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A B S T R A C T   

Background: Ischemic stroke (IS) is one of most common causes of disability in adults worldwide. However, there 
is still a lack of effective and reliable diagnostic markers and therapeutic targets in IS. Furthermore, immune cell 
dysfunction plays an important role in the pathogenesis of IS. Hence, in-depth research on immune-related 
targets in progressive IS is urgently needed. 
Methods: Expression profile data from patients with IS were downloaded from the Gene Expression Omnibus 
(GEO) database. Then, differential expression analysis and weighted gene coexpression network analysis 
(WGCNA) were performed to identify the significant modules and differentially expressed genes (DEGs). Key 
genes were obtained and used in functional enrichment analyses by overlapping module genes and DEGs. Next, 
hub candidate genes were identified by utilizing three machine learning algorithms: least absolute shrinkage and 
selection operator (LASSO), random forest, and support vector machine–recursive feature elimination (SVM- 
RFE). Subsequently, a diagnostic model was constructed based on the hub genes, and receiver operating char
acteristic (ROC) curves were constructed to validate the performances of the predictive models and candidate 
genes. Finally, the immune cell infiltration landscape of IS was explored with the CIBERSORT deconvolution 
algorithm. 
Results: A total of 40 key DEGs were identified based on the intersection of the DEGs and module genes, and we 
found that these genes were mainly enriched in the regulation of lipolysis in adipocytes, neutrophil extracellular 
trap formation and complement and coagulation cascades. Based on the results from three advanced machine 
learning algorithms, we obtained 7 hub candidate genes (ABCA1, ARG1, C5AR1, CKAP4, HMFN0839, SDCBP and 
TLN1) as diagnostic biomarkers of IS and developed a reliable nomogram with high predictive performance 
(AUC = 0.987). In addition, immune cell infiltration dysregulation was implicated in IS, and compared with 
those in the normal group, IS patients had increased fractions of gamma delta T cells, monocytes, M0 macro
phages, M2 macrophages and neutrophils and clearly lower percentages of naive B cells, CD8 T cells, CD4+

memory T cells, follicular helper T cells, regulatory T cells (Tregs) and resting dendritic cells. Furthermore, 
correlation analysis indicated a significant correlation between the hub genes and immune cells in progressive IS. 
Conclusion: In conclusion, our study identified 7 hub genes as diagnostic biomarkers and established a reliable 
model to predict the occurrence of IS. Meanwhile, we explored the immune cell infiltration pattern and inves
tigated the relationship between candidate genes and immune cells in the pathogenesis of IS. Hence, our study 
provides new insights into the diagnosis and treatment of IS.   

1. Introduction 

As the second leading cause of death and as the main contributor to 

the incidence of disability worldwide, stroke is associated with a high 
socioeconomic burden [1–4]. Notably, ischemic stroke (IS) is the most 
prevalent type of stroke and accounts for more than 80 % of stroke cases 
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[5]. A sudden occlusion of the brain blood supply may lead to cata
strophic damage to brain tissue, including an inflammatory cascade, 
immune cell infiltration and irreversible neuron death. As the most 
common acute neurological emergency disease, the early diagnosis of IS 
largely depends on a CT scan, which is time-consuming and hinders 
timely treatment. In addition, despite the wide application of drug 
thrombolysis and interventional thrombolysis, the therapeutic effect 
remains unsatisfactory due to the narrow therapeutic window and high 
level of risk. To date, permanent neurological impairment of stroke 
survivors is still a challenging public health issue worldwide. Therefore, 
the identification of new biomarkers with high sensitivity and specificity 
to reduce the time to diagnosis in the early stage is urgently needed to 
improve the prognosis of stroke patients. 

The etiology of ischemic stroke is complex and multifactorial and is 
associated with hypertension [6,7], diabetes mellitus [8,9], smoking 
[10,11], atherosclerosis [12,13] and genetic factors [14,15]. The 
development of ischemic stroke is insidious, and patients do not seek 
medical help until the attack is acute. However, the molecular mecha
nism underlying ischemic stroke is not yet known. It is very important to 
deepen our understanding of ischemic stroke. Recent studies have found 
that many biomarkers are implicated in the pathogenesis of stroke. For 
example, Wang et al. found that FGF21 alleviated neuroinflammation 
following ischemic stroke by modulating the temporal and spatial dy
namics of microglia/macrophages [16]. The extensive application and 
advancement of gene chip technology can help identify dysregulated 
genes, biological processes and signaling pathways in the pathogenesis 
of ischemic stroke. 

A typical pathological change after IS is the disruption of the blood 
brain barrier, resulting in the recruitment of different infiltrating im
mune cells, including T cells, B cells, neutrophils, dendritic cells and 
macrophages, into the area of edema. On the one hand, immune cells 
secrete a large number of inflammatory cytokines and promote sec
ondary neuroinflammation. On the other hand, immune cells play a 
protective role in BBB repair and angiogenesis. For example, regulatory 
T (Treg) cells promoted microglia-mediated white matter repair after 
ischemic stroke and could serve as a neuroprotective target for stroke 
recovery [17]. Zhang et al. found that macrophages play an important 
role in the phagocytic clearance of dead neurons after ischemic stroke 
and promote the resolution of inflammation in the brain [18]. Hence, 
immune cell regulation and the immune microenvironment after stroke 
are worthy of in-depth study. 

In this study, we aimed to investigate novel biomarkers and the 
immune infiltration landscape in progressive IS based on comprehensive 
bioinformatic methods and machine learning. We initially downloaded 
IS-related datasets from the GEO database and performed differential 
expressed gene (DEG) analysis and WGCNA to identify candidate genes 
and key modules. Then, machine-learning algorithms were used to filter 
and identify hub biomarkers of IS, and a diagnostic model was devel
oped based on the biomarkers. Finally, the immune infiltration land
scape and correlation between different immune cells and hub genes 
were investigated, providing promising targets for future research. 

2. Materials and methods 

2.1. Data processing and differentially expressed gene (DEG) 
identification 

The gene expression profiles in the GSE16561 (including 39 IS and 
24 healthy samples) dataset was downloaded and extracted from the 
public database Gene Expression Omnibus (GEO, https://www.ncbi. 
nlm.nih.gov/geo/). The gene expression profile was normalized using 
the normalize Between Arrays function in the limma package [19]. 
Then, differential analysis between IS patients and healthy controls was 
performed after using the limma package in R software. An adjusted p 
value < 0.05 and log2fold change (FC) > 0.65 were set as cutoff 
thresholds to obtain the differentially expressed genes. Then, the 

heatmap and volcano plot were generated using the ggplot2 package in 
R software [20]. The study diagram and data preprocessing were illus
trated in Fig. 1. 

2.2. WGCNA network construction and module identification 

The “WGCNA” package in R was used to analyze the gene expression 
patterns of multiple samples and screened candidate biomarkers or 
therapeutic targets [21]. First, the availability of all genes was 
measured, and then an adjacency matrix was constructed to examine the 
correlation strength between the nodes. Subsequently, we transformed 
the adjacency matrix into a topological overlap matrix (TOM) to quan
titatively describe the similarity in nodes. Finally, key modules were 
identified after hierarchical clustering with a minimum size of 50 genes. 

2.3. Functional enrichment analyses 

Biological function enrichment of Gene Ontology (GO), Disease 
Ontology (DO), and Kyoto Enrichment of Genes and Genomes (KEGG) 
analyses were performed with cluster Profiler and the DOSE package in 
R [22,23]. Gene set enrichment analysis (GSEA) was used to analyze the 
variations in biological function and pathways between IS and healthy 
samples in depth. Statistical significance was set at a P value < 0.05. 

2.4. Machine learning-based hub gene screening 

Three machine learning algorithms, LASSO (least absolute shrinkage 
and selection operator) regression, SVM-RFE (support vector machine- 
recursive feature elimination) and random forest, were employed to 
screen for hub genes in IS. Then, genes selected by machine learning 
were intersected to obtain candidate hub genes for subsequent research. 
The expression levels of hub genes were examined in the GSE16561 
dataset. 

2.5. ROC evaluation and nomogram construction 

A nomogram was constructed based on the expression of hub genes 
to predict the risk of IS development by using the “rms” package in R 
software. A calibration plot was plotted to evaluate the prediction ac
curacy of the model. Then, decision curves and clinical impact curves 
were plotted to determine whether clinical decisions based on the 
diagnostic model were beneficial to patients. The ROC curve was sub
sequently established to evaluate the diagnostic value of hub genes and 
the nomogram, and the area under the curve (AUC) and 95 % CI were 
calculated. 

2.6. Hub gene validation 

The GSE58294, GSE58294, and GSE66724 dataset, including 51 
control samples and 94 IS samples, were downloaded and used for the 
validation of the candidate hub genes. A p value < 0.05 was considered 
statistically significant. 

2.7. Assessment of immune cell infiltration 

The CIBERSORT algorithm, a deconvolution algorithm, was then 
utilized to identify the infiltration of 22 different types of immune cells 
in IS patient tissues via transformation of the normalized gene expres
sion matrix into the infiltrating immune cell composition. A histogram, a 
heatmap and boxplot diagrams were drawn to visualize the differences 
in immune cell infiltration between the control and ischemic stroke 
subjects. Spearman’s correlation analysis was performed to with the hub 
genes and immune infiltrating cells, and lollipop charts were used to 
analyze the relationships between immune cells and hub genes. 
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3. Results 

3.1. Identification of DEGs of IS 

A total of 216 DEGs were identified in the IS patients, including 113 
upregulated and 103 downregulated genes compared with the levels in 
the normal samples. The heatmap and volcano plot of the IS DEGs are 
shown in Fig. 2A and B, indicating an obvious difference between the IS 
patients and healthy controls. GSEA of DEGs showed that they were 
mainly involved in aminoacyl-tRNA biosynthesis, complement and 
coagulation cascades, DNA replication, histidine metabolism, neutrophil 
extracellular trap formation, nitrogen metabolism, primary immuno
deficiency, protein export, the renin-angiotensin system and ribosomes 
(Fig. 3A). The GSEA ridge plot is visualized in Fig. 3B. 

3.2. Significant module gene identification in IS via WGCNA 

A scale-free coexpression network was established to identify the key 
modules for IS. As shown in Fig. 4A, a power of β = 9 (scale-free R2 =
0.9) was selected as the soft-thresholding parameter to produce a 

hierarchical clustering tree. Next, a total of 8 distinct gene modules with 
different colors were identified through hierarchical clustering, and the 
number of genes in each module was more than 50. As shown in Fig. 4B, 
the green module with the highest correlation coefficient was selected as 
the clinically significant module for further analysis (eigengene value =
0.48 and P = 0.02). After that, an interaction analysis was performed 
between DEGs and genes in the green module of interest, and a total of 
40 important biomarkers were identified for subsequent enrichment 
analysis (Fig. 4C). 

3.3. Functional enrichment analysis 

Functional analysis was performed to learn more about the biological 
function of the DEGs in the green module. As shown in Fig. 5A, the 
common DEGs were mainly enriched in the following biological pro
cesses (BPs): receptor-mediated endocytosis, negative regulation of lipid 
localization, negative regulation of MAP kinase activity, regulation of 
lipid catabolic process and response to peptide. The DEGs were mostly 
enriched in the following cellular components (CCs): specific granules, 
tertiary granules, secretory granule membranes, secretory granule 

Fig. 1. The workflow of the study design.  
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lumens and cytoplasmic vesicle lumens. With regard to molecular 
function, the DEGs primarily participate in hydrolase activity, vinculin 
binding, monosaccharide binding, low-density lipoprotein particle re
ceptor activity and cargo receptor activity. KEGG enrichment analysis 
showed that the common DEGs were enriched in the regulation of 

lipolysis in adipocytes, neutrophil extracellular trap formation, com
plement and coagulation cascades, shigellosis and amoebiasis (Fig. 5B). 
The results of the DO analysis revealed that these DEGs were linked to 
atherosclerosis (Fig. 5C). 

Fig. 2. Identification of DEGs between healthy and ischemic stroke patients. (A＆B) Heatmap and the Volcano plot of the DEGs.  

Fig. 3. GSEA analysis of DEGs. (A) GSEA plots depicting the enrichment of signal pathways based on the hallmark gene set. (B) Ridge plots of the most enriched 30 
pathways of IS patients. 
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3.4. Diagnostic hub gene identification and validation 

Three different machine learning algorithms were used to screen for 
reliable candidate hub genes in IS. A total of 7 genes were identified as 
diagnostic markers for IS by LASSO regression (Fig. 6A). Meanwhile, the 
top 25 DEGs with the highest accuracy and the lowest error according to 
SVM-RFE were selected (Fig. 6B＆C). The gene importance of the DEGs 
was calculated (Fig. 5D), and the top 20 most important genes are dis
played in Fig. 6E. Finally, after overlapping critical genes using a Venn 
diagram, 7 common potential genes, namely, ABCA1, ARG1, C5AR1, 
CKAP4, HMFN0839, SDCBP and TLN1, were selected as the candidate 
hub genes for IS using the above three algorithms (Fig. 6F). 

We further explored the expression levels of hub genes in IS patients 
and found that all hub genes were significantly upregulated in IS pa
tients compared with the normal controls (Fig. 7A). Correlation analysis 
revealed that all hub genes were positively correlated and indicated that 
all genes might play similar biological roles in the pathogenesis of IS 
(Fig. 7B). Additionally, the analysis of the validation cohort dataset 
(GSE58294, GSE58294, and GSE66724) indicated that all hub genes 
were substantially upregulated in IS patients, while there were no sta
tistically significant differences in the expression levels of C5AR1, 
SDCBP, and TLN1 (Fig. 7C). 

3.5. Nomogram construction and evaluation 

A diagnostic nomogram model was established based on 7 candidate 

hub genes (Fig. 8A). Our calibration curve fit the ideal curve well and 
indicated reliable predictive ability in terms of stroke development 
(Fig. 8B). The clinical value of the model was evaluated with DCA, and 
the curve showed obvious net benefits of the predictive nomogram 
(Fig. 8C). The clinical impact curve demonstrated the excellent predic
tive potential of the nomogram (Fig. 8D). ROC curve analysis was used 
to assess the diagnostic specificity and sensitivity of each gene and the 
nomogram. The area under the curve (AUC) for each item was as fol
lows: ABCA1 (AUC = 0.841), ARG1 (AUC = 0.928), C5AR1 (AUC =
0.957), CKAP4 (AUC = 0.943), HMFN0839 (AUC = 0.924), SDCBP 
(AUC = 0.912), and TLN1 (AUC = 0.905). The AUC for the diagnostic 
model was 0.987, confirming its excellent predictive performance 
(Fig. 8E). 

3.6. Immune infiltration analysis 

The CIBERSORT algorithm was used to explore immune cell infil
tration differences between the IS group and the healthy group. As 
shown in the histogram and violin diagram (Fig. 9A and B), the immune 
cell landscape in the IS patients was significantly different from that in 
the control group. Compared with those in the healthy control group, 
the IS group had increased fractions of gamma delta T cells, monocytes, 
M0 macrophages, M2 macrophages and neutrophils and clearly reduced 
percentages of naive B cells, CD8 T cells, activated memory CD4 T cells, 
follicular helper T cells, regulatory T cells (Tregs) and resting dendritic 
cells. Additionally, correlations between immune cells were studied, and 

Fig. 4. Identification of important biomarkers that participate in IS progression through WGCNA. (A) Clustering dendrogram of genes. (B) Module-trait associations 
where green module has the highest correlation with IS. (C) The Venn plot to identify common biomarkers between DEGs and WGCNA green module genes. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 5. Functional enrichment results of DEGs. (A) Significant enriched GO terms for DEGs. (BP, biological process; CC, cellular component; MF, molecular function). 
(B) The significantly enriched KEGG pathways. (C) DO analysis of target genes. 
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Fig. 6. Candidate genes selection by advanced machine learning. (A) Biomarkers screening by Lasso model. (B＆C) SVM-RFE algorithm for feature gene selection. 
（D）The random forest algorithm shows the error in IS and control group. (E) Genes are ranked based on the importance score. （F）Venn diagram showing the 
feature genes shared by LASSO, SVM-RFE and random forest algorithms. 

Fig. 7. The expression of DEGs in GSE16561 and external validation in GSE58294, GSE58294, and GSE66724. (A) Boxplot depicting gene expression in ischemic 
stroke group and healthy controls. (B) Correlation analysis of candidate DEGs. (C) External verification of DEGs in GSE58294, GSE58294, and GSE66724. 
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we found that multiple immune cell pairs interacted either positively or 
negatively in the pathogenesis of IS. As shown in Fig. 9C, resting den
dritic cells and M1 macrophages showed the most synergistic effect. 

Meanwhile, resting mast cells and activated mast cells displayed the 
most competitive effect. 

We further explored the correlation between the hub genes and 

Fig. 8. Nomogram construction and predictive value evaluation. (A) Nomogram establishment for the diagnostic model of IS. (B) Calibration curves to evaluate the 
predictive power of the nomogram. (C) DCA curve to assess the clinical value of the diagnostic model. (D) The clinical impact curve indicating the excellent pre
dictive probability of the diagnostic model. (E) The ROC curves estimating the diagnostic performance of characteristic genes. 

Fig. 9. Infiltration pattern of immune cells. (A) Heatmap of the 22 immune cell proportions in each sample. (B) Correlation heatmap of all 22 immune cells. (C) 
Violin plot of all 22 immune cell differentially infiltrated fractions. 
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immune cells. The results indicated that the hub genes had very close 
relationships with different immune cells and that those genes might be 
potential immune-related targets in progressive IS. For example, as 
indicated in Fig. 10A, ABCA1 displayed significant positive correlations 
with neutrophils (r = 0.562), T cells gamma delta (r = 0.472), and 
macrophages M0 (r = 0.343) and significant negative correlations with 
CD8 T cells (r = − 0.290), regulatory T cells (Tregs) (r = − 0.336) and 
resting dendritic cells (r = − 0.381). Other hub genes also had complex 
effects on immune cells, as displayed in Fig. 10B–G. 

4. Discussion 

Ischemic stroke, as one of the leading threats to human health, has 
gained increasing attention worldwide. A sudden blockage of cerebral 
blood supply may result in detrimental neurological deficits and impose 
substantial social and economic burdens. Despite advances in medicines 
and recanalization therapy, timely and effective treatments are still 
lacking. It is estimated that approximately 0.7 million people suffer from 
acute ischemic stroke in the US annually [24] and 3.94 million in China. 
With the aging of the population, ischemic stroke has become a major 
public health problem. Therefore, there is an urgent need to identify new 
accurate target biomarkers for future experimental studies and the 
prediction of acute stroke in clinical practice. With the development of 
gene chip technology, bioinformatic analysis has been widely used to 
explore different disease target genes and to inform in-depth mecha
nistic studies. 

In the present study, we first obtained 216 DEGs and found that 113 
genes were upregulated and 103 genes were downregulated between 
ischemic stroke patients and control groups. Then, 40 important genes 
were identified by intersecting DEGs and the WGCNA key module. 
Subsequent GO enrichment analysis showed that all DEGs were mainly 
related to the biological processes of receptor-mediated endocytosis, 
negative regulation of lipid localization, negative regulation of MAP 
kinase activity, regulation of lipid catabolic processes and response to 
peptides, while KEGG enrichment analysis showed that DEGs were 
mostly associated with regulation of lipolysis in adipocytes, neutrophil 
extracellular trap formation, complement and coagulation cascades. Via 
the use of several machine learning algorithms, we identified 7 genes 

(ABCA1, ARG1, C5AR1, CKAP4, HMFN0839, SDCBP and TLN1) most 
strongly associated with ischemic stroke as candidate hub genes and 
developed a reliable nomogram model to predict ischemic stroke risk. 
Finally, we analyzed immune infiltration characteristics and found that 
immune dysfunction was likely implicated in the pathogenesis of 
ischemic stroke. 

According to previous studies, ATP-binding cassette transporter 
member A1 (ABCA1) has been identified as a significant cholesterol 
transporter that contributes to maintaining cholesterol balance in the 
brain, thereby playing a beneficial role in cholesterol homeostasis [25]. 
A deficiency of ABCA1 or genetic dysfunction increases the risk of ce
rebrovascular diseases [26], and studies have suggested that ABCA1 
deficiency exacerbates damage to the blood‒brain barrier and white 
matter after stroke [27,28]. In addition, ABCA1 was found to be upre
gulated in ruptured atherosclerotic plaques compared with nonruptured 
plaques as a neuroprotective mechanism via the suppression of inflam
matory cytokine secretion [29]. Arginase 1 (Arg1) is an enzyme that is 
important for tissue repair under pathological conditions via micro
glia/macrophage phagocytosis. A study has shown that Arg1, as a 
downstream target of STAT6, can promote microglia/macrophage 
endocytosis and resolution of inflammation after stroke [30]. C5AR1 
(also named CD88) is a potent inflammatory response inducer, and 
studies indicate that anti-inflammatory therapies targeting C5AR1 in
hibition have obvious neuroprotective effects through neuro
inflammation and apoptosis alleviation after stroke [31–34]. Unlike the 
above three genes, there have been few studies on the correlations be
tween CKAP4, HMFN0839, SDCBP, and TLN1 and stroke, and more 
research is needed. 

We further investigated the biological functions of and critical 
pathways involving hub genes. Interestingly, both GO and KEGG studies 
indicated that the hub genes are associated with lipid localization, 
endocytosis and lipolysis, inflammation and coagulation cascades. It is 
well known that lipid accumulation and invasion into the innermost 
layer of endothelium of the large and medium-sized arteries contribute 
to atherosclerotic plaque formation. Based on the pathology, a blood clot 
caused by coagulation disorders leads to a sudden blockage of the blood 
supply to the brain tissue. Hence, anticoagulants and lipid-lowering 
drugs are the most important drugs in the treatment of stroke. For 

Fig. 10. Analysis of the correlation between DEGs expression and the infiltrating immune cells. (A) ABCA1; (B) ARG1; (C) C5AR1; (D) CKAP4; (E) HMFN0839; (F) 
SDCBP; (G) TLN1. 
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example, ApoE is the most important cholesterol transporter and is 
strongly implicated in ischemic stroke progression [35,36]. ABCA1 is 
one of the hub genes we found above, and a recent study further 
demonstrated that ABCA1 regulates ApoE and high-density lipoprotein 
(HDL) cholesterol and that the ABCA1/ApoE/HDL signaling pathway is 
beneficial for ischemic brain areas after stroke by facilitating myelina
tion and oligodendrogenesis [37,38]. Hence, a lipid-lowering strategy 
targeting ABCA1/ApoE/HDL is promising for the management of 
ischemic stroke. To date, ischemic stroke is considered a thromboin
flammatory disease. In addition to lipid-lowering therapy, anti
coagulation and anti-inflammation treatment are important for stroke. 
Since contact activation and the kallikrein/kinin system (KKS) are pro
coagulant and proinflammatory response mechanisms, preventing the 
activation of the KKS pathway protects against stroke. A recent study 
indicated that as a contact-kinin inhibitor, sylvestin protects brain tissue 
from ischemic stroke by counteracting intracerebral thrombosis and 
inflammation and does not increase the risk of bleeding [39]. Overall, 
further in-depth investigation targeting lipid lowering and 
thrombo-inflammation relief is expected to improve the prognosis of 
stroke. 

Finally, we studied the immune patterns in stroke. There is growing 
evidence that immune infiltration and the subsequent inflammatory 
response play significant roles in stroke development [40,41]. However, 
activation of the immune response has advantages and disadvantages. 
On the one hand, immune cells display protective effects by eliminating 
toxic substances and promoting brain tissue repair. On the other hand, a 
strong immune response and inflammatory cascade exacerbate tissue 
injury, while immunodepression leads to subsequent infection, both of 
which can lead to poor prognosis in stroke. Hence, immunomodulatory 
therapies are now recognized as the most promising directions in stroke 
treatment. Meanwhile, the phenotypes of immune cells at different 
stages of stroke vary and may have dual effects on the stroke outcome. 
For example, studies have shown that microglia and infiltrated macro
phages initially polarize toward a neuroprotective anti-inflammatory 
phenotype after stroke. However, over time, they gradually transform 
into a detrimental proinflammatory phenotype [42–44]. Melatonin has 
been demonstrated as a protective agent against stroke by switching the 
phenotype of microglia/macrophages to an anti-inflammatory pheno
type via the STAT3 pathway [45]. Similarly, rhFGF21 is considered an 
anti-inflammatory agent for stroke treatment by modulating the tem
poral and spatial dynamics of microglia/macrophages in ischemic brain 
areas16. Therefore, knowledge of the immune cell types, phenotypes 
and biological functions of immune cells at different stages of stroke may 
provide a theoretical basis for immune therapy for stroke. The devel
opment of bioinformatics, especially the wide application of single-cell 
sequencing technology, is expected to solve the above problems. 
Finally, although the disruption of the blood‒brain barrier provides 
opportunities for drug entry, how to efficiently deliver drugs to ischemic 
regions is also a question that is worth exploring. Currently, an 
increasing number of studies have found that immune cell 
membrane-packaged drugs and immune cell-derived exosomes can 
efficiently pass through the blood‒brain barrier and reach the ischemic 
area to promote the recovery of nerve cells [46–48]. 

In conclusion, although several novel biomarkers were identified 
beyond those in previous studies, there are still several limitations to be 
mentioned. First, our study is based on public data, and the results 
should be verified in vivo and in vitro. Second, the sample size of our 
study is small, which may result in statistical error. Third, only genetic 
factors were included when constructing the nomogram. Other clinical 
information, such as age, sex, BMI, serum lipid levels and smoking sta
tus, should be incorporated to improve the accuracy of our nomogram. 

5. Conclusion 

In summary, we identified 7 hub genes, the key regulatory pathways 
and immune infiltration characteristics of ischemic stroke based on 

comprehensive bioinformatic analysis. Furthermore, in our study, we 
successfully constructed a nomogram that can precisely predict the 
occurrence of ischemic stroke. Our findings may provide potential tar
gets and valuable perspectives for the future diagnosis and treatment of 
stroke. 
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