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Introduction

Carbon nanotubes (CNTs) are fiber-shaped substances 
that consist of graphite hexagonal mesh planes (gra-
phene sheets) in a single layer or as multiple layers with 
nest accumulation. Tubes with single-wall and multi-
wall structures are termed single-wall carbon nanotubes 
(SWCNTs) and multi-wall carbon nanotubes (MWCNTs), 
respectively. CNTs are one of the most attractive nano-
materials, because of their unique and excellent physico-
chemical properties. Currently, various applied studies 
are focusing on CNTs.

However, there is growing concern regarding the 
hazards of CNTs. Many pulmonary toxicity studies (e.g., 
inhalation exposure studies [Shvedova et  al., 2008a], 
intratracheal instillation studies [Chou et al., 2008; Lam 
et  al., 2004; Miyawaki et  al., 2008; Warheit et  al., 2004], 
and pharyngeal aspiration studies [Mangum et al., 2006; 
Shevedova et al., 2005, 2007, 2008a, 2008b]) have reported 
that multifocal granulomas or fibrotic responses were 
persistently observed in rodent lungs after SWCNT expo-
sure. MWCNT pulmonary toxicity studies also reported 
similar pulmonary responses as SWCNT exposure. 
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Abstract
The present study was conducted to assess the pulmonary and systemic responses in rats after intratracheal 
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in the lungs and lung-associated lymph nodes and not in the other tissues examined (i.e. the liver, kidney, spleen, 
and cerebrum).
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Granulomatous inflammation and fibrotic responses 
were reported in MWCNT inhalation exposure studies 
(Li et al., 2007; Ma-Hock et al., 2009; Muller et al., 2005; 
Pauluhn et al., 2009).

Most of the previous CNT toxicity studies were con-
ducted with agglomerated CNTs administrated to experi-
mental animals (Chou et  al., 2008; Lam et  al., 2004; Li 
et  al., 2007; Ma-Hock et  al., 2009; Miyawaki et  al., 2008; 
Morimoto et al., 2010; Muller et al., 2005; Mangum et al., 
2006; Pauluhn et  al., 2009; Shvedova et  al., 2005, 2007, 
2008a, 2008b; Warheit et al., 2004). However, some stud-
ies indicated that dispersed CNTs are more toxic than 
agglomerated CNTs when inhaled or instilled into the 
lungs of experimental animals (Mercer et al., 2008; Muller 
et al., 2005; Porter et al, 2010). Muller et al. (2005) reported 
that MWCNTs ground by a ball mill (average tube length: 
0.7 μm) induced greater inflammation than non-ground 
bulk MWCNTs (average tube length: 5.9 μm) after intra-
tracheal instillation in rats. Mercer et  al. (2008) reported 
that after pharyngeal aspiration exposure of mice to 
dispersed SWCNTs (average particle size: 0.69 μm) and 
non-dispersed SWCNTs (average particle size: 15.2 μm), 
thickening of the alveolar walls was observed only in the 
group exposed to dispersed SWCNTs. Porter et al. (2010) 
suggested that dispersed MWCNTs could reach the pleura 
after pharyngeal aspiration exposure in mice. These find-
ings indicate that toxicity studies using agglomerated CNTs 
may underestimate the hazards of CNTs. However, few 
toxicity studies have been performed on dispersed CNTs.

Furthermore, these studies were conducted using 
CNTs that contained substantial amounts of metal 
impurities. For example, SWCNTs containing as much as 
18% (w/w) iron were assessed in the intratracheal instil-
lation study by Shvedova et  al. (2008a), and MWCNTs 
containing approximately 0.5 % of cobalt was assessed 
in an inhalation study by Pauluhn et  al. (2009). Several 
investigators attributed some observed toxicity of CNTs 
to the metal impurities. To assess the pulmonary toxic-
ity of CNTs, toxicity studies using CNT samples with low 
impurities are necessary.

The water-assisted chemical vapor deposition method 
(denoted as “super-growth CVD” method) produces very 
pure SWCNTs (99.98%), which are very desirable for elec-
tronic applications (e.g., in super capacitor, energy stor-
age, sensing, etc.) and other potential industrial usages. 
Certain electronic applications required that CNTs be 
well-dispersed and free of metal contaminants; scien-
tists and engineers have long been trying to purify and 
disperse CNTs. Therefore, we investigated highly pure, 
well-dispersed CNT in a preparation suitable for assess-
ment of its toxicity. Measurements of pulmonary injury 
including histopathology, white blood cell counts, and 
biomarkers of oxidative stress and cytokine induction 
in bronchoalveolar lavage fluid (BALF) were conducted. 
Light microscopic and transmission electron microscopic 
examinations were also performed to evaluate transloca-
tion of SWCNTs in the lungs. Further, systemic responses 

of intratracheally instilled SWCNTs in rats were evaluated 
on the basis of histopathology.

Our study investigated the toxicity of highly pure and 
well-dispersed SWCNTs, which had not been investi-
gated, and therefore, provides an assessment of toxicity 
of SWCNTs that is not confounded by the presence of 
metals, which likely contributed to some of the previous 
measures of the toxicity of SWCNTs.

Materials and methods

Animals
Seven-week-old male Crl: CD (SD) rats were purchased 
from Charles River Laboratories Japan, Inc. (Yokohama, 
Japan). The rats were kept in an animal facility and housed 
in positive-pressure air-conditioned units (19–25°C, 
35–75% relative humidity) on a 12:12-h light/dark cycle. 
After 5 days acclimation, rats weighing 277–327 g were 
allocated to each group.

Animal experiments were performed in 2009 at the 
Kashima Laboratory, Mitsubishi Chemical Medience 
Corp. (Tokyo, Japan) in accordance with the Law for Partial 
Amendments to the Law Concerning the Protection and 
Control of Animals (2005).

This study was approved by the Institutional Animal 
Care and Use Committee of the Testing Facility and per-
formed in accordance with the ethics criteria contained 
in the by laws of the Committee of the National Institute 
of Advanced Industrial Science and Technology.

SWCNTs
SWCNTs were synthesized by the water-assisted chemical 
vapor deposition (super-growth CVD) method with iron 
as catalyst at the National Institute of Advanced Industrial 
Science and Technology, Japan. Super-growth CVD effi-
ciently produces SWCNTs and the activity and lifetime 
of the catalysts are enhanced by addition of water vapor 
(Hata et  al., 2004). SWCNTs synthesized using super-
growth CVD have relatively large diameters (1–3 nm), 
high carbon purity (above 99.98%), and high specific 
surface area (above 1000 m2/g). Super-growth SWCNTs 
are believed to be useful materials for various energy and 
material storage applications (Hiraoka et al., 2010).

Preparation of SWCNT suspension
To disperse SWCNTs in liquid for intratracheal instilla-
tion, SWCNTs (0.04, 0.2, 1.0 or 2.0 mg/mL) and 10 mg/
mL of polyoxyethylenesorbitanmonooleate (Tween 80; 
MP Biomedicals LLC, CA, USA) were added to 10 mM of 
Phosphate Buffered Saline (PBS; EMD Biosciences, Inc., 
USA) dissolved in Milli-Q water (Millipore Corporation, 
Billerica, MA, USA).Samples were sonicated using an 
ultrasonic bath for 4 h at 55 W and a frequency of 35 kHz. 
Temperature of the bath water was kept at 0–10 °C dur-
ing sonication, because flocculation of SWCNTs occurs at 
higher temperatures. The above SWCNT suspensions were 
used for intratracheal instillation the day after preparation.
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Tween 80 (10 mg/mL) in PBS (10 mM) was used as the 
negative (vehicle) control material. Min-U-Sil 5 crystal-
line silica particles (U.S. Silica Co., Berkeley Springs, WV, 
USA), which produce continuous pulmonary inflam-
mation in the lungs of rats with 5 mg/kg of intratracheal 
instillation (Kobayashi et al., 2009, 2010; Warheit et al., 
2004, 2007), were used as the positive control material. 
These negative and positive control materials were pre-
pared by sonication as described for the SWCNT suspen-
sion. The concentration of the crystalline silica particles 
was adjusted to 5 mg/mL for intratracheal instillation.

Characterization of SWCNTs
For the bulk SWCNT samples and SWCNT suspensions, 
tube morphology was evaluated on the basis of observa-
tions using a transmission electron microscope (TEM; 
JEM-1010; JEOL Ltd., Tokyo, Japan). Tube length and 
diameter of the SWCNT suspensions were measured with 
an atomic force microscope (AFM Dimension 3100 and 
Nanoscope IIIa controller,Veeco Instruments, Inc., USA). 
The Brunauer, Emmett, Teller (BET) specific surface area 
was measured by the N

2
 gas adsorption method (Belsorp-

mini II, Bel Japan, Inc., Osaka, Japan). Carbon impurities 
(i.e. amorphous carbon contents) and metal impurities 
of the bulk SWCNTs were measured by thermogravi-
metric analysis (TGA Q5000, TA Instruments, Inc., USA), 
where the samples were heated at a rate of 5°C/min in 
dry air atmosphere. Metal impurities were measured 
qualitatively and quantitatively by inductively coupled 
plasma-mass spectrometer (ICP-MS). Furthermore, the 
presence of defects in the graphene structure of the bulk 
SWCNTs and the SWCNT suspensions was evaluated by 
Raman spectroscopy (Nicolet Almega XR micro-Raman 
system, Thermo Fisher Scientific Inc., Japan). The reso-
nance Raman scattering spectra were measured in the 
frequency regions of 100–3000 cm−1 with an excitation 
wavelength of 532 nm.

Experimental design
Two intratracheal instillation experiments were con-
ducted in the present study (see Figure 1). In the first 
experiment (experiment 1), pulmonary and systemic 
responses of SWCNTs were compared with those of 
crystalline silica up to 3 months after instillation. In the 
second experiment (experiment 2), we confirmed the 
reproducibility of the results of experiment 1. In addi-
tion, a detailed dose-response relationship and revers-
ibility of the biological responses in rats intratracheally 
instilled with SWCNTs was examined up to 6 months 
after instillation.

In experiment 1, rats were anesthetized with ether, 
and 1 mL/kg body weight of 0.2 or 2.0 mg/mL of SWCNT 
suspension, 5 mg/mL of crystalline silica particle sus-
pension (positive control), or Tween 80 solution (nega-
tive control) were instilled via the mouth into the trachea 
using a 18G fluorocarbon polymer cannula (#7204, 
Fuchigami Ltd., Kyoto, Japan). This corresponded to 
doses of 0.2 and 2 mg/kg body weight of SWCNTs and 
5 mg/kg body weight of crystalline silica particles. 
Following instillation, the viability and general condi-
tion of the rats were observed once a day until dissec-
tion. The body weight of each rat was measured before 
instillation and once a week, until the animal was eutha-
nized for assessment of toxicity. The right lungs of rats 
were lavaged for biomarker assessment; the left lungs 
(after weight recorded), livers, kidneys, spleens, and 
cerebrums of these rats were histopathologically evalu-
ated at 24 h, 3 days, 1 week, 1 month (4 weeks), and 3 
months (13 weeks) after instillation. Five rats per group 
were evaluated at each time point.

In experiment 2, rats were intratracheally instilled with 
0.04, 0.2, or 1 mg/kg body weight of SWCNTs or vehicle 
control solution. Following instillation, the rats were 
examined at 3 days, 1 week, 1 month (4 weeks), 3 months 
(13 weeks) and 6 months (26 weeks) after instillation in a 

Table 1.  Characterization of bulk SWCNTs and SWCNTs dispersed in the testing solution.
Sample Characteristic Value Measuring method
Bulk SWCNTs Tube diameter 3.0 ± 1.1 nma Transmission electron microscopy (TEM)

Maximum bundle length 1200 μm Micrometer

BET surface area 1064 ± 37 m2/ga N
2
 gas adsorption

D/G ratio 0.14 Raman spectroscopy
Amorphous carbon content < 2.3 ± 0.56 %a Thermogravimetric analysis (TGA)
Total metal content 0.05 ± 0.16 %a

Each metal content  Inductively coupled plasma− Mass 
spectrometry (ICP–MS)Fe 145 ppm

Ni 103 ppm
Cr 34 ppm
Mn 2 ppm
Al 12 ppm

SWCNTs dispersed in the testing 
solution

Bundle diameter 12.0 ± 6.5 nma Atomic force microscopy (AFM)
Bundle length 0.32 μm (1.76)b

D/G ratio 0.19 Raman spectroscopy
pH 7.2 pH meter

aValues are expressed as mean ± SD.
bValues are expressed as geometric mean (geometric standard deviation).
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similar manner as experiment 1. Six rats per group were 
evaluated at each time point.

Bronchoalveolar lavage
The rats were euthanized by administration of an intra-
peritoneal injection of pentobarbital sodium (Nembutal 
injectable, Dainippon Sumitomo Pharma Co., Ltd., Tokyo, 
Japan) followed by exsanguination. The left bronchus was 
clamped with forceps and the right bronchus was cannu-
lated. Subsequently, 3 mL of heated (37 °C) saline (Otsuka 
Pharmaceutical Factory, Inc., Tokushima, Japan) was 
filled and aspirated to and from the lung to recover the 
first BALF fraction (approximately 2 mL). The supernatant 
was obtained by centrifuging the BALF at 300 × g for 5 min 
and was used for biochemical and cytokine measure-
ments. Thereafter, 2 mL of saline solution was filled and 
aspirated to and from the lung twice, and additional BALF 
(approximately 4 mL) was obtained, centrifuged at 300 × g 
for 5 min after addition to the precipitation obtained by 
centrifugation of the first BALF. The cell fraction was used 
to determine cell counts in the BALF.

BALF inflammatory cell counts
The cell fractions were suspended in saline with the addi-
tion of BSA (0.1%) and EDTA-2K (0.05 mM) dissolved in 
PBS. The number of total cells and percentages of neu-
trophils, macrophages, lymphocytes, and eosinophils 
were counted with an automatic erythrocyte analyzer 
(XT-2000iV, Sysmex Corporation, Hyogo, Japan).

BALF biomarkers measurements
Lactate dehydrogenase (LDH) and total protein (TP) 
concentrations in the supernatant obtained by centrifu-
gation of the BALF were measured with an automatic bio-
chemical analyzer (TBA-200FR, Toshiba Medical Systems 
Corporation, Tochigi, Japan). Interleukin (IL)-1α, IL-1β, 
IL-2, IL-4, IL-6, IL-10, granulocyte monocyte colony 
stimulating factor (GM-CSF), interferon (IFN)-γ, and 
tumor necrosis factor (TNF)-α concentrations were mea-
sured using a Rat Cytokine 10-Plex A Panel kit and Bio-
Plex Suspension Array System (Bio-Rad Laboratories; 
Inc., Hercules, CA, USA).

The cell fractions were also analyzed for hemeoxy-
genase (HO)-1mRNA expression with TaqMan® One-
Step RT-PCR Master Mix Reagent Kits and ABI PRISM® 
7700 Sequence Detection System (Applied Biosystems, 
Carlsbad, CA, USA).

Histopathological evaluation
The trachea, left lung, liver, kidney, spleen, and cerebrum 
were fixed with 10% (v/v) neutral phosphate-buffered 
formalin solution, embedded in paraffin, sectioned, and 
stained with hematoxylin and eosin (H&E) for histopatho-
logical evaluation under the light microscope. The histo-
pathological evaluation was performed in a blind fashion. 
Further, the results were peer reviewed by another certi-
fied veterinary pathologist. Diagnostic criteria for histo-
pathological evaluation were identical to those of our 
previous study (Kobayashi et al., 2009; 2010).

Processing of lung tissue for transmission electron 
microscope (TEM)
The right lung from one rat per group from each time 
point was prepared for transmission electron micros-
copy examination. The lung tissues were fixed using 
glutaraldehyde and osmium tetroxide solution, dehy-
drated in ethanol, and embedded in epoxy resin. The 
specimens were stained with a 2% uranyl acetate solu-
tion and 0.5% lead citrate solution at room temperature. 
Conventional TEM observation was performed within 
an H-7000 (Hitachi, Japan) at an acceleration voltage of 
80 kV. High-resolution observation was performed by an 
energy-filtering TEM method using an EM 922 (Carl Zeiss 
SMT, Germany) equipped with an OMEGA energy filter. 
Zero-loss filtering, which can increase the scattering and 
phase contrast of the TEM image, was carried out for the 
non-stained specimens.

Statistical analyses
Each of the experimental values, with the exception of 
histopathological findings, was compared to its cor-
responding control in each time point. Statistical sig-
nificance was determined using multiple comparison 
tests between the negative control and SWCNT-exposed 
groups. First, the Bartlett’s test was conducted. One-way 
layout analysis of variance was conducted when the 
variances were equal. Dunnett’s multiple comparison 
tests were conducted when the differences between the 
groups were significant. The Kruskal-Wallis test was used 
when the variances were not equal and Steel’s multiple 
comparison tests were conducted when the differences 
were significant. Statistical significance was determined 
between the positive and negative control groups using 
intergroup comparison tests. First, the F-test was con-
ducted; the Student’s t-test was used when the variances 
were equal, and the Aspin-Welch t-test was used when 
the variances were not equal. Statistical significances 
were judged at the 0.05 probability level. SAS System 
version 6.12 (SAS Institute Japan Ltd., Tokyo, Japan) was 
used for all statistical analyses.

Results

Characterization of SWCNTs
Fundamental characteristics of the bulk SWCNTs and the 
dispersed SWCNTs in the testing solution are summarized 
in Table 1. TEM and AFM images of the bulk SWCNTs and 
the dispersed SWCNTs are presented in Figure 2. Based 
on the TEM observations, all of the CNTs contained in 
the bulk samples were present as single-wall, and other 
types of CNTs, such as double-wall and MWCNTs, were 
not observed (Figures 2a–c). The diameter of the nano-
tubes was measured to be 3.0 ± 1.1 nm (mean ± SD). Total 
metal content, amorphous carbon content, and specific 
surface area were analyzed in 10 samples collected from 
different parts of the bulk material in order to evaluate 
homogeneity. Total metal content was estimated to be 
0.05 ± 0.16 % (w/w, mean ± SD) by means of measurement 
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of ash content (i.e. noncombustible remains) in TGA. 
This result demonstrated high purity of the bulk SWCNT 
material with little incorporation of metal particles that 
were used in the manufacturing process. TEM observa-
tion and quantification by ICP-MS supported this result. 
Amorphous carbon impurities are believed to be oxidized 
at lower temperatures than carbon nanotubes (NIST, 
2008). The amorphous carbon content was estimated to 
be less than 2.3 ± 0.56% (mean ± SD) from the weight loss 
at 350°C, because SWCNTs of the bulk sample began to 
be oxidized at ~500°C in the TGA. Specific surface area 
was determined to be 1064 ± 37 m2/g (mean ± SD) by BET 
method.

In the testing solutions, SWCNTs were present in bun-
dled forms due to their strong van der Waals interaction 

(Vaisman et al., 2006). In the present study, SWCNTs were 
suspended in bundled form with each bundle consisting 
of several SWCNT single fibers (Figures 2d–f). The diam-
eter and length of the SWCNT bundles were measured 
from digital images acquired by AFM (Figure 2d). After a 
measurement of 120 bundles from 10 images, the diame-
ter was determined to be 12 ± 6.5nm (mean ± SD), and the 
length was 0.32 μm (1.76) (geometric mean—geometric 
standard deviation), respectively (Table 3). The SWCNT 
length in the present study was shorter than those 
reported in Warheit et al. (2004) (>1 μm), but similar to 
those reported in Shvedova et al. (2008a) (100–1000 nm). 
In the present study, SWCNTs were easily cut into these 
lengths when dispersed into the solution by ultrasonica-
tion. Therefore, the ultrasonication time produces no 

Figure 1.  Summary of the experimental design of experiments 1 and 2. 

Figure 2.  Morphology of the bulk SWCNTs and SWCNTs dispersed in the testing solution. Panels a–c show transmission electron microscopy 
(TEM) images of bulk SWCNTs at different magnifications. Panel d shows an atomic electron microscopy (AFM) image of SWCNTs dispersed 
in the testing solution. Panels e and f show TEM images of SWCNTs dispersed in the solution at different magnifications.
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significant difference in the SWCNT length in suspen-
sion. The resonance Raman scattering spectra of the bulk 
SWCNT samples and the 0.2 and 2 mg/mL SWCNT dis-
persions are shown in Figure 4. Generally, intense soni-
cation processes to achieve homogenous dispersion of 
SWCNTs into vehicles can cause degradation in SWCNT 
quality by introducing defects in the crystalline structure 
of SWCNT and breaking it into carbon debris. In order 
to evaluate the SWCNT quality, an effective method is to 
calculate the ratio of the intensities of disorder-induced 
mode (D-band) and grapheme-induced mode (G-band), 
which appears in the Raman spectrum. The variation of 
the D/G ratio is ascribed to the change in structural dis-
order on CNT surfaces (Dillon et  al., 2005; Dresselhaus 
et al., 2005; Lee et al., 2008; Musumeci et al., 2008).In the 
present study, the D/G ratios of the bulk material and the 
dispersion solution were calculated to be 0.14 and 0.19, 
respectively, suggesting that there was only a slight drop 
in SWCNT quality of the dispersion solution.

General condition and body and lung weight
SWCNT-related clinical signs of toxicity (e.g., abnormal 
behavior, irregular respiration, and piloerection) were 

not found in any groups of rats during the observation 
period in both experiments 1 and 2. (Table 3)

Statistically significant differences in the body weights 
of experimental animals were not observed between any 
of the SWCNT or crystalline silica-exposed groups or the 
control group during the experimental period in experi-
ment 1 and 2.

Lung weight was significantly increased in the 1 mg/
kg and 2 mg/kg SWCNT-exposed groups compared to 
the control group until 3 or 6 months after instillation 
and in the 0.2 mg/kg SWCNT-exposed group until 3 days 
or 1 week after instillation (Figure 5). There was no sig-
nificant difference in lung weight between the 0.04 mg/
kg SWCNT-exposed group and control group (Figure 5). 
The lung weight of the 5 mg/kg crystalline silica-exposed 
group was not significantly increased in the present 
study, although a significant increase in lung weight 
was observed in the 5 mg/kg crystalline silica-exposed 
group in our previous study at 6 months after instillation 
(Kobayashi et al., 2010). Relative lung weight (compared 
to body weight) showed the same tendency as the abso-
lute lung weight.

Necropsy findings
No abnormality was found at any of the time points in 
the vehicle control group and the 0.04 mg/kg SWCNT-
exposed group. In the 0.2 mg/kg and higher dose of 
SWCNT-exposed groups, black spots were observed in 
the lung until 3 or 6 months after instillation. These spots 
were considered to be the pigments of the agglomerated 
SWCNTs in the lung. In all the groups, the black spots 
were not found in the other organs (i.e. the liver, kidney, 
spleen, and cerebrum) at any of the time points.

In the crystalline silica-exposed group, significant 
changes were not observed until 1 month after instilla-
tion; however, white patches were observed in the lung at 
3 months after instillation, and enlargement of the right 
peritracheobronchial and parathymic lymph nodes were 
also observed.

BALF inflammatory cells
In the SWCNT-exposed groups, the number of BALF 
inflammatory cells were increased in a dose-dependent 
manner in experiments 1 and 2 (Figure 6). In the 0.04 mg/

Figure 3.  Distribution of SWCNT bundle diameter (left) and length (right) in 2 mg/mL SWCNT dispersion measured from digital images 
acquired by atomic force microscopy.

Figure 4.  The resonance Raman scattering spectra of bulk SWCNT 
samples, and 0.2 and 2 mg/mL of SWCNT dispersions in the 
frequency regions of 100–3000 cm−1. The inset shows the spectra of 
the low frequency region. Abbreviations G and D denote G-band 
and D-band, respectively.
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Figure 5.  Absolute left lung weights of SWCNT-exposed rats and corresponding controls at each time point in experiment 1 (left) and 2 
(right). Values are represented as the mean ± SD. *Significant increase from vehicle control (p < 0.05).

Figure 6.  Number of neutrophils (a), macrophages (b), lymphocytes (c), and eosinophils (d) in BALF of SWCNT-exposed rats and 
corresponding controls at each time point in experiments 1 (left column) and 2 (right column). Values are represented as the mean ± SD. 
*Significant increase from vehicle control (p < 0.05).
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kg SWCNT-exposed group (experiment 2), almost no 
changes were observed in BALF inflammatory cells. In 
the 0.2 mg/kg SWCNT-exposed group (experiments 1 and 
2), BALF inflammatory cells increased after instillation, 
and some of them were recovered 3 or 6 months after 
instillation. In the 1 mg/kg (experiment 2) and 2 mg/kg 
(experiment 1) SWCNT-exposed groups, all the inflam-
matory cells in BALF significantly increased during the 
observation period. In the crystalline silica-exposed 
group, all the inflammatory cells in BALF significantly 
increased up to 3 months after instillation. The responses 
in the crystalline silica-exposed group were consistent 
with those observed in our previous studies (Kobayashi 
et al., 2009, 2010).

BALF biomarkers
LDH values and protein contents in BALF were sig-
nificantly greater in the 0.2 mg/kg and higher dose of 
SWCNT-exposed groups compared with those in the 
control group up to 3 months after instillation (Figures 
7a and 7b). No significant changes were observed at any 
of the time points in the 0.04 mg/kg SWCNT-exposed 
group.

Regarding the cytokine measurements, only small 
differences were observed in IL-1α, IL-2, IL-4, IL-10, 
GM-CSF, INF-γ, or TNF-α (data not shown) between the 
SWCNT or crystalline silica-exposed groups and the con-
trol group at any of the time points. Significant increases 
were observed only in IL-1β and IL-6 at several time 
points. IL-1β activity increased in the 0.2 mg/kg, 1 mg/
kg, and 2 mg/kg SWCNT-exposed groups up to 3 months 
after instillation (Figure 7c). In the 0.04 mg/kg and crys-
talline silica-exposed group, no significant changes were 
observed at any of the time points. IL-6 activity increased 
only in the 0.2 and 2.0 mg/kg SWCNT-exposed group at 
24 h after instillation in experiment 1 (data not shown).

There was no significant difference in the relative 
amounts of HO-1 mRNA in BALF, between SWCNT or 
crystalline silica-exposed groups and the control group 
at any of the time points (data not shown).

Histopathological evaluation
Table 2 summarizes the histopathological findings of the 
rats and their severity scores at each time point in experi-
ments 1 and 2. Light micrographs of lung tissue sections 
of rats at 1week (experiment 1), 3 months (experiment 1), 
and 6 months (experiment 2) after instillation are pre-
sented in Figures 8–10, respectively. For all groups, histo-
pathological changes due to the instillation exposure of 
SWCNTs or crystalline silica were observed only in the 
lungs and lung-associated lymph nodes, and not in the 
other tissues examined (i.e. the liver, kidney, spleen, and 
cerebrum). The histopathological findings of the lungs 
and lymph nodes in experiments 1 and 2 are detailed 
below.

In the control group, minimal macrophage accumu-
lation and minimal inflammatory cell infiltration in the 
alveoli was observed only at 24 h (experiment 1) and 3 
days (experiment 2) after instillation (Figures 8a, 9a and 
10a). These pulmonary inflammations were considered 
an artifact due to the instillation of 1 mL/kg liquid into 
rat lungs.

In the 0.04 mg/kg SWCNT-exposed group, pulmo-
nary responses were similar to the control group (Figure 
9b). Minimal alveolar macrophage accumulation was 
observed up to 6 months after instillation, and inflam-
matory cell infiltration was observed only at 3 days after 
instillation in the 0.04 mg/kg SWCNT-exposed group.

In the 0.2 mg/kg SWCNT-exposed group, macrophage 
accumulation in the alveoli and interstitium were 
observed up to 6 months after instillation (Figures 8b, 
9b, and 10c). Inflammatory cell infiltration in the alveoli 
was observed up to 3 months, but not at 6 months after 
instillation. The pulmonary responses of rats exposed to 
0.2 mg/kg SWCNTs were very similar between experi-
ments 1 and 2.

In the 1 mg/kg or 2 mg/kg SWCNT-exposed group, the 
grade of the pulmonary inflammation was more severe 
than the 0.2 mg/kg SWCNT-exposed group (Figures 8c, 
9c, and 10d). In addition to the histopathological findings 
observed in the 0.2 mg/kg SWCNT-exposed group, foamy 

(Continued)

Table 2.  Pulmonary histopathology severity scores* of rats in experiments 1 and 2.

Findings Time point Vehicle control group
SWCNT–exposed group

Silica–exposed group0.04 mg/kg 0.2 mg/kg 1.0 mg/kg 2.0 mg/kg
Administered 
substance 
accumulation, 
alveolus

24 h 0 – 1.0 – 3.0 0
3 d 0 1.0 1.2 2.0 2.6 0
1 w 0 1.0 1.0 1.4 2.4 0
1 m 0 0.8 1.0 1.6 1.8 0
3 m 0 0.8 1.1 1.6 2.0 0
6 m 0 0.8 1.0 1.5 – –

Administered 
substance 
accumulation, 
interstitium

24 h 0 – 0 – 1.8 1.8
3 d 0 0 0.1 1.4 0 0
1 w 0 0 0.1 1.4 1.2 0
1 m 0 0 0.1 0.6 1.2 0
3 m 0 0 0.1 1.4 2.0 1.0
6 m 0 0 0.8 1.0  –
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Table 2.  (Continued)
Inflammatory 
cell infiltration, 
alveolus

24 h 1.6 – 1.6 – 1.8 1.8
3 d 0.1 1.0 0.6 1.2 0 0
1 w 0 0 0.4 0.4 1.2 0
1 m 0.2 0 0.2 0.8 1.2 0
3 m 0 0 0.3 0.2 2.0 1.0
6 m 0 0 0 0.8 – –

Macrophage 
accumulation, 
alveolus

24 h 1.4 – 1.4 – 1.0 0
3 d 0.4 1.0 1.2 2.0 0.8 0.2
1 w 0.1 0.8 1.0 1.4 2.0 0.4
1 m 0.1 0.8 1.1 1.8 1.6 0
3 m 0.2 0.8 1.0 2.0 1.8 0.5
6 m 0 0.8 1.0 1.8 – –

Foamy 
macrophage, 
alveolus

24 h 0 – 0 – 1.0 0
3 d 0 0 0 0 0.8 0.2
1 w 0 0 0.1 0 2.0 0.4
1 m 0 0 0.1 0 1.6 0
3 m 0 0 0.1 1.6 1.8 0.5
6 m 0 0 0 1.3 – –

Macrophage 
accumulation, 
interstitium

24 h 0 – 0 – 0 0
3 d 0.2 0 0.3 1.8 1.6 0
1 w 0.1 0.2 0.3 1.0 2.4 0
1 m 0 0 0.1 0.6 1.6 0
3 m 0 0 0.1 1.4 1.8 0.5
6 m 0 0 0.8 1.0 – –

Granuloma 24 h 0 – 0 – 0 0
3 d 0.2 0.2 0.3 2.0 1.4 0
1 w 0 0 0 1.0 2.2 0
1 m 0 0 0 0.4 0.8 0
3 m 0 0 0 0.6 1.6 0.3
6 m 0 0 0 0 – –

Foreign body giant 
cell

24 h 0 – 0 – 0 0
3 d 0 0 0 0 0 0
1 w 0 0 0 0 0 0
1 m 0 0 0 0 0.6 0
3 m 0 0 0 0 0.8 0
6 m 0 0 0 0 – –

Hypertrophy 
of alveolar 
epithelium

24 h 0 – 0 – 0 0
3 d 0 0 0 0 1.6 0
1 w 0 0 0 0 1.6 0
1 m 0 0 0 0 1.0 0
3 m 0 0 0 0 2.0 0.8
6 m 0 0 0 0 – –

Hypertrophy 
of bronchial 
epithelium

24 h 0 – 0 – 1.0 0
3 d 0 0 0 0 0.8 0
1 w 0 0 0 0 1.6 0
1 m 0 0 0 0 0 0
3 m 0 0 0.1 1.0 0.8 0
6 m 0 0 0 0.5 – –

Alveolar 
proteinosis

24 h 0 – 0 – 0 0
3 d 0 0 0 0 0.6 0
1 w 0 0 0 0 1.4 0
1 m 0 0 0 0 1.8 0
3 m 0 0 0 0 2.4 1.3
6 m 0 0 0 0 – –

*: Severity scores given to individual animals from a complete pathological examination are 0, not remarkable; 1, minimal; 2, slight/mild; 
3, moderate; and 4, severe; based upon relative evaluation of lesions. Severity scores for each animal within a group (5 or 6 rats) were 
added, and an average score per animal was calculated, which is shown in the table.
–: Not evaluated.
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alveolar macrophages, hypertrophy of alveolar and bron-
choalveolar epithelium, granuloma, and foreign body giant 
cells were persistently observed. In addition, pulmonary 
proteinosis seems to be induced in these groups on the 
basis of light microscopic observation (Figures 9d and 10d).
In the 1 mg/kg or 2 mg/kg SWCNT-exposed group, revers-
ibility of the pulmonary inflammation was not observed 
during the observation period in the present study.

In the crystalline silica-exposed group, accumulation 
of alveolar macrophages accompanying foamy mac-
rophage in the alveoli, macrophage infiltration in the 
interstitium, inflammatory cell infiltration in the alveoli, 
hypertrophy of alveolar epithelium, and granuloma were 
persistently observed (Figures 8d and 9d). Reversibility 
of the pulmonary inflammation was not observed during 
the observation period in the present study.

The severity of the inflammatory responses evaluated 
based on histopathology was consistent with that of BALF 
inflammatory cells and biochemical measurements.

Transmission electron microscopy (TEM) observation 
of SWCNTs deposited in the lungs
On the basis of TEM observation, SWCNTs deposited in 
the lungs were observed as they were phagocytosed by 

alveolar macrophages or macrophages in the interstitial 
tissues at any of the time points (Figure 11). SWCNTs 
in the lungs were presented in a form similar to the test 
solution. Individual SWCNTs in the cells of the interstitial 
tissue were not observed.

Discussion

In the present study, the pulmonary and systemic 
responses of highly pure, well-dispersed, and well-char-
acterized SWCNTs were examined after intratracheal 
instillation in rats. Exposure to SWCNTs up to 2 mg/kg 
did not produce mortality, changes in clinical signs, or 
body weights during the observation period. Pulmonary 
inflammatory responses based on the lung weight, BALF 
inflammatory cells, and biochemical parameters such as 
LDH value, protein contents, and IL-1β and IL-6 activi-
ties, and histopathological changes were observed dose-
dependently. In the 0.04 mg/kg SWCNT-exposed group, 
almost no changes were observed during the observa-
tion period. In the 0.2 mg/kg SWCNT-exposed group, 
pulmonary inflammatory responses were observed after 
instillation. In the 1 mg/kg and 2 mg/kg SWCNT-exposed 
group, enhancement of the pulmonary inflammation and 

Figure 7.  LDH value (a), protein content (b), and IL-1βactivity (c) in BALF of SWCNT-exposed rats and corresponding controls at each time 
point in experiments 1 (left column) and 2 (right column). Values are represented as the mean ± SD. *Significant increase from vehicle 
control (p < 0.05).
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Figure 8.  Light micrographs of lung tissue sections of rats at 1week after instillation in experiment 1 (H&E stain). No significant changes 
were observed in the vehicle control group (panel a). Minimal macrophage accumulation was observed in the alveoli of the 0.2 mg/kg 
SWCNT-exposed group (panel b). Moderate macrophage accumulation accompanied with foamy macrophages and mild inflammatory cell 
infiltration in the alveoli, and moderate macrophage infiltration and granuloma in the interstitium were observed in the 2.0 mg/kg SWCNT-
exposed group (panel c). Minimal macrophage accumulation was observed in the alveoli of the crystalline silica-exposed group (panel d).

Figure 9.  Light micrographs of lung tissue sections of rats at 3 months after instillation in experiment 1 (H&E stain). No significant changes 
were observed in the vehicle control group (panel a). Minimal macrophage accumulation was observed in the alveoli of the 0.2 mg/kg SWCNT-
exposed group (panel b). Moderate macrophage accumulation accompanied with foamy macrophages, mild inflammatory cell infiltration in 
the alveoli, mild macrophage infiltration and granuloma in the interstitium, and mild hypertrophy of alveolar epithelium were observed in the 
2.0 mg/kg SWCNT-exposed group (panel c). Mild macrophage accumulation accompanied with foamy macrophages, minimal inflammatory 
cell infiltration in the alveoli, and minimal hypertrophy of alveolar epithelium were observed in the crystalline silica-exposed group (panel d).
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Figure 10.  Light micrographs of lung tissue sections of rats at 6 months after instillation in experiment 2 (H&E stain). Minimal macrophage 
accumulation was observed in the alveoli of the vehicle control group (panel a). Minimal macrophage accumulation was observed in 
the alveoli of the 0.04 mg/kg SWCNT-exposed group (panel b). Minimal macrophage accumulation in the alveoli and interstitium were 
observed in the 0.2 mg/kg SWCNT-exposed group (panel c). Mild macrophage accumulation accompanied with foamy macrophages 
and minimal inflammatory cell infiltration, minimal macrophage infiltration in the interstitium, and minimal hypertrophy of alveolar 
epithelium were observed in the 1 mg/kg SWCNT-exposed group (panel d).

Figure 11.  TEM images of SWCNTs deposited in lungs of rats exposed to 2.0 mg/kg SWCNTs at 1 month (panels a–c) and 3 months (panels 
d–f ) after instillation at different magnifications. At any of the time points, SWCNTs deposited in the lungs were typically phagocytosed by 
alveolar macrophages or macrophages in the interstitial tissues.
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subsequent granuloma accompanied by increased lung 
weights were observed. Furthermore, the histopatho-
logical findings in the lungs of rats exposed to SWCNTs 
showed inflammatory responses related with the vital 
reaction to the foreign substance that was instilled 
intratracheally.

In all the groups, other cytokines (i.e. IL-1α, IL-2, IL-4, 
IL-10, GM-CSF, INF-γ, and TNF-α) and HO-1 levels in the 
BALF were not significantly increased. SWCNTs deposited 
in the lungs were observed, as they were phagocytosed by 
alveolar macrophages or macrophages in the interstitial 
tissues at any of the time points. Individual SWCNTs in the 
cells of the interstitial tissue were not observed. SWCNTs 
were not found in the other organs (i.e. the liver, kidney, 
spleen, and cerebrum) at any of the time points.

A small number of reports are available that assessed 
the pulmonary toxicity of SWCNTs. However, most of 
the previous studies were conducted with agglomer-
ated SWCNTs or SWCNTs containing relatively high 
impurities.

The pulmonary responses of SWCNTs were examined 
after intratracheal instillation in rats, and transient inflam-
matory and cell injury effects were observed in 1 or 5 mg/
kg SWCNT-exposed rats at 3 months after instillation 
(Warheit et al., 2004). The major airways were mechani-
cally blocked by the agglomerated SWCNTs at a dose of 
5 mg/kg and led to suffocation in 15% of the CNT-exposed 
rats. Non-dose-dependent pulmonary responses due 
to instillation of SWCNTs were reported (Warheit et al., 
2004), although the severity of the lesions on histopatho-
logical examination of rat lungs was dose dependent in 
the present study, suggesting that the dispersion state of 
SWCNTs is an important factor for SWCNT toxicity. Lam 
et  al. (2004) examined the pulmonary effect of a single 
dose of SWCNT (17 mg/kg) after intratracheal instil-
lation by an incision of ventral neck skin in mice. They 
reported that deaths occurred 4 to 7 days after instillation 
of the SWCNTs containing Ni and Y; however, no deaths 
occurred in animals exposed to two SWCNT products that 
contained iron; the authors attribute the death to Ni toxic-
ity (Lam et al., 2004, 2006). Inflammatory responses and 
granuloma formation were also reported in their study. 
The pulmonary responses of SWCNTs were also exam-
ined after intratracheal instillation in mice (Chou et al., 
2008). As a result, the pulmonary inflammatory response 
was observed in 0.5 mg SWCNT-exposed at 2 weeks after 
instillation. Shvedova et al. (2005) noted that pharyngeal 
aspiration of SWCNTs containing as much as 18% (w/w) 
iron in mice induced acute inflammation and intersti-
tial fibrosis in the lungs, and suggested that the fibrotic 
response might differ from the mechanisms proposed 
for chronic activation of alveolar macrophages. Shvedova 
et al. (2007, 2008b, 2009) interpreted that the pulmonary 
responses induced by SWCNT exposure were enhanced 
in NADPH oxidase-deficient mice, vitamin E-deficient 
mice, and suggested that oxidative stress might participate 
in the pulmonary toxicity of CNTs. In the present study, 
pulmonary inflammatory responses were induced even 

at 3 or 6 months after instillation in 1 mg/kg and higher 
doses of SWCNT-exposed groups. Granulomas were also 
observed in the interstitium through observation periods 
in those groups of rats. Progressive lung tissue thicken-
ing responses were observed in the highest dose (2 mg/
kg) of SWCNT-exposed group. However, fibrosis, atypical 
lesion, or tumor-related findings were not observed in all 
groups up to 6 months after instillation. Purity of SWCNT 
samples, particularly metal impurity is also an important 
factor for SWCNT toxicity.

Some studies reported that surface area and particle 
number determinations appear to play important roles 
in facilitating ultrafine particle-related lung toxicity 
(e.g., Donaldson et  al., 2001; Oberdörster et  al., 2005). 
In the present study, pulmonary deposition amounts of 
SWCNTs were calculated in terms of the SWCNT mass, 
surface area, and particle numbers. The pulmonary depo-
sition amount of SWCNTs in this study was considered to 
be the same as the instilled dose of the SWCNTs (i.e. 0.04, 
0.2, 1.0, and 2.0 mg/kg). Based on the mean BET surface 
area of the bulk SWCNT samples (1064 m2/g), the doses 
can be expressed in terms of the CNT surface area dose, 
which are 0.04, 0.2, 1.0, and 2.0 m2/kg, for doses of 0.04, 
0.2, 1.0, and 2.0 mg/kg, respectively. Furthermore, based 
on the length of the SWCNT samples per 1 g (1.4 × 1011 
m/g and assuming that the tube diameter and length 
are uniform (3.0 nm and 0.32 μm, respectively), and that 
SWCNTs dispersed in the suspension formed SWCNT 
bundles consisting of 10 individual tubes, the doses can 
also be expressed in terms of particle numbers, which are 
1.8 × 1012, 8.8 × 1012, 4.4 × 1013, and 8.8 × 1013 particle/kg for 
doses of 0.04, 0.2, 1.0, and 2.0 mg/kg, respectively. In con-
trast, based on the BET surface area (5.0 m2/g), average 
diameter (1.7 μm), and density (2.65 g/cm3) of Min-U-Sil 
5 crystalline silica particles, surface area and particle 
number dose in 5 mg/kg of crystalline silica-exposed 
group can be calculated as 0.025 m2/kg and 7.3 × 108 par-
ticle/kg, respectively. Inflammatory responses induced 
by a relatively low dose (in terms of mass dose) of SWCNT 
exposure may be relevant to high surface area and high 
particle number doses.

We have also conducted an inhalation exposure study 
with the same SWCNTs in rats for 4 week (6 h/day, 5 day/
week) and then examined at 3 days, 1 week, and 3 months 
after exposure (Morimoto et al., submitted). Pulmonary 
deposition of SWCNTs in the inhalation study was esti-
mated to be 0.014 and 0.06 mg/kg in groups of rats exposed 
to low (0.03 ± 0.003 mg/m3) and high (0.13 ± 0.03 mg/m3) 
concentrations of SWCNTs. As a result, an adverse effect 
(i.e. inflammation) was not observed in either low or high 
concentration of SWCNT-exposed groups. Therefore, we 
have concluded that the 0.13 mg/m3 of SWCNT concen-
tration and 0.059 mg/kg of pulmonary deposition may 
correspond to no observed adverse effect level (NOAEL) 
for the acute period (Morimoto et al., submitted).

This result was consistent with our present intratra-
cheal instillation study, assuming that pulmonary toxicity 
depends on the maximum deposition amount in lung. 
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The deposited amount of SWCNTs in the 0.04 mg/kg 
SWCNT-exposed group in the present study was almost 
the same as the high concentration-exposure group in the 
inhalation study (0.06 mg/kg). In the 0.04 mg/kg SWCNT-
exposed group, inflammatory response was only observed 
at 3 days after instillation. In contrast, 0.2 mg/kg of SWCNT 
instillation exposure induced pulmonary inflammatory 
response after instillation, and a dose of more than 1 mg/kg 
of SWCNTs induced persistent pulmonary inflammation 
for up to at least 6 months after instillation. These results 
indicate that pulmonary inflammation was induced with 
increased pulmonary deposition of SWCNTs.

Conclusions

Intratracheal instillation of highly pure and well-dispersed 
SWCNTs in rats induced inflammatory responses in 
the lungs in a dose-dependent manner (see Table 3). 
However, this inflammatory response was not induced in 
other tissues (i.e. the liver, kidney, spleen, and cerebrum). 
Progressive lung tissue thickening responses were observed 
in the highest dose (2 mg/kg) of SWCNT-exposed group. 
However, fibrosis, atypical lesion, or tumor-related findings 
were not observed in all groups up to 6 months after instil-
lation. SWCNTs did not induce pulmonary inflammation 
at 0.04 mg/kg (corresponding to approximately 0.04 m2/kg 
or 2.2 × 1012 fiber/kg) of pulmonary deposition. The present 
study is applicable to judge a NOAEL of highly pure and 
well-dispersed SWCNTs.
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