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Abstract: Liquid biopsy has emerged as a promising non-invasive way to diagnose tumor and
monitor its progression. Different types of liquid biopsies have different advantages and limitations.
In the present research, we compared the use of two types of liquid biopsy, extracellular vesicle-
derived DNA (EV-DNA) and cell-free DNA (cfDNA) for identifying tumor mutations in patients
with colon carcinoma. Method: DNA was extracted from the tumor tissue of 33 patients diagnosed
with colon carcinoma. Targeted NGS panel, based on the hotspots panel, was used to identify tumor
mutations. Pre-surgery serum and plasma were taken from the patients in which mutation was found
in the tumor tissue. Extracellular vesicles were isolated from the serum followed by the extraction
of EV-DNA. CfDNA was extracted from the plasma. The mutations found in the tumor were used
to detect the circulating tumor DNA using ultra-deep sequencing. We compared the sensitivity of
mutation detection and allele frequency obtained in EV-DNA and cfDNA. Results: The sensitivity
of mutation detection in EV-DNA and cfDNA was 61.90% and 66.67%, respectively. We obtained
almost identical sensitivity of mutation detection in EV-DNA and cfDNA in each of the four stages of
colon carcinoma. The total DNA concentration and number mutant copies were higher in cfDNA vs.
EV-DNA (p value = 0.002 and 0.003, respectively). Conclusion: Both cfDNA and EV-DNA can serve
as tumor biomarkers. The use of EV-DNA did not lead to improved sensitivity or better detection of
tumor DNA in the circulation.

Keywords: liquid biopsy; colon cancer; cfDNA; ctDNA; EV-DNA

1. Introduction

Liquid biopsy has emerged as a promising diagnostic tool and consists of the iden-
tification of cancer cell content or free cancer cells outside the tumor mass. This content
can be detected from blood, urine, stool, cerebrospinal fluid and other body fluids [1].
This minimally invasive procedure has a major advantage of being simple, rapid, easily
available and less expensive with low risk for the patients. Compared to tumor biopsies, it
is less expensive and more rapid, gives information on the complete molecular profile and
heterogeneity of tumor and allows serial assessment to monitor the treatment response.
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Circulating tumor DNA (ctDNA) constitutes a small fraction of cell-free DNA (cfDNA)
and can be distinguished from it by the presence of somatic mutation, copy number
variations and epigenetic alterations that are characteristic of tumor cells [2]. In the last
decade, ctDNA has emerged as one of the most important types of liquid biopsy and has
been applied for cancer detection, follow up, disease relapse and for providing information
on the molecular profile and heterogeneity of tumor [1]. One of the major challenges
is the identification of the small fraction of ctDNA on the background of normal cell-
free DNA. New ultra-sensitive detection techniques such as BEAMing (beads, emulsions,
amplification and magnetics), droplet digital PCR and next-generation sequencing can help
us overcome this hurdle [1].

Extracellular vesicles (EV) include a diverse population of membrane-bound vesicles
released by various cells of our body. They carry cell-derived contents including proteins,
lipids, metabolites, microRNA and nucleic acids and play a significant role in intercellular
communication in both physiological and pathological conditions [3]. Based on their size
and biogenesis, they have been categorized into subtypes including apoptotic bodies,
microvesicles and exosomes [4]. The International Society for Extracellular Vesicles recom-
mends designating all the different subtypes as EV since the available isolation methods do
not lead to the complete separation of its subtypes and no specific biomarker is available
for differentiating between them [5].

EV are relatively stable in the circulation or extracellular environment and found in
several body fluids of cancer patients such as synovial fluid, cerebrospinal fluid, bronchial
lavage fluid, breast milk, serum, saliva, urine, ascites and malignant effusions. Its diverse
cargo, stability and ubiquitous presence has credited it as a promising biomarker in liquid
biopsy. Proteins, microRNA and mRNA are the most investigated amongst its contents [6].

Recent studies have demonstrated that extracellular vesicles contain double-stranded
DNA exhibiting the entire genome and comprising KRAS and TP53 mutants [7,8]. More-
over, the lipid bilayer protects the contents of EV from degradation; thus, EV-DNA are
less fragmented and more stable under different storage conditions [8,9]. There is limited
information regarding EV-DNA as a cancer biomarker and there is debate regarding its
potential advantage over cfDNA. Klump et al. found that EV-DNA had a higher amount
of DNA but lesser mutant alleles of BRAF and cKIT compared to cfDNA obtained from
supernatant after EV isolation in advanced cases of melanoma patients [10]. A higher
sensitivity of KRAS mutation detection was reported in EV-DNA than cfDNA in PDAC
patients by Allenson and colleagues [11]. A similar study found that both cfDNA and
EV-DNA had nearly the same KRAS mutation detection rate for localized and metastatic
pancreatic cancer. However, concordance with the tissue sample was higher for EV-DNA
than with cfDNA [12]. Wan et al. found EV-DNA to be superior compared to cfDNA in
EGFR mutation detection in the early stage of non-small cell lung cancer. However, recent
study on liquid biopsy of lung carcinoma patients found a higher mutant allele frequency
of EGFR in cfDNA than EV-DNA [13]. Thus, it still remains under debate whether analysis
of EV-DNA has any advantage over cfDNA in cancer detection.

In the present study, we used serum and plasma samples from patients with colon
carcinoma to evaluate the sensitivity of EV-DNA and cfDNA for detecting tumor mutations
in the circulation.

2. Materials and Methods
2.1. Patient Selection

Thirty-three cases of colon carcinoma were selected from amongst all the cases of colon
carcinoma who had undergone surgical resections in Tel Aviv Sourasky Medical Center and
had tumor tissue sample, serum and plasma samples available in the hospital’s biobank
(Tel Aviv Biobank and MIDGAM-Israel National Biobank for Research). We excluded the
cases in which either of three, i.e., tissue, plasma and serum was not available. This study
was approved by national (Israel MOH) and Tel-Aviv Sourasky medical center local ethics
committee (approval no: 0118-17-TLV, approval date: 31 January 2019).
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2.2. Extraction of DNA from Tumor Tissue

Hematoxylin- and eosin-stained tissue sections of each sample were reviewed and
the areas of tumor were marked. The fraction of tumor cells in the marked areas was
estimated. Six sections of 8 µm thickness of formalin fixed paraffin embedded (FFPE)
tissue samples were cut and areas corresponding to the representative marked areas were
micro-dissected. DNA was extracted using the ReliaPrep™ FFPE gDNA Miniprep System
(Promega, Madison, WI, USA) according to the manufacturer’s instructions.

2.3. Panel Design

In order to maximize the possibility to find a key mutation in the tumor, we developed
a genetic panel that covered the genomic regions with the highest mutation frequency in
colon cancer in the “COSMIC” database [14]. For each position in the exome, we summed
the mutations that were found in 45 bases before and after it and normalized them to the
number of times each gene was sequenced in this database (on colon tumors). A PCR-
based panel was designed to cover every position that had a 4% or above chance to have a
mutation. The panel covers areas in the genes KRAS, TP53, APC, PIK3CA, BRAF, ACVR2A,
RNF43 and TGFBR2 (Table S1). The panel was designed to work in a multiplex according
to Biezuner et al. Genome Research 2016 [15], and the primers sequence were then tested
using Thermo fisher “multiple primers analyzer” to reduce potential primer dimers. The
primer pairs were split to three multiplexes mixes, primers that showed potential dimers
or that amplify neighboring areas were assigned to different mixes. This panel showed
uniformity of 96.88 ± 4.70% depending on the DNA quality; older samples tend to have
less uniformity (Figure S1).

2.4. Isolation and Characterization of Extracellular Vesicles

EV were isolated from 500 to 1500 µL of pre-surgery serum samples of all the cases
of colon carcinoma patients having mutation in the tissue DNA using Invitrogen To-
tal Exosome Isolation (Vilnius, Lithuania) according to the manufacturer’s instructions.
Hemolyzed serum samples were excluded. Size distribution analysis of EV extracted
from two random samples was performed using dynamic light scattering with a ZetaSizer
(Malvern Instruments, Worcestershire, UK). Samples were diluted in phosphate-buffered
saline (PBS) and 3 × measurement runs were performed under standard settings (refractive
index: 1.331, viscosity: 0.89, temperature: 25 ◦C).

2.5. Extraction of EV-DNA and cfDNA from Plasma

DNA was extracted from EV isolated from serum and cfDNA was extracted from
900–2300 µL of pre-surgery plasma samples of all the cases of colon carcinoma showing
mutation in tissue DNA using MagMAX™ Cell Free DNA Isolation Kit (Austin, TX, USA)
according to the manufacturer’s instructions. Hemolyzed plasma samples were excluded.
DNA was quantified using Qubit 3.0 fluorometer and Qubit™ ds DNA HS assay kit
(Eugene, OR, USA) according to the manufacturer’s instructions.

2.6. Library Preparation for Next Generation Sequencing

An amplification-based sequencing method was used to construct libraries for se-
quencing using a two-step PCR protocol (Figure S2). In first step, the genomic segments
were amplified using gene-specific primers. In each pair of primers, one was coupled
to the M13 sequence and the other to the P1 sequence. In the second step, barcodes and
adapters were attached to allow the binding to ion torrent sphere particles. To detect
mutation in tumor tissue DNA, 19 genomic segments were amplified using gene-specific
primer in three multiplex reactions (Table S1). The products of three multiplex reactions
were consolidated and diluted with double-distilled water (DDW) to 1:100 dilution and
1 µL of it was used in the second PCR reaction. Each sample was tested in duplicate and
each PCR was performed with its negative control to test the integrity of reagents. PCR
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products were cleaned with the kit: Wizard® SV Gel and PCR Clean-Up System PROMEGA
(Madison, WI, USA).

Amongst the mutations present in colon carcinoma cases, we chose those known to be
driver mutations to be analyzed in the EV-DNA and cfDNA by using primers designed for
specific mutation (Table S2). Each sample was tested for one mutation using the two-step
PCR protocol. Each sample was tested in duplicate and along with its negative control. To
determine the level of noise at a specific mutation position, we tested each primer with
wild-type DNA. PCR products were cleaned with the AMPure XP PCR purification beads
(Brea, CA, USA).

2.7. Sequencing Data Analysis

Sequencing was carried out using an Ion 510TM chip on the Ion Gene studio S5
for 500 flows (Thermo Fisher Scientific, Guilford, CT, USA). We aimed for at least 1000 coverage
to allow the accurate determination of mutation fraction in each sample from tumor tis-
sue DNA. The sequencing data from the machine were processed using the S5 Torrent
server VM, which removed the adapter sequence, filtered poor quality reads and generated
good-quality sequenced reads. We used variant caller software to determine the mutation
in colon carcinoma cases. The variant caller files were downloaded, and mutations were
characterized using the WANNOVAR website: http://wannovar.wglab.org (accessed date,
27 July 2021) [16]. Mutations were called if the allele frequency was > 5%, they had at least
10 reads and were present in both duplicates.

For accurate determination of mutant fraction in EV-DNA and cfDNA, we aimed for
at least 10,000 reads from each sample. The sequence files were aligned to the specific
genomic sequence and the fraction of the mutation and the wild-type (WT) copies of the
gene in each sample was determined using the Integrative Genomic Viewer (IGV2.4,
http://software.broadinstitute.org/software/igv/; accessed on 27 July 2021) free software.
Mutations were called when the mutant allele frequency (MAF) was at least three times
higher than noise in wild-type and each duplicate had at least 10 reads coverage of mutant
allele. Mutations were considered negative when they did not meet the criteria of positive
mutation and had at least 5000 cumulative reads coverage from the duplicates. Results were
regarded as inconclusive when criteria of positive mutation were not met and cumulative
reads coverage from the duplicates were less than 5000.

The number of mutant copies in cfDNA (mutants per mL of plasma) was calculated
from mutant allele fraction and total DNA concentration in plasma. Similarly, the number
of mutant copies in EV-DNA (mutants per mL of serum) was calculated from mutant
allele fraction and total DNA concentration obtained from extra cellular vesicles derived
from serum.

2.8. Statistical Analysis

Data analyses were carried out using Graph Pad Prism software. The statistical
significance was determined by Fisher’s exact test, Mann–Whitney test and Wilcoxon
matched pairs signed test. All tests conducted were two-sided and considered significant
at p value * ≤0.05, ** ≤0.01, *** <0.001.

3. Results

Thirty-three cases of colon carcinoma were included in the study. The mean age at
presentation was 69 ± 14.29 years and the male:female ratio was 1.7:2 (Table 1). The mean
diameter of tumor was 4.59 ± 1.64 cm. The mean diameter of tumor was 4.59 ± 1.64
cm. A total of 10/33 (30.30%) cases included in the study were of stage I, 10/33 (30.30%)
cases of stage II, 9/33 (27.27%) were of stage III and 4/33 (12.12%) were of stage IV and
had metastasis.

In the tissue samples, coverage analysis of gene panel showed uniformity of 96.88 ± 4.70%
and 99th percentile of samples in duplicates had 99.53 reads. One to four mutations were
detected in 30 out of 33 (90.90%) cases (Figure 1A). APC was the most commonly mutated

http://wannovar.wglab.org
http://software.broadinstitute.org/software/igv/
http://software.broadinstitute.org/software/igv/
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gene, present in 22 (66.67%) followed by TP53 in 15 (45.45%), KRAS in 12 (36.36%) and
PIK3CA in 6 (18.18%) (Figure 1B).

Table 1. Patient characteristics of colon carcinoma patients.

Age (Years) Mean ± SD 69 ± 14.29

Sex
Male 15 (45.45%)

Female 18 (54.54%)

Diameter (cm) Mean ± SD 4.59 ± 1.65

Grade
(Differentiation)

Well 7 (21.21%)

Moderate 20 (60.60%)

Poor 3 (9.09%)

Mucinous 3 (9.09%)

Stage

T

T1 1 (3.03%)

T2 11 (33.33%)

T3 18 (54.54%)

T4 3 (9.09%)

N
N0 22 (66.66%)

N1 4 (12.12%)

N2 7 (21.12%)

I 10 (30.30%)

II 10 (30.30%)

III 9 (27.27%)

IV 4 (12.12%)

Metastasis
Yes 4 (12.12%)

No 29 (87.87%)

Vascular Invasion
Yes 7 (21.12%)

No 16 (48.48%)
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Figure 1. Mutation analysis in DNA extracted from FFPE tissue sections of colon carcinoma cases. (A) Bar chart shows
number of mutations detected in cases of colon carcinoma using 19 amplicon gene panel. One mutation was detected in
12/33 cases, 2 in 9/33, 3 in 7/33, 4 in 2/33 and no mutation was detected in 3/33 cases of colon carcinoma. (B) Bar chart
shows the prevalence of mutation in various genes in cases of colon carcinoma. The most common mutated gene was APC,
present in 66.67% of cases followed by TP53 in 45.45%, KRAS in 36.36% and PIK3CA in 18.18%.
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3.1. Extra Cellular Vesicles Characterization

Dynamic light scattering was used to measure the size distribution of EV and demon-
strated that the average size of EV isolated from two samples was 82.8 ± 14.6 nm and
101.0 ± 1.4 nm (Figure S3)

3.2. Blood cfDNA Concentration Is Higher Than EV-DNA

EV-DNA and cfDNA were extracted from EV obtained from the serum and plasma,
respectively, of 28 cases of colon carcinoma. Two cases with hemolyzed serum and plasma
samples were excluded from the study. The total concentration of EV-DNA ranged from
2.69 to 67.32 ng/mL (median = 10.59 and mean ± SD = 13.19 ± 12.03 ng/mL of serum).
The total concentration of cfDNA obtained from plasma ranged from 4.49 to 77.98 ng/mL
of plasma (median = 12.89 and mean ± SD = 16.97 ± 14.10 ng/mL of plasma). The cfDNA
obtained from plasma was significantly higher than EV-DNA (p value = 0.002; Figure 2A).
We found a significant correlation between the concentrations of EV-DNA and cfDNA
(R2 = 0.76, p value < 0.001; Figure 2B). The mean and median concentration of both EV-DNA
and cfDNA was higher in late-stage (III and IV) compared to that in early-stage (I and II) dis-
ease. The difference was statistically significant in EV-DNA (median = 7.99 ng/mL versus
17.16 ng/mL; p value = 0.02, Mann–Whitney test) but not in cfDNA (median = 12.89 ng/mL
versus 13.85 ng/mL; p value = 0.94, Mann–Whitney test). No correlation between the size
of tumors and concentration of DNA in both EV and plasma was noted (R2 = 0.013).
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Figure 2. Total concentration of EV-DNA and cfDNA from colon carcinoma cases. (A) Box plot shows the compari-
son of total DNA concentration in EV-DNA and cfDNA. The total DNA concentration was more in cfDNA than EV-
DNA. (p value = 0.002). Wilcoxon matched pairs signed test; whiskers represents 5th and 95th percentile and mean
shown by + in box plot. (B) Scatter plot shows correlation between total concentration of EV-DNA and cfDNA
(p value < 0.001, R2 = coefficient of determination; blue squares represent EV-DNA and cfDNA concentration). ** refers to
p ≤ 0.01.

3.3. The Sensitivity of Tumor DNA Detection Was Similar in EV-DNA and cfDNA

Mutation analysis was performed in EV-DNA and cfDNA obtained from 27 cases.
In one of the cases, we detected frameshift mutation in RNF43 at position G659Vfs*40.
It had seven consecutive cytosine nucleotides at the mutation site. Since it is difficult to
detect mutations involving more than the same six consecutive bases in the ion torrent
platform [17], this case was dropped out and mutation analysis in EV-DNA and cfDNA
was performed in 27 out of 28 cases. Two out of twenty-seven had a germline variant in the
APC gene and were excluded from further analysis. The average mutant allele frequency
(MAF) obtained in EV-DNA and cfDNA was 0.83 ± 0.01% and 1.37 ± 0.03% with a median
of 0.28% and 0.37%, respectively. There was no significant difference between MAF in
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EV-DNA and cfDNA (p value = 0.316; Figure 3A). A high correlation was found between
MAF in EV-DNA and cfDNA (R2 = 0.64, p value < 0.001; Figure 3B). The number of mutant
DNA fragments were higher in cfDNA compared to EV-DNA (median = 17.92 mutants per
mL of plasma vs. 10.60 mutants per mL of serum, p value = 0.003; Figure 3C). There was a
significant correlation between the number of copies of mutants in cfDNA and EV-DNA
(R2 = 0.89, p value < 0.001; Figure 3D). Four out of 25 samples gave inconclusive results
in both EV-DNA and cfDNA as we could not achieve 5000 cumulative reads from the
duplicates. Tumor mutations were detected in 13/21 (61.90%) cases in EV-DNA and in
14/21 (66.67%) cases in cfDNA (Table 2). We found a trend towards increased mutation
detection in late-stage (III and IV) compared to early-stage (I and II) disease: 7/9(77.77%)
in both EV-DNA and cfDNA versus 6/12 (50%) in EV-DNA and 7/12 (58.33%) in cfDNA,
(p value = 0.37 and 0.64, Fisher’s exact test). Mutation detection rate was almost identical
in EV-DNA and cfDNA in all the four stages: 3/5 (60%) in stage I, 4/5 (80%) in stage
III, 3/4 (75%) in stage IV in both EV-DNA and cfDNA; 3/7 (42.80%) and 4/7 (57.14%),
respectively, in EV-DNA and cfDNA in stage II (Figure 4). The frequency of mutation
detection was higher in large size tumors. Mutation was identified in 1/6 (16/66%) in both
EV-DNA and cfDNA when tumor diameter was <4 cm; and in 12/15 (80%) and 13/15
(86.67%) in EV-DNA and cfDNA, respectively, when tumor diameter was ≥4 cm (Table 2,
p value = 0.0139 and 0.0055; Fisher’s exact test).
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Figure 3. Comparison of mutant allele frequency (MAF) and mutant per mL serum/plasma in EV-DNA vs. cfDNA.
(A) Box plot to show the comparison of MAF in EV-DNA and cfDNA. No significant difference was found between
them (p value = 0.316; Wilcoxon matched pairs signed test, n.s.—not significant). Whiskers represent 5th and 95th per-
centile and mean shown by + in box plot. (B) Scatter plot shows correlation between MAF in EV-DNA and cfDNA
(p value < 0.001, R2 = coefficient of determination, blue squares represent MAF in EV-DNA and cfDNA). (C) Box plot
shows that the number of copies of mutants were more in cfDNA than in EV-DNA (p value = 0.003; Wilcoxon matched
pairs signed test, Whiskers represent 5th and 95th percentile and mean shown by + in box plot). (D) Scatter plot shows
correlation between number of copies of mutants in cfDNA and EV-DNA (p value < 0.001, R2 = coefficient of determination,
blue squares represent mutants per mL serum/plasma). ** refers to p ≤ 0.01.
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Table 2. Mutation analysis from EV-DNA and cfDNA.

Serial
No Gene Mutation Stage Tumor Size (cm) MAF in

EV-DNA (%)

No. of Mutant
Reads from Each

Duplicate

MAF in cfDNA
(Plasma) (%)

No. of Mutant Reads
from Each Duplicate

Noise in Wild
Type DNA (%)

1 TP53 p.R175H
(c.524G>A) II 2.5 0.30% ≥10 0.29% ≥10 0%

2 KRAS p.G12V
(c.35G>T) II 2.5 0.05% <10 0.04% <10 0.008%

3 APC p.R1450X
(c.4348C>T) III 4 1.14% ≥10 0.99% ≥10 0%

4 TP53 p.R248W
(c.742C>T) IV 4.5 4.00% ≥10 11.90% ≥10 0%

5 TP53 p.R273H
(c.818G>A) IV 6 1.24% ≥10 1.34% ≥10 0.026%

6 KRAS p.G12S
(c.34G>A) IV 5.5 0.24% ≥10 0.37% ≥10 0.012%

7 APC p.E1309X
(c.3925G>T) IV 2.5 0.04% <10 0.02% <10 0.00%

8 PIK3CA p.E545K
(c.1633G>A) II 6 0.68% ≥10 0.57% ≥10 0%

9 PIK3CA p.H1047L
(c.3140A>T) II 6 4.90% 10 3.75% ≥10 0%

10 TP53 p.C242R
(c.724T>C) I 6 NA NA NA <10 0.05%

11 KRAS p.G12D
(c.35G>A) II 2.5 0% <10 0.05% <10 0.014%

12 KRAS p.G12V
(c.35G>T) II 2 0.05% <10 0.07% <10 0.008%

13 TP53 p.R175H
(c.524G>A) III 8 0.66% ≥10 1.68% ≥10 0%

14 APC p.Q1406X
(c.4216C>T) III 5.2 0.86% ≥10 0.78% ≥10 0.09%

15 TP53 p.G245S
(c.733G>A) I 5 0.56% ≥10 0.56% ≥10 0.02%

16 TP53 p.A161T
(c.481G>A) I 1.2 0.06% <10 0.06% <10 0%
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Table 2. Cont.

Serial
No Gene Mutation Stage Tumor Size (cm) MAF in

EV-DNA (%)

No. of Mutant
Reads from Each

Duplicate

MAF in cfDNA
(Plasma) (%)

No. of Mutant Reads
from Each Duplicate

Noise in Wild
Type DNA (%)

17 TP53 p.M237V
(c.709A>G) I 6 0.04% <10 0.06% <10 0%

18 TP53 p.R175H
(c.524G>A) III 5.5 0.18% <10 0.18% <10 0%

19 TP53 p.R306X
(c.916C>T) I 1 NA NA NA NA 0.06%

20 APC p.R232X
(c.694C>T) III 6 0.28% ≥10 0.69% ≥10 0.07%

21 APC p.
P1432Hfs*4 I 4.5 1.88% ≥10 5.05% ≥10 0.24%

22 TP53 p.R175H
(c.524G>A) I 3 NA NA NA NA 0%

23 APC p.R1450X
(c.4348C>T) II 4 0.12% <10 0.17% ≥10 0%

24 TP53 p.R175H
(c.524G>A) II 6 NA NA NA NA 0%

25 KRAS p.G12V
(c.35G>T) I 5 0.21% ≥10 0.17% ≥10 0.008%
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be the main mechanism of its release [19]. Its presence was first reported in 1948 [20]; 
however, it took years of extensive research, coupled with advances in molecular tech-
niques, to establish its utility in liquid biopsy [21]. Numerous studies have demonstrated 
its potential role as a cancer biomarker for diagnosis and follow-up of disease, as well as 
in the detection of treatment resistance and to monitor the treatment response [22]. The 
recent discovery of the presence of double-stranded DNA associated with EV has raised 
an open question of whether it has any advantage over cfDNA as a cancer biomarker. The 
main objective of liquid biopsy is to obtain a sensitive, efficient, reliable and cost-effective 
method which would help in early diagnosis of cancer. Therefore, additional investment 
in terms of cost, time and labor on EV isolation, followed by DNA extraction, is worth 
incurring if it provides an added value and has better sensitivity in cancer detection com-
pared to cfDNA. 

In this study, we identified mutation in 50% and 58.33% of cases, respectively, in EV-
DNA and cfDNA in early-stage (I and II) disease and 77.77% of cases in both EV-DNA 
and cfDNA in late-stage (III and IV) disease. The sensitivity of mutation detection was 
similar to previously reported studies [2,23]. There was a trend towards increased muta-
tion detection in late-stage (III and IV) disease, compared to early-stage (I and II) disease, 
in both EV-DNA and cfDNA. However, the difference was not statistically significant, 
probably due to the small cohort size, as well as because only four cases with metastasis 
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4. Discussion

CfDNA consists of fragments of DNA released into the circulation mostly by apoptotic
and necrotic cells [18]. It is highly fragmented double-stranded DNA of varying size
ranging from 120 to 220 base pairs and a peak of 167 base pairs, suggesting apoptosis to be
the main mechanism of its release [19]. Its presence was first reported in 1948 [20]; however,
it took years of extensive research, coupled with advances in molecular techniques, to
establish its utility in liquid biopsy [21]. Numerous studies have demonstrated its potential
role as a cancer biomarker for diagnosis and follow-up of disease, as well as in the detection
of treatment resistance and to monitor the treatment response [22]. The recent discovery
of the presence of double-stranded DNA associated with EV has raised an open question
of whether it has any advantage over cfDNA as a cancer biomarker. The main objective
of liquid biopsy is to obtain a sensitive, efficient, reliable and cost-effective method which
would help in early diagnosis of cancer. Therefore, additional investment in terms of
cost, time and labor on EV isolation, followed by DNA extraction, is worth incurring if it
provides an added value and has better sensitivity in cancer detection compared to cfDNA.

In this study, we identified mutation in 50% and 58.33% of cases, respectively, in
EV-DNA and cfDNA in early-stage (I and II) disease and 77.77% of cases in both EV-DNA
and cfDNA in late-stage (III and IV) disease. The sensitivity of mutation detection was
similar to previously reported studies [2,23]. There was a trend towards increased mutation
detection in late-stage (III and IV) disease, compared to early-stage (I and II) disease,
in both EV-DNA and cfDNA. However, the difference was not statistically significant,
probably due to the small cohort size, as well as because only four cases with metastasis
were included in the study. A higher frequency of mutation detection had been earlier
reported in large-sized and advanced tumors [23,24]. We also found a significant increase
in the frequency of mutation detection when the diameter of tumor was ≥4 cm in both
EV-DNA and cfDNA.

We found equivalent sensitivity of mutation detection in both EV-DNA and cfDNA
(61.90% and 66.67%) obtained from patients of colon cancer. Our findings were in agreement
with previous studies which had also reported similar sensitivity of mutation detection in
both EV-DNA and cfDNA [12,25]. We obtained almost identical sensitivity of mutation
detection in EV-DNA and cfDNA in each of the four stages of colon carcinoma (Figure
4). Similarly, Bernard et al. reported nearly equivalent sensitivity of mutation detection in
both cfDNA and EV-DNA for localized and metastatic pancreatic cancer [12]. However,
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Allenson and colleagues noted a higher sensitivity in EV-DNA compared to cfDNA in
localized, locally advanced, and metastatic pancreatic adenocarcinoma patients [11]. Wan
et al. found EV-DNA to be superior to cfDNA in the detection of early-stage non-small cell
lung cancer; however, no advantage was noted in late-stage tumors [26]. The difference in
the results could be attributed to various technical issues, such as a lack of standardized
procedure for EV isolation, different methods employed for DNA extraction and different
techniques utilized for mutation detection.

In concordance with previous studies, we found that the total concentration of cfDNA
obtained from plasma was significantly higher than EV-DNA [26,27]. While there was
no significant difference between MAF obtained in EV-DNA and cfDNA, the number of
copies of mutants were more in cfDNA. There was a high correlation between the total
DNA concentration, MAF and number of copies of mutants in EV-DNA and cfDNA. These
findings were in line with earlier studies suggesting that a proportion of cfDNA was
associated with different subtypes of EV [27,28]. However, the subtype contributing the
most is not yet known and is under investigation [29]. A higher number of copies of
mutants in cfDNA can be ascribed to the higher concentration of DNA obtained from
plasma. Few earlier studies have reported a higher number of copies of mutant allele in
cfDNA obtained from the supernatant left after extraction of EV than EV-DNA [10,13].

One of the obstacles in the assessment of cfDNA is the decreased ability of NGS- and
PCR-based approaches to cover all its small fragments of varying sizes. This results in
PCR amplification failure and difficulties in library preparation, leading to less sequenced
reads [30,31]. EV-DNA is less fragmented due to the protection offered by the lipid
bilayer from degradation; hence, this was perceived to be helpful in overcoming the above-
mentioned problem. However, four of our samples could not give conclusive results due
to low number of sequenced reads obtained from both cfDNA and EV-DNA. The analysis
of EV-DNA did not provide the advantage of acquiring more sequenced reads than cfDNA.
This suggests that the extraction of cfDNA from plasma also acquires DNA associated with
EV. Thus, cfDNA is more efficient and cost-effective than EV-DNA in cancer detection, as
the procurement of EV-DNA not only requires more steps, time and labor, but also loses
the fraction of DNA and mutants present in blood in free-circulating form.

To conclude, our study showed that both EV-DNA and cfDNA had similar sensitivity
of mutation detection in all of the four stages of colon carcinoma. Since the total DNA
concentration and number of copies of mutants were significantly higher in cfDNA than EV-
DNA, cfDNA can be considered a more efficient biomarker for the detection of colon cancer.
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