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A B S T R A C T

Background and purpose: In many clinics, positron-emission tomography is unavailable and clinician time 
extremely limited. Here we describe a deep-learning model for autocontouring gross disease for patients un-
dergoing palliative radiotherapy for primary lung lesions and/or hilar/mediastinal nodal disease, based only on 
computed tomography (CT) images.
Materials and methods: An autocontouring model (nnU-Net) was trained to contour gross disease in 379 cases 
(352 training, 27 test); 11 further test cases from an external centre were also included. Anchor-point-based post- 
processing was applied to remove extraneous autocontoured regions. The autocontours were evaluated quan-
titatively in terms of volume similarity (Dice similarity coefficient [DSC], surface Dice coefficient, 95th percentile 
Hausdorff distance [HD95], and mean surface distance), and scored for usability by two consultant oncologists. 
The magnitude of treatment margin needed to account for geometric discrepancies was also assessed.
Results: The anchor point process successfully removed all erroneous regions from the autocontoured disease, and 
identified two cases to be excluded from further analysis due to ‘missed’ disease. The average DSC and HD95 
were 0.8 ± 0.1 and 10.5 ± 7.3 mm, respectively. A 10-mm uniform margin-distance applied to the autocon-
toured region was found to yield “full coverage” (sensitivity > 0.99) of the clinical contour for 64 % of cases. 
Ninety-seven percent of evaluated autocontours were scored by both clinicians as requiring no or minor edits.
Conclusions: Our autocontouring model was shown to produce clinically usable disease outlines, based on CT 
alone, for approximately two-thirds of patients undergoing lung radiotherapy. Further work is necessary to 
improve this before clinical implementation.

1. Introduction

Lung cancer is the leading cause of cancer deaths worldwide [1], and 
evidence-based estimates indicate that about three-quarters of all lung 
cancer patients would derive clinical benefit from treatment with 
radiotherapy to improve survival, reduce disease progression, or palliate 
the debilitating symptoms from progressive disease [2].

Computed tomography (CT) based radiotherapy requires that clini-
cally relevant anatomic structures be contoured on the planning CT 
scan, including the gross tumour volume (GTV) and normal tissues at 
risk of significant radiation exposure. Contouring is a critical aspect of 

radiotherapy treatment planning, which typically requires significant, 
time-consuming manual effort by clinicians and is subject to significant 
inter-user variabilities [3,4].

Automation of contouring has been identified as a solution that may 
address this challenge with respect to achieving more consistent, high- 
quality treatment and reducing the burden on clinical teams from 
these labour-intensive processes, enabling more efficient workforce 
allocation to other tasks in the radiotherapy pathways.

Although positron-emission tomorgraphy (PET) imaging can provide 
important information when contouring lung disease, this imaging 
modality is unavailable in many clinics across the world. There is a need, 
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therefore, to develop autocontouring solutions which are based only on 
the radiotherapy planning CT scan. In this work specifically, we aimed 
to develop a deep-learning model for autocontouring gross lung disease. 
The principal target group for the model is patients undergoing pallia-
tive radiotherapy for primary lung lesions, with or without nodal 
involvement; if successful, the model could be considered for inclusion 
in a future version of the Radiation Planning Assistant automated 
treatment planning tool, which is being developed with the same ethos 
and goals in mind [5]. Although many researchers have described efforts 
to auto-contour lung tumors [6–10], we believe that ours is the first to 
focus on palliative radiotherapy using only CT images. Our long-term 
goal is to make automated contouring and planning available to clin-
ical teams in low- and middle-income countries, helping them scale their 
efforts to treat more patients and potentially reducing the gaps in access 
to and quality of radiotherapy across the world.

2. Materials and methods

2.1. Datasets

A dataset was first created from patients treated at a single institution 
(Guy’s and St. Thomas’ NHS Foundation Trust, GSTT) from August 2016 
through March 2021, and from October 2021 through October 2022. All 
data and images were reviewed by a dosimetrist or medical physicist, 
who consulted on a case-by-case basis with other members of the clinical 
team, including a thoracic oncology registrar (resident) and specialist 
consultants, to establish the final cohort using the inclusion/exclusion 
criteria stated in Table 1.

This procedure resulted in a final dataset of 379 cases (231 radical, 
148 palliative), which was randomly split by using a readily available 
Python-based pseudo-random number generator into 352 training/ 
cross-validation : 27 testing. Most of the testing cases (15 of 27) were 
primary tumor only (T0) and most of the other cases (9 of 12) had 
ipsilateral nodal disease (N1/2). The final testing set was supplemented 
with 11 additional cases from a second institution (Tygerberg Hospital, 
South Africa) according to the same inclusion/exclusion criteria, 

providing a total of 38 patients as a final testing set. All data extraction 
and analyses were approved by the ethics committee at the treating 
institution.

2.2. Autocontouring

An autocontouring model was trained with the nnU-Net architecture 
(v 1.7) [11], using the default values of the nnU-Net-determined rules- 
based hyperparameters. This architecture was selected because of its 
high level of success reported in the literature [12,13]. The input data 
for training was the CT images, original clinical GTV contours, and 
standard organs at risk (lungs, heart, esophagus and spinal cord). Images 
were resized, windowed, and z-normalized during pre-processing using 
parameters automatically determined by the nnU-Net framework. 
Training began with the He initialization and stochastic gradient descent 
using Nesterov momentum [14]. We used nnU-Net’s default hyper-
parameters [11]: 5-fold cross-validation, initial learning rate 0.01, 
combined Dice and cross-entropy loss, SGD optimizer with Nesterov 
momentum (μ = 0.99), batch size 2, and 1000 epochs. Data augmen-
tation included rotations, scaling, noise, blur, brightness/contrast ad-
justments, and mirroring. The framework automatically optimized 
patch size, network depth, and features per layer.

During early development of the model, the autocontouring models 
were found to identify volumes that are distinct from those that the 
physician originally treated, particularly in the setting of multifocal 
bilateral disease. Because the eventual goal of this work is to develop a 
single-step, end-to-end workflow that includes contouring and radio-
therapy treatment planning without the need for human intervention, 
the potential for mistaken identification of disease regions is a signifi-
cant risk factor with severe consequences (i.e., treating the wrong vol-
ume). Therefore, we introduced the use of target-region anchor points, 
as illustrated in Fig. 1. These points would be used by the clinician at the 
pre-planning stage to identify regions that they wish to treat. Any 
autogenerated volumes that do not intersect with an anchor point may 
then be automatically removed. This approach gives the physician full 
control over which regions are auto-contoured for treatment. For the 
purposes of generating data for this current study, anchor points were 
placed by a medical physicist, in approximately the center of the original 
clinical volumes (that is, the clinical volumes were used by the physicist 
to ensure that the anchor points were placed in the region(s) that the 
original physician intended to treat).

2.3. Quantitative evaluation

Automatically generated contours were evaluated by comparing 
them with the contours created by clinicians (“clinical contours”) using 
four common geometric and volumetric similarity metrics: Dice simi-
larity coefficient (DSC), 95th percentile Hausdorff distance (HD95), 
mean surface distance (MSD), and surface Dice coefficient (SDC) with 2- 
mm tolerance [15–18].

Uncertainties are commonly accounted for during radiotherapy 
planning by expanding the outlined structure by a certain margin. 
Although these expansions are generally determined based on setup and 
motion, they also account for contouring variations. The use of margins 
was investigated by applying a series of uniform margins to each auto- 
contour, ranging from 2 mm to 30 mm. The expanded structure was 
then compared with the clinical volume, and pixel-wise sensitivity was 
calculated. The expanded structure was considered to ‘fully cover’ the 
clinical structure when sensitivity > 0.99 was achieved.

2.4. Subjective evaluation

All test cases were anonymized and reviewed independently by two 
consultant clinical oncologists and scored on a 4-point scale: (1) unus-
able, (2) major edits necessary, (3) minor edits necessary, (4) use as-is 
(no edits necessary). The reviewers were provided with radiological 

Table 1 
Inclusion and exclusion criteria for the training/testing dataset.

Inclusion criteria

Clinical intent Treatment of lung cancer (or other thoracic malignancy 
involving the lung, e.g., lymphoma), including associated 
hilar/mediastinal malignant lymphadenopathy

Imaging Planning CT scan with clinician-outlined CT-visible gross 
disease: this included lung tumor(s) and any involved 
lymph nodes 
When valid clinical contours were available for any of a set 
of standard thoracic organs at risk (OARs; i.e., lungs, heart, 
oesophagus and spinal cord), these were also included as 
inputs during training

Exclusion criteria

Disease location Treatment of supraclavicular fossa / neck nodes
Treatment approach Receipt of adjuvant radiotherapy after surgery
Target visibility Some portion of treated disease was identified solely via 

positron emission tomography (PET) or endobronchial 
ultrasound and outlined on the basis of these findings 
Lesion edge could not be visually distinguished from 
adjacent non-lung tissues or lung abnormalities (e.g., such 
as collapse-consolidation or atelectasis) 
Tumor maximum dimension < 1 cm

Target selection Additional tumour and/or nodal disease region(s) present 
and visible on the scan but excluded from the treatment 
plan outlining (i.e., cases in which radiotherapy was not 
intended to cover all gross disease, or specific disease 
regions were treated with separate plans & CT scans)

Incomplete target 
contouring

Some/all treated disease was not contoured during 
radiotherapy planning (e.g., when treatment involved 
simple field placement and accurate disease outlining was 
not undertaken)
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staging information and the positions of the pre-planning anchor-points, 
but not the original clinical target outlines or any information from the 
diagnostic imaging.

3. Results

3.1. Use of anchor points

The autocontouring model identified a total of 77 discrete regions 
across the 38 test cases. Of these, 29 regions were correctly removed by 
the use of anchor points; the remaining 48 autocontoured regions were 
all correctly-identified discrete lesions or nodal regions. In 2 of the 38 
test cases (5 %), the model did not contour a volume that encompassed 
an anchor point—that is, it contoured a completely different region not 
contiguous with the intended treatment location. Those two cases were 
excluded from further quantitative analysis, on the basis that the pres-
ence of ‘missed’ anchor points in the predicted GTV could be easily 
detected and excluded as part of built-in quality-control self-checks in 
any future deployment of this model.

Over the remaining 36 test cases, the autocontoured outline for 3 of 
the 48 volumes across 3 separate test cases (8 %) were found to represent 
only a partial visual match to the overall clinical contour (based on 
shape and location), in such a way that the ability of anchor points to 
accept/reject an autocontour was judged to be limited and may depend 
on the exact location of the anchor point in question. That is, the medical 
physicist subjectively determined that a manually-placed anchor point 
would likely be positioned outside the automatically identified 
structure.

3.2. Quantitative evaluation

The results of the geometric evaluation are illustrated in Fig. 2. The 

average DSC was 0.78 ± 0.10 and HD95 was 10.5 ± 7.3 mm. The box 
plots show close-to-normal distributions with relatively little skew for 
both the DSC and SDC, but with a significantly greater spread in the SDC 
than in the DSC. This indicates that variations at the level of surface 
changes around the contour edge are more pronounced, compared with 
the relatively high level of overall volumetric agreement between the 
clinical and autocontoured outlines.

Conversely, the distributions of HD95 and MSD showed significant 
positive skew, with the mean being greater than the median for both. 
This was predominantly due to a small number of outlier cases that had 
particularly large discrepancy distances: for example, if the two most 
extreme anomalous cases are discounted, the adjusted average HD95 
would be 9.3 ± 5.5 mm.

When data were separated by origin (GSTT and Tygerberg), the 
average DSC was 0.80 ± 0.11 and 0.76 ± 0.07, respectively. Similarly, 
SDC was 0.59 ± 0.20 and 0.43 ± 0.10; HD95 was 8.6 ± 5.7 
mm and 14.7 ± 9.3 mm; and MSD was 2.6 ± 1.5 mm and 4.0 ± 1.9 mm. 
These data indicate that the model performs best on the same patient 
population as was used for training (i.e., GSTT data) but that reasonable 
performance is maintained when tested on an outside dataset (i.e., 
Tygerberg data).

Fig. 3 shows the effect of adding different uniform margins around 
the autocontour. For 23 of the 36 cases analysed (64 %), a 10-mm 
margin was sufficient to cover the clinical contour; while an asym-
metric margin at 10 mm in the lateral and anterior-posterior (AP) di-
rections and 15 mm in the superior-inferior direction would cover 25 of 
36 cases (69 %), as seen in Fig. 3. Two illustrative exemplar cases are 
also shown: the first (A) is a typical case in which the standard planning 
margin would lead to adequate target coverage; the other (B) is an 
example where the autocontour does not match the clinical contour 
well. Notably, the purpose of this exercise was to assess whether margins 
could potentially account for variations in the autocontours, and does 
not consider any of the other factors that are included when determining 
clinical planning margins (for example, patient motion or setup 
uncertainties).

3.3. Subjective evaluation

Twenty-one of the cases reviewed (58 %) were scored as 4 (no edits) 
by both reviewers. Thirty-five (97 %) were scored either 3 (minor edits) 
or 4 (no edits). The single remaining case was scored 1 (unusable). The 
level of overall agreement between the two reviewers was very high, 
with 30 of the 36 cases (83 %) receiving the same score. The DSC and 
HD95 for the failed case was 0.7 and 34 mm, respectively; although DSC 
was within the same range as found for all other cases, HD95 was 
significantly outside that range.

Fig. 1. Illustration of the use of anchor points (GT: Ground Truth).

Fig. 2. Box plots showing the results of the quantitative evaluation of the 
autocontours.
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4. Discussion

This work showed that a commonly-used deep learning architecture 
can be applied to the autocontouring of radiotherapy targets for the 
treatment of lung cancer, using CT images alone. Of the 36 test cases 
reviewed (after filtering out cases in which known regions of disease 
were ‘missed’ by the autocontoured outlines), 97 % were subjectively 
scored by our clinicians as requiring no more than minor edits. The cases 
used were representative of those typically treated in clinical practice, 
including 11 from South Africa (an independent data set).

The validity of using pre-planning anchor points as a simple and 
robust method for removing unintended regions from the auto- 
generated target contours was also demonstrated: the anchor- 
points–based post-processing successfully removed all incorrectly 
identified disease regions from the autocontoured outlines across the 
test set, as well as providing a means of quickly identifying and 
excluding cases in which the autocontouring had ‘missed’ true disease 
regions. This is particularly important if the autocontouring model is to 
be incorporated into an autoplanning workflow, because incorrect 
contouring could result in treatment of incorrect volumes. The use of 
PET imaging may reduce the need for this human input, but PET is not 
available for many cancer patients, especially in limited-resource set-
tings or when the goal of the treatment is palliation. Three cases were 
manually identified for which the anchor point would have likely not 
resulted in the correct identification of the target structure. Two of these 
were relative small/narrow shaped targets (nodal disease), where it was 
thought that small variations in the location of the anchor point could 
affect the success of the use of the anchor point. Quantitative assessment 
for these cases found that the geometric metrics (DSC, etc.) were not 
outliers, and could not guide these subjective assessments. For these 
cases, there is simply a high likelihood that the autocontours would be 
incorrectly rejected (based on anchor placement). Additional ap-
proaches for using anchor points are also possible and may give different 
results, including cropping the image around an anchor point before 
training/inference or providing the anchors in a separate channel in the 
nnU-Net.

Many reports have been published on autocontouring for lung cancer 
planning, most of which focus on OARs (lungs, esophagus, spinal cord, 
heart, etc.) and generally show good agreement between autogenerated 
and manual contours [3,19,20]. Published work on the autocontouring 
of lung tumors generally shows DSC values similar to those reported 
here. For example, Gan et al [7] reported an average DSC of 0.72, Fer-
rante et al [6] reported 0.78, and Hosny et al [8] reported 0.83, although 

variations in datasets and study methodologies make direct comparisons 
challenging. Other researchers report similar, or worse, results [9], 
although again variations in datasets and study methodologies make 
direct comparisons challenging. Others have taken advantage of addi-
tional imaging modalities, such as PET, to give impressive DSC (0.83) 
and clinical acceptability [10], but we focused on CT because many 
clinics are unlikely to have access to these modalities.

This work also provided evidence that a standard treatment margin 
may be used to account for contouring uncertainties such that about 
two-thirds of cases could be planned without edits. Treatment planning 
margins are commonly used in radiotherapy to account for uncertainties 
and motion of the target. These include an internal margin to account for 
variations in location of the target due to, for example, respiratory 
motion, and an additional margin to account for other uncertainties such 
as contouring and target alignment. Systematic uncertainties (such as 
those from contouring) tend to dominate the size of the necessary 
margin. In short, determining the appropriate margin is complicated and 
is beyond the scope of this study, which did not consider most of these 
uncertainties. Thus, the margin presented above is not the final treat-
ment margin, but serves more as an illustration of how uncertainties in 
the autocontour (and potentially the clinical contour) can be accounted 
for by using margins, and the required magnitude of such margins. 
Further work is necessary to determine how to safely apply this 
approach to an automated contouring/planning workflow. The degree 
to which margins can or should be used will also depend on the treat-
ment approach. Simple techniques such as AP: posterior-anterior (PA) 
are more robust to variability/uncertainty in target contouring than are 
highly conformal techniques such as intensity-modulated radiation 
therapy or volumetric modulated arc therapy, especially for hypo-
fractionated treatment.

An important aspect of our findings was that the subjective review 
was not just unambiguously positive, but also consistent between our 
two clinician reviewers. Although others have noted that expert seg-
mentation style and preference may affect clinical utility for lung tumor 
contouring [8] and even for normal tissue contouring [21], we found a 
high level of agreement between the two consultants. Overall, nearly 60 
% of the autocontours were scored as acceptable without any edits 
required by both of our oncologist reviewers. The quantitative results 
were similar in that about 70 % of cases would have achieved full target 
dose coverage if a realistic treatment margin were applied.

Although testing was performed using CT datasets from two different 
institutions, this does not necessarily mean the results would be main-
tained at other locations, where CT image quality and/or patient 

Fig. 3. The percentage of test cases for which the autocontour, expanded by a test margin, covers the clinical contour, as a function of margin distance. The right 
panel shows two example cases.
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populations may be different. Our experience suggests that CT image 
quality will not be the major driver for any differences, partly because 
operational CT scanners tend not to generate poor images and partly 
because deep learning–based autocontouring is not overly sensitive to 
the CT parameters, as long as they are kept to a reasonable range. Patient 
populations, however, can vary widely, and we have less experience 
with this. As is true for all clinical tools, extensive testing on a wide 
patient population will be necessary before clinical deployment.

Whilst these findings do suggest that the remaining cases would need 
some modification before use, the time savings may still be substantial. 
In similar work involving fully automated radiotherapy for post- 
mastectomy breast treatments, edits were found to be needed for 
about 50 % of cases, but those edits could be made in 12–13 min, which 
is much shorter than the 2 h needed for a treatment planner to generate a 
plan from scratch [22]. We can expect similar results for lung planning 
using our model.

In order to use this tool clinically, it must first be integrated into an 
appropriate interface, such as a commercial treatment planning system, 
or the Radiation Planning Assistant which has been developed specif-
ically to support clinics with limited resources [5,23], followed by an 
implementation study to establish the optimal way to ensure that the 
tool is used clinically. Of particular interest is whether the auto- 
contouring quality is sufficient to be beneficial in clinical use.

In conclusion, our autocontouring model was shown to produce 
clinically usable disease outlines, based on CT alone, for approximately 
two-thirds of lung radiotherapy cases. Although this model is not suffi-
cient for use in an independent end-to-end autocontouring process, it 
may be applicable as a starting point for automated planning, provided 
that adequate manual oversight from suitably-trained clinicians is 
included in the overall process.
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