caused by the differences in sex hormone levels. Estradiol
can activate thermogenesis in BAT (promoting energy expenditure) through the sympa-
thetic nervous system (SNS) due to its ability to inhibit AMPK through α-ER selectively in
the ventromedial nucleus of the hypothalamus (VMH) [302,303]. Even the physiological
changes in E2 levels across the menstrual cycle affect thermogenesis in women. Thus, the
disruption of the female hormonal balance impairs the energy homeostasis also at the level
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of VMH AMPK-SNS-BAT axis which may contribute to the tendency to obesity in women
with estrogen deficits [303]. Moreover, both rodent models as well as the characteristics of
the PCOS patients suggest that BAT thermogenesis is negatively associated with androgen
levels [304,305].

Coming back to the possibilities of sex-dependent therapies of metabolic diseases,
one may consider the potential procedures dedicated to modulate the activity or levels of
steroid-converting enzymes in human adipose tissues. With the proceeding fat accumula-
tion in obese men, there is an increase of aromatase activity that is associated with a greater
conversion of testosterone to estradiol (Figure 2). Thus, the resulting depression of testos-
terone concentrations give rise to the increased preferential deposition of abdominal fat,
which deepens the hypogonadal state [306]. Another enzyme that can serve as a target in
therapies against metabolic abnormalities, is type 12 17β-HSD, which is reported as mainly
responsible for the conversion of estrone into estradiol according to the in vitro studies [307]
(Figure 2). The regulation of expression level of this enzyme, which is maximally expressed
at the end of the differentiation in human adipocytes, could represent a mechanism that
allows a time-dependent and cell type-specific tuning of estrogen production [307].

The eventual solution to the metabolic complications accompanied by sex hormone
imbalance seems to be offered by the introduction of hormone replacement therapies. The
administration of gonadal hormones could be considered in the groups of elderly people,
patients with morbid obesity, women suffering estrogen depletion (e.g., postmenopausal
women) and men exhibiting androgen deficits (hypogonadal men). According to the litera-
ture [68,308], estradiol supplementation seems to be efficient in prevention of metabolic
consequences of the long-term estrogen deficiency (as in the case of ovariectomy or post-
menopausal women). Estradiol is one of the factors regulating energy homeostasis by
modulating both energy expenditure (modulation of BAT thermogenesis) and food in-
take. E2 can inhibit feeding while acting in arcuate nucleus of the hypothalamus, whereas
estrogen deprivation is related to hyperphagia and, frequently, weight gain [309,310]. Ac-
cording to the ovariectomized mice model, these effects can be reversed by E2 replacement
therapy [309]. Moreover, as suggested by a mouse model [311], supplementation of indi-
viduals exhibiting reduced ovarian functions with estrogen can revert such effects, such as
increased 5′adenosine monophosphate-activated protein kinase (AMPK) phosphorylation,
high expression level of the genes encoding adiponectin, UCP2 and PPARγ coactivator 1α
(PGC-1α) and low resistin expression in WAT. Additionally, estradiol treatment enables
attenuating the decrease of perilipin in VAT after bilateral ovariectomy [308], which is an
important outcome, since perilipin is the principal protein controlling the lipase access to
stored triglycerides and consequently regulating lipolysis [308]. To sum up, estradiol re-
placement seems to be a promising therapeutic solution for women suffering E2 depletion.
However, introduction of this kind of therapy should be highly personalized and take into
account the possible side effects of chronic hormone supplementation.

The testosterone replacement therapy (TRT) is particularly advantageous in hypog-
onadal men, where its application results in enhanced energy metabolism, increased fat-free
mass, decreased level of inflammatory markers and improved sexual function [155,312–314].
The improvement of patients’ health is especially evident in hypogonadal men with
T2D [315], for whom testosterone replacement therapy for 1 year or longer allows in-
creasing their survival probability. Importantly, beside the benefits of TRT therapy in this
group of patients at the metabolic and sexual levels, it is also advantageous in case of infec-
tions (e.g., viral diseases) [175] due to the possible mitigation of the damaging inflammatory
response to a given pathogen without hampering the immune system’s response.

As a general comment, it is clear from the literature that, while the popular rodent
models admittedly give interesting inferences, they are not ideal when considering the
subtle dynamics of hormone-regulated processes. In this review, we only mention some,
subjectively chosen, reports on mice or rat models, only when they highlight the most
important aspects of the discussed processes. The results of human studies often contrast
those obtained in animals, which may resemble the significance of species-inherent details
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of hormonal balance. To explain these discrepancies, extensive in vitro studies on molecular
mechanisms are paramount. From this perspective, at the initial stages of research on
human physiology of sex hormone-regulated processes, it seems that the best choice is to
carry out experiments in vitro on human cells, if it is possible.

7. Conclusions

The well-known guidelines to prevent and alleviate metabolic disorders include a set
of lifestyle choices referring to dietary habits, exercise and caloric restriction. Their impact
is, however, far below expectations in the general population. To reach satisfactory results
in counteracting versatile abnormalities in energy, glucose and lipid homeostasis, novel
therapeutic strategies should be proposed. This is where personalized medicine procedures
can be particularly useful. According to the complex mechanisms responsible for sex-
dimorphic regulation of adipose tissue functioning, the novel therapeutic solutions should
take into account the sex of the patient and the current status in their hormonal balance.
In such strategy, not only should the conventional biochemical agents be considered as
molecular targets but also the more fundamental ones such as miRNAs. On the other
hand, aquaporins emerge as novel biologic targets in sex-specific management of metabolic
diseases. Recognition of active substances affecting these specific targets offers a promise
for the management of a large spectrum of clinical disorders including metabolic and
energy balance diseases.
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ACC1 acetyl-CoA carboxylase 1
AKR1C aldo–keto reductase 1C enzyme
AKT protein kinase B
AMPK 5′AMP-activated protein kinase
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ATGL adipose triglyceridelipase
BAT brown adipose tissue
3β-HSD 3β-hydroxysteroid dehydrogenase
11β-HSD1 11β-hydroxysteroid dehydrogenase type 1
17β-HSD 17β-hydroxysteroid dehydrogenase
CD68 cluster of differentiation 68
CRP C-reactive protein
CYP11A1 cholesterol side-chain cleavage enzyme
CYP17A1 steroid 17α-monooxygenase
DHEA dehydroepiandrosterone
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DHEA-S dehydroepiandrosterone sulfate
DHT dihydrotestosterone
E1 estrone
E2 17β estradiol
E3 estriol
FAS fatty acid synthase
FFA free fatty acids
GLUT4 glucose transporter type 4
IRE insulin response element
IRS-1 insulin receptor substrate 1
HSL hormone-sensitive lipase
LPL lipoprotein lipase activity
NAFLD non-alcoholic fatty liver disease
NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells
PBMCs peripheral blood mononuclear cells
PCOS polycystic ovary syndrome
PKCζ protein kinase C ζ

PPARγ peroxisome proliferator-activated receptor γ

SAT subcutaneous adipose tissue
SCD1 stearoyl-CoA desaturase 1
SULT2A1 dehydroepiandrosterone sulfotransferase
T testosterone
T2D diabetes mellitus type 2
TLR Toll–Like Receptors
TNFα tumor necrosis factor
TRT testosterone replacement therapy
VAT visceral adipose tissue
WAT White adipose tissue
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