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Abstract: The effectiveness of somatic cell nuclear transfer (SCNT) in mammals seems to be still char-
acterized by the disappointingly low rates of cloned embryos, fetuses, and progeny generated. These
rates are measured in relation to the numbers of nuclear-transferred oocytes and can vary depending
on the technique applied to the reconstruction of enucleated oocytes. The SCNT efficiency is also
largely affected by the capability of donor nuclei to be epigenetically reprogrammed in a cytoplasm of
reconstructed oocytes. The epigenetic reprogrammability of donor nuclei in SCNT-derived embryos
appears to be biased, to a great extent, by the extranuclear (cytoplasmic) inheritance of mitochondrial
DNA (mtDNA) fractions originating from donor cells. A high frequency of mtDNA heteroplasmy
occurrence can lead to disturbances in the intergenomic crosstalk between mitochondrial and nuclear
compartments during the early embryogenesis of SCNT-derived embryos. These disturbances can
give rise to incorrect and incomplete epigenetic reprogramming of donor nuclei in mammalian cloned
embryos. The dwindling reprogrammability of donor nuclei in the blastomeres of SCNT-derived
embryos can also be impacted by impaired epigenetic rearrangements within terminal ends of donor
cell-descended chromosomes (i.e., telomeres). Therefore, dysfunctions in epigenetic reprogramming
of donor nuclei can contribute to the enhanced attrition of telomeres. This accelerates the processes of
epigenomic aging and replicative senescence in the cells forming various tissues and organs of cloned
fetuses and progeny. For all the above-mentioned reasons, the current paper aims to overview the
state of the art in not only molecular mechanisms underlying intergenomic communication between
nuclear and mtDNA molecules in cloned embryos but also intrinsic determinants affecting unfaithful
epigenetic reprogrammability of telomeres. The latter is related to their abrasion within somatic
cell-inherited chromosomes.

Keywords: cloned mammalian embryo; SCNT-derived progeny; mtDNA; nuclear–mitochondrial
interaction; epigenetic reprogrammability; telomere shortening/attrition

1. Biotechnological Possibilities of Applying the Techniques of Somatic Cell Nuclear
Transfer (SCNT) to Produce Cloned Mammalian Species

The somatic cell cloning technique is a method of embryonic genome engineering.
Unlike animal transgenesis, it involves micromanipulation not of individual nuclear DNA
genes but of the whole nuclear and/or mitochondrial genome of both interphase nuclear
donor somatic cells and female germ cells (in vitro- or in vivo-matured oocytes arrested
at metaphase II), which are used as recipients of exogenous genetic material. Of all mam-
malian cloning techniques, somatic cell cloning can result in producing the largest numbers
of genetically identical individuals that are designated as clones. In the somatic cell cloning
of mammals, nuclear donor cells are available in practically unlimited quantities. Tissue
samples obtained by biopsy from adult animals or fetuses are composed of hundreds of
thousands cells, which can be further multiplied/expanded in vitro. Furthermore, when
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cloning certain adult animals, tissue may be biopsied repeatedly to produce identical clones
every time [1–7].

Animal cloning by somatic cell nuclear transfer (SCNT), which avoids the sexual
reproduction pathway, offers the opportunity to obtain monogenetic offspring derived
not only from adult animals of high genetic merit but also from genetically transformed
(transgenic) specimens. Over the last 24 years, intra- and interspecies cloning via SCNT
resulted in a fairly large number of transgenic and non-transgenic offspring, not only in
various species or infertile interspecific hybrids (bastards) of domesticated animals, such as

(1) cattle [8–14];
(2) goats [6,15–20];
(3) sheep [21–26];
(4) pigs [27–41];
(5) equids—domestic horses [42–46] and mules [47];
(6) water buffaloes—Chinese swamp buffaloes [48,49] and Indian river/riverine buf-

faloes [50–53];
(7) one-humped or dromedary camels [7,54–56];
(8) two-humped or Bactrian camels [57];
(9) domestic cats [58–63];
(10) domestic dogs [64–71];
(11) polecat-ferrets [72];
(12) rabbits [73–78];
(13) mice [79–84];
(14) rats [85]; but also in several species of endangered or non-endangered wild mammals,

such as
(15) gaur [86,87];
(16) mouflon [88];
(17) European red deer [89];
(18) African wild cat [90];
(19) Arabian sand cat [91];
(20) Eurasian gray wolf [92,93];
(21) coyote or prairie wolf [94];
(22) cynomolgus monkey, also known as Java macaque, crab-eating macaque, or long-

tailed macaque—a catarrhine monkey from the family Cercopithecidae [95]; and even
in the extinct subspecies of the Spanish/Iberian ibex:

(23) Pyrenean ibex, a wild goat known as bucardo [96].

Explanation of the mechanisms underlying intergenomic communication between nu-
clear and mitochondrial DNA molecules in cloned embryos and recognition/identification
of the determinants affecting aberrant epigenetic reprogrammability of chromosomal
telomeres will be suitable and reliable for resolving or reducing the imperfections in the
generation of cloned embryos, conceptuses, and offspring by using SCNT technology.
Moreover, the development of efficient strategies applied to the cryopreservation of nu-
clear donor somatic cells, nuclear-transferred oocytes reconstructed with somatic cells,
and somatic cell-cloned embryos seems to be an inevitable progressive step contributing
to the expedition of future large-scale attempts aimed to more successfully produce and
multiply mammalian cloned offspring. The latter seems to be a sine qua non condition
that allows one to more efficiently use SCNT-based assisted reproductive technology not
only for transgenic, biotechnological, biomedical, and biopharmaceutical research but
also for the ex situ conservation of biodiversity in both anthropogenic (agricultural) and
non-anthropogenic (wild) ecosystems.
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2. Dependence of Epigenetic Mechanisms Underlying Somatic Cell Nuclear
Reprogramming and Intergenomic Communication between Nuclear and
Mitochondrial DNA Fractions in Cloned Embryos on Various Approaches to
Reconstruction of Enucleated Oocytes

In the reconstruction of enucleated oocytes (cytoplasts/ooplasts) by SCNT, the original ge-
netic material is replaced with the somatic cell-inherited nuclear genome. Different approaches
to SCNT are used to generate nuclear-transferred oocytes, i.e., oocytes reconstructed with
somatic cell nuclei and the resultant cloned embryos (Table 1). The most common procedure is
a relatively low-invasive method of SCNT based on the fusion of cytoplast–nuclear donor cell
couplets that is induced by electric pulses [34,97–101] (Table 1). An alternative reconstruction
method is a much more invasive microsurgical procedure, in which whole nuclear donor
cells [102,103] or somatic-cell-derived karyoplasts [29,44,82,104,105] are microinjected directly
into the cytoplasm of enucleated oocytes (Table 1). The karyoplast is a live membrane-bound
structure formed as a result of mechanically induced lysis of the whole somatic cell. It contains
the interphase cell nucleus or metaphase chromosomes that are surrounded only by a thin layer
of the perinuclear cytoplasm (the so-called perikaryon) [27,105–108].

Whatever the method used, the reconstruction of ooplasts results in the combination
and mingling (hybridization) of cytoplasmic environments of the ooplast and intact somatic
cell or karyoplast isolated from the whole nuclear donor cell. As a result, a nuclear–
cytoplasmic/nuclear–ooplasmic hybrid (i.e., cloned cybrid) is formed. This hybrid cell,
formed by the hybridization of cytoplasmic microenvironments of the cells derived from
two different developmental lines: gametogenic (germinal) and somatogenic (somatic), is
referred to as a reconstructed or reconstituted oocyte or cybrid cloned zygote. As the mitotic
cycle of nuclear donor somatic cells (artificially arrested at the G0 phase) is characterized
by “latent” transcriptional activity, inhibited proliferative growth, and a slower metabolism
of all organelles, the meiotic cycle of nuclear recipient oocytes also undergoes transient and
reversible arresting at the metaphase II (MII) stage. At this stage of meiosis, the processes
of advanced transcriptional suppression of genomic DNA take place as a result of attaining
nuclear and ooplasmic maturity states. Proper coordination of the cytophysiological state
of somatic cells or the karyoplasts isolated from them, and of the cytophysiological state
of ooplasts during the reconstruction of cloned cybrids, results from the hybridization of
the cytoplasmic environments of nuclear donor cells at the G0 phase of mitosis and of
enucleated nuclear recipient oocytes at the MII stage of meiosis [27,98,101,109,110].

Techniques of enucleated oocyte reconstruction may largely affect molecular mecha-
nisms of nuclear chromatin rearrangement, which include both its structural remodeling
and epigenetic reprogramming of genomic DNA [99,102,104,107,111–113]. Hybridizing
the cytoplasmic environment of two cells at different stages of the division cycle interferes
with the cell cycle controlling mechanisms and carries the risk of abnormalities further
into the development of the cybrid cloned zygote. However, not only does the proper
selection of the cytophysiological states of somatic cells/karyoplasts and ooplasts during
the reconstruction of cloned cybrids reduce genomic instability, rendering the genome
less vulnerable to mutations, but it also reduces the degree of asynchrony in nuclear–
cytoplasmic interactions and decreases the frequency of abnormal epigenome-dependent
rearrangements of exogenous nuclear chromatin [114–120].
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Table 1. Comparative characterization of the approaches to reconstruction of enucleated mammalian oocytes at the biotechnical, cytological, molecular, and epigenetic levels.

Method Used for Reconstruction of
Enucleated Metaphase II-Stage Oocytes

Characterization at the Biotechnical
and Cytological Levels

Characterization
at the Molecular Level

Characterization
at the Epigenetic Level

Electrofusion of ooplast–somatic cell
couplets

Relatively low invasiveness of the method:
- the generated electrostatic field interferes
with ultrastructure and functions of the
oolemma of nuclear recipient cells and the
plasmalemma of nuclear donor cells through:
• transient formation in the plasma
membrane phospholipid bilayer of
micropores (microchannels) that facilitate
fusion of ooplast–somatic cell complexes and
are the pathway for passive intracellular
transport of calcium ions under the conditions
of simultaneous fusion and electrical
activation (F/A) of reconstituted oocytes

Relatively high probability of the occurrence
in the obtained clonal cybrids of:
- cellular mtDNA heteroplasmy;
- abnormal nuclear–cytoplasmic interactions;
- abnormal intergenomic communication
between allogeneic nuclear DNA, somatic
cell-inherited mtDNA molecules, and mtDNA
molecules of ooplasmic origin

Relatively high probability of the occurrence
of abnormalities in:
- structural and epigenetic remodeling of
nuclear chromatin;
- epigenetic reprogramming of transcriptional
activity of the nuclear genome, including
rearrangement of telomeres of somatic cell
chromosomes in the reconstructed oocytes
and in cloned embryos that develop as a result
of their activation

Direct intraooplasmic
microinjection of whole somatic cells

High invasiveness of the method:
- interferes with the ultrastructure of the
plasmalemma and the membrane and
cytoskeleton of enucleated oocytes through:
• direct microsurgical transfer and deposition
in their ooplasm of tiny (small-diameter)
somatic cells displaying intact integrity of the
plasma membrane

Relatively high probability of the occurrence
in the obtained clonal cybrids of:
- cellular mtDNA heteroplasmy;
- abnormal nuclear–cytoplasmic interactions;
- abnormal intergenomic communication
between allogeneic nuclear DNA, somatic
cell-inherited mtDNA molecules, and mtDNA
molecules of ooplasmic origin

Relatively high probability of the occurrence
of abnormalities in:
- structural and epigenetic remodeling of
nuclear chromatin;
- epigenetic reprogramming of transcriptional
activity of the nuclear genome, including
rearrangement of telomeres of somatic cell
chromosomes in the reconstructed oocytes
and in cloned embryos that develop as a result
of their activation

Direct intraooplasmic microinjection of
karyoplasts

The highest invasiveness of the method:
- interferes with the ultrastructure of the
plasmalemma and the membrane and
cytoskeleton of nuclear donor cells through:
• their mechanically induced cytolysis to
isolate karyoplasts
- interferes with the ultrastructure of the
plasmalemma and the membrane and
cytoskeleton of enucleated oocytes through:
• direct microsurgical transfer and deposition
in their ooplasm of karyoplasts

Relatively low probability of the occurrence in
the obtained clonal cybrids of:
- cellular mtDNA heteroplasmy;
- abnormal nuclear–cytoplasmic interactions;
- abnormal intergenomic communication
between allogeneic nuclear DNA, somatic
cell-inherited mtDNA molecules, and mtDNA
molecules of ooplasmic origin

Relatively low probability of the occurrence of
abnormalities in:
- structural and epigenetic remodeling of
nuclear chromatin;
- epigenetic reprogramming of transcriptional
activity of the nuclear genome, including
rearrangement of telomeres of somatic cell
chromosomes in the reconstructed oocytes
and in cloned embryos that develop as a result
of their activation
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In contrast to electrofusion, intraooplasmic microinjection of karyoplasts allows for the
selective removal of a large part of the cytoplasm of nuclear donor cells, thus enabling rela-
tive thinning of the remnants of the somatic cell cytoplasm in a cytosolic microenvironment
of the ooplast and early zygote. The direct consequence of this is that the adverse effect
of cytoplasmic components of the somatic cell on remodeling and reprogramming of the
transferred somatic cell nucleus, and thereby on the development of the reconstituted em-
bryo, is avoided. Where nuclei of relatively small-diameter somatic cells are transplanted
(e.g., cumulus oophorus cells, mural granulosa cells, and serum-starved fibroblast cells),
the method of choice is the intraooplasmic microinjection of karyoplasts or whole nuclear
donor cells [80,98,102–104,112,121,122]. Taking into account the above-mentioned finding,
the in vitro developmental potential of cloned pig embryos that had been reconstructed by
direct intraooplasmic microinjection of somatic cell-descended karyoplasts or whole tiny
somatic cells was shown to be relatively higher in relation to cloned embryos produced by
the electrofusion of somatic cell–ooplast couplets [29,102,107]. The small diameter of the
above types of somatic cells is the reason for a considerably reduced contact surface area
with the plasmalemma of enucleated oocytes (oolemma), which reduces the percentage
of fused ooplast–nuclear donor cell complexes. In turn, the direct microinjection of kary-
oplasts or whole small-diameter somatic cells into the cytoplasm of enucleated oocytes
avoids technical problems (resulting from inadequate adhesion of plasma membranes),
which have the greatest limiting effect on the efficiency of electrofusion of nuclear donor
cells with cytoplasts [102–104,122].

The direct microinjection of somatic cell nuclei into the cytoplasm of enucleated
oocytes has the added advantage of being the “cleanest” of all nuclear transplantation
methods. It requires no physicochemical transducers, which often have adverse effects
by reducing the in vitro developmental potential of mammalian cloned embryos. For
the cell electrofusion technique, all components of the donor cell (both nuclear and cy-
toplasmic components: organelles and cytoskeletal elements) become an integral part of
the oocyte. In contrast, for intraooplasmic microinjection of karyoplasts, plasmalemma
and the vast majority of the cytoplasmic material of the nuclear donor cell is rejected
following cell lysis. Therefore, only trace amounts of residual cytoplasm, in the form
of a narrow rim of membrane-bound protoplasm around the cell nucleus, are intro-
duced as a small karyoplast into the enucleated oocyte. This is of prime importance
in some studies that examine nuclear–cytoplasmic interactions in mammalian cloned
cybrids [29,44,81,82,104,107,111,122].

The basic paradigm underlying the somatic cell cloning of mammals is the scientific
thesis that the donor cell nucleus has to be completely reprogrammed epigenetically by
specific factors of the oocyte’s origin in order to support the development of the cybrid
cloned zygote to term. A considerable portion of the protein nucleoplasmic (karyolym-
phatic) factors and cytosolic factors of the somatic cell, which are engaged directly or
indirectly in the mechanisms underlying epigenetic reprogramming of donor cell genome,
is associated with nuclear chromatin. The qualitative and quantitative composition of
these factors within the somatic cell changes together with progressing cytodifferentiation.
When the whole donor cell is fused with the enucleated oocyte, those specific factors of
somatic cell are also transferred into the cytoplasm of the nuclear recipient oocyte. As
a result of this, they may block the endogenous oocyte factors from supporting proper
remodeling and reprogramming the epigenetic profile, which is characteristic of a foreign
nucleus of a terminally differentiated somatic cell, toward an epigenetic status typical of
the nucleus of totipotent stem cells such as the zygote [28,102,123–127]. Exogenous nucleo-
plasmic and cytoplasmic factors derived from the nuclear donor cell, which are responsible
for modulating the epigenetic status of genomic DNA, are incorporated together with
oocyte mRNA transcripts and proteins, into the remodeled nucleus of the somatic cell (the
so-called pseudo-pronucleus). The pseudo-pronucleus is formed following artificial acti-
vation of the embryonic developmental program of the reconstructed oocyte [1,128–137].
In turn, an overabundance of the somatic cell-derived agents modulating the epigenetic
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profile of the donor nucleus may remarkably reduce the concentration and activity of the
oocyte’s epigenetic factors. Thus, it may diminish the incidence of complete epigenetic
reprogramming of transcriptional activity of the somatic cell nucleus in the developing
cloned embryo [112,132–141].

3. Inheritance of the Mitochondrial Genome and Intergenomic Communication
between Mitochondrial and Nuclear DNA Fractions during the Development of
Cloned Embryos

The increased competence of the oocyte cytoplasm for epigenetic remodeling and
reprogramming the somatic cell-inherited nuclear and mitochondrial genomes in cybrid
cloned zygotes is a sine qua non condition for correctly inducing the developmental
program specific for mammalian SCNT embryos [142–154].

Mitochondria are semiautonomous organelles that contain their own genetic material
in the form of double-stranded (α-helix) circular DNA molecules (mtDNAs) of about
16,300–16,500 base pairs (bp). The mitochondrial DNA encodes 13 proteins, 22 tRNAs, and
2 rRNAs. Up to 95% of proteins, which are the products of the cytoplasmic translation
system encoded by nuclear DNA, are involved in biogenesis and cytophysiological func-
tions of mitochondria [155–157]. The copy number of mitochondrial genome in a typical
mammalian somatic cell is approximately 2–5 × 103, whereas the number of mtDNA
molecules in a meiotically matured (MII-stage) oocyte is about 1.6 × 105 in mice, 2.5 × 105

in cattle, 3–5 × 105 in pigs, and 3–8 × 105 in humans. The number of mitochondria in
the somatic cell averages 1 × 103, and one organelle harbors between 1 and 10 mtDNA
molecules. In turn, a single mitochondrion in the meiotically matured oocyte contains from
one to two copies of the mitochondrial genome, which confirms that the abundance of the
intraooplasmic population of these organelles is generally equivalent to the total pool of
mtDNA molecules of an unfertilized mammalian oocyte [106,139,158,159].

In the procedure of cloning by SCNT, mitochondria of nuclear donor cells are trans-
planted with the nuclear genetic apparatus into the cytoplasm of enucleated recipient
oocytes. Irrespective of the method used for the reconstruction of enucleated oocytes
(Table 1), this step of the SCNT procedure always results in the conjunction and mingling
(hybridization) of cytoplasmic environments of the ooplast and somatic cell or karyoplast.
After its intraooplasmic microinjection, the karyoplast may also be a source of mitochon-
dria (mitochondrial genome) of heteroplasmic origin. Therefore, a reconstructed cloned
embryo, which from a cytological viewpoint is a cytoplasmic hybrid (cybrid), harbors the
mitochondrial genome of both maternal (oocyte’s) and exogenous origin (i.e., introduced
together with the nuclear donor cell) [107,111,160–162]. In cloned embryos, fetuses, and
offspring, mitochondria are primarily inherited with ooplasmic material. In turn, probably
during the first few mitotic cleavage divisions, mitochondria derived from nuclear donor
cells are rapidly eliminated from the cytoplasm of embryonic cells at the anaphase stage.
The removal of somatic cell-inherited mitochondria largely depends on the polyubiqui-
tination of specific protein substrates. For that reason, the presence of the somatogenic
mitochondrial genome in the cells of cloned blastocysts is difficult to detect by genetic
engineering techniques [133,158,163,164]. As a consequence, the uniparental inheritance
of extranuclear genetic information in dividing cybrid cloned zygotes is regulated by the
biodegradation of ubiquitin-labeled mitochondrial proteins (including ribonucleoproteins)
and the nucleolysis of mtDNA molecules that are deprived of histones and non-histone
proteins. The proteolytic degradation of mitochondria of heteroplasmic (allogeneic) origin
is catalyzed by a complex proteasomal system in each blastomere of cloned embryos. This
system is characterized by a Svedberg sedimentation coefficient of 26 and designated as
a 26S proteasome. The mechanism of nucleolytic biodestruction of all the somatic-cell-
derived mtDNA copies is determined by normal function of the intracellular lysosomal
cycle, which is related to the exocytosis of endosomal vesicles. The ultimate outcome of this
reaction is the removal from embryonic cells of the exogenous mtDNA fractions, which had
previously been subjected to internucleosomal fragmentation into short oligonucleotide
segments. The preimplantation-stage selective segregation of the mitochondrial genome
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stemming from nuclear donor cells that is indirectly induced by the anaphase-promoting
complex/cyclosome (APC/C) gradually leads to the establishment of cellular mtDNA
homoplasmy in cloned embryos reconstituted with somatic cell nuclei. It is noteworthy
that APC/C undergoes the heterodimerization with cyclin-dependent kinase cdc20 and
is an integral part of the polysubunit enzymatic complex of ubiquitin ligase. Only occa-
sionally could the lasting hybridization of allogeneic mtDNA copies (the so-called mtDNA
heteroplasmy) be identified in the pre- and postnatal period of ontogenetic development of
mammalian cloned specimens. This phenomenon of intracellular mtDNA heteroplasmy
resulted from synergism/complementarity in the intergenomic communication between
mtDNA molecules inherited with both nuclear donor cell cytoplasm and nuclear recipient
cell ooplasm [155,165–168].

There are several species-specific epigenetic factors present in the oocyte cytoplasm
that may contribute to nuclear–cytoplasmic incompatibilities either immediately after so-
matic cell nuclear transfer or at later stages of cloned embryo development [105,136,169,170].
In turn, this potential lack of coordination in the interactions of nuclear and cytosolic factors
of cybrid cloned zygotes is probably one of the reasons for the limited practical application
of the somatic cell cloning technique. It has been demonstrated that maternally inherited
mtDNA molecules accumulated in the mitochondrial reservoirs of the oocyte cytosol play
an important role in nuclear–ooplasmic asynchrony. This asynchrony involves incom-
patibilities in both the epigenetic modifications of the somatic genome supporting the
developmental program of reconstituted cybrids and a lack of synergy in the molecular
mechanisms controlling the karyokinesis and cytokinesis restriction points. These restric-
tion points related to the anaphase segregation of somatic cell-derived chromosomes and
asymmetrical telophase division of the cloned cybrid (nuclear–ooplasmic hybrid) that en-
compasses the expulsion of the pseudo-polar body into perivitelline space are collectively
responsible for coordinated pseudomeiotic to mitotic cycle transition following activation
of the reconstituted oocyte [134,156].

Moreover, the presence of an oocyte-derived mitochondrial genetic apparatus has
been shown to influence the implantation of cloned embryos in the endometrium of a
recipient female’s uteri. For that reason, the deleterious effect, on the preimplantation
development of cloned embryos, of heterogeneous mtDNA sources as a result of possible
mitochondrial heteroplasmy in the reconstructed nuclear–cytoplasmic hybrids should
not be discounted [139,160,161,169]. That is why the production of nuclear-transferred
embryos, fetuses, and offspring with a precisely defined profile of nucleotide sequences
in regulatory or coding segments of the nuclear and/or mitochondrial genome seems to
be valuable tool. This tool can be suitable for experimentally dissecting the effects of not
only nuclear and cytoplasmic genetic/epigenetic components but also the intrauterine
environment of recipient females on embryonic, fetal, and postnatal development of cloned
specimens [2,155,158,171].

Therefore, in the hybrid cytoplasmic environment of cloned zygotes, genetically differ-
ent fractions of mitochondrial DNA of maternal (oocyte’s) origin were found to coexist with
those derived from the cytoplasm of allogeneic somatic cells. Although this extranuclear
(mitochondrial) genetic apparatus of cloned nuclear–ooplasmic hybrids contains small
(approximately 0.01%) amounts of a cell’s genetic information, this mtDNA-dependent
genetic information is completely different from information recorded in the nucleotide se-
quences of nuclear DNA. The latter provides approximately 99.99% of the cellular genome.
In this respect, nuclear transplantation of allogeneic somatic cells into enucleated recipient
oocytes (where nuclear donor cells and oocytes are derived from genetically different ani-
mals of the same species) gives rise to generating nuclear–cytoplasmic hybrids, which are
characterized by heterogeneous mtDNA copies. In view of the fact that such heteroplasmic
cloned cybrids develop into embryos with cellular mtDNA heteroplasmy, this may lead to
apparent genotypic and phenotypic identity/compatibility of the cloned offspring (only
in terms of traits determined by nuclear genome-dependent inheritance). Such cloned
offspring exhibits a degree of variation/incompatibility with regard to phenotypic traits
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determined by cytoplasmic (extranuclear) inheritance. The latter is dependent on the
mitochondrial genotype known as the mitotype [105,157,159,160,167].

Different possible patterns/scenarios of extranuclear (cytoplasmic) inheritance of mtDNA
fractions have been presented (see Figure 1 (for intraspecies cloning by SCNT) [2,158,165,172],
Figure 2 (for interspecies SCNT using nuclear donor cells and recipient oocytes derived from
closely related mammalian species) [163,170,171,173,174], and Figure 3 (for interspecies SCNT
using nuclear donor cells and recipient oocytes derived from phylogenetically distant mam-
malian species) [162,164,175,176]).

The “ideal” clone can be generated only in a situation where the nuclei of its own
(autogeneic) somatic cells are transferred into enucleated recipient oocytes. Put another
way, such a cloned specimen can be produced when nuclear donor cells and oocytes
originate from genetically identical individuals of a mammalian species, i.e., from mono-
sexual (female) individuals. It is necessary to stress that completely homoplasmic cybrid
cloned zygotes can only be created from the oocytes reconstructed in such a manner.
The latter are characterized by homogeneous fractions of mtDNA molecules. The artifi-
cial activation of such nuclear–cytoplasmic hybrids results in the development of cloned
embryos displaying cellular mtDNA homoplasmy. This naturally results in complete
genotypic and phenotypic identity/compatibility of somatic cell-cloned fetuses and the
resultant offspring. Taking into consideration the previously mentioned findings, only in
the case of mammalian cloned females does the mitotype exhibit a homogeneous pattern
of coding and regulatory sequences in all mtDNA copies of the somatic and germ cell
lines. This condition can only be met assuming that during ontogenesis, the mitochondrial
genome will not undergo spontaneous point mutations or those induced by reactive oxygen
species [2,42,106,133,166,168,172,177].

Among the reasons for genetic diversification between the cloned specimens gen-
erated (somatic clones) and individuals subjected to somatic cell cloning (i.e., donors of
somatic cells for SCNT procedure), mention should be made of the effect of mitochondrial
(extranuclear/extrachromosomal) inheritance and the impact of intrauterine environment
of recipient females receiving cloned embryos. Extranuclear inheritance of genetic material
results from the microsurgical, random introduction of foreign mtDNA copies with the
nuclear donor cell cytoplasm into the cytoplasmic environment of recipient oocyte. The
mismatch of the mitochondrial genome molecules of maternal (oocyte’s) origin and of
somatogenic (nuclear donor cell) origin, i.e., mtDNA heteroplasmy, leads to inter-specimen
diversification within the mitotype. This results in intra-population and inter-population ge-
netic and phenotypic variability dependent on the mitochondrial genome [134,155–157,161].
The phenotypic differences between somatic clones and specimens undergoing SCNT are
also contributed by different morphological, anatomotopographical, histological, physio-
logical, endocrinological, embryotrophic, and immunological considerations associated
with the reproductive system of recipient surrogates. Moreover, transplacental leakage of
leukocyte and erythroblast mitochondria from the blood stream of recipient surrogates to
the blood stream of cloned fetuses is often observed. This type of leukocyte–erythroblast
chimerism results both from mtDNA heteroplasmy in peripheral blood cells and from ge-
netic mosaicism within subpopulations of nucleated hematopoietic cells (i.e., hematopoietic
karyocytes). Such chimerism may also have a certain effect on differences in the mitotype
of cloned progeny [139,160,165,169].
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Figure 1. Intraspecies somatic cell cloning, in which the inheritance of allogeneic (homologous) mtDNAs stemming from genetically different nuclear recipient oocytes and nuclear donor
cells is still incompletely recognized during preimplantation development of nuclear-transferred pig embryos. In the vast majority of intraspecies (porcine) cloned embryos, mitochondrial
genome primarily arises from the nuclear recipient oocytes, whereas in their other counterparts, mtDNA copies appear to be inherited heteroplasmically (i.e., both from nuclear donor cells
and from recipient ooplasm).
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cytes are recovered from phylogenetically consanguineous species (i.e., wild boar and domestic pig, respectively). Por-

cine oocyte-derived mitochondrial DNA (mtDNA) is inherited predominantly during preimplantation development of 

interspecies (wild boar→pig) cloned embryos, leading to intracellular mtDNA homoplasmy at the blastocyst stage. 

Figure 2. Interspecies (intrafamily and intragenus) somatic cell cloning, in which nuclear donor cells and recipient oocytes are recovered from phylogenetically consanguineous species
(i.e., wild boar and domestic pig, respectively). Porcine oocyte-derived mitochondrial DNA (mtDNA) is inherited predominantly during preimplantation development of interspecies
(wild boar→pig) cloned embryos, leading to intracellular mtDNA homoplasmy at the blastocyst stage.
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Figure 3. Interspecies (interfamily and intergenus) somatic cell cloning, in which nuclear donor cells and recipient oocytes are recovered from phylogenetically non-consanguineous
species (i.e., domestic goat and domestic pig, respectively). Xenogeneic (heterologous) mitochondria that have been inherited from caprine nuclear donor cells and porcine recipient
oocytes coexist during preimplantation development of interspecies (goat→pig) cloned embryos, leading to intracellular mtDNA heteroplasmy at the blastocyst stage.
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4. Epigenetic Reprogramming of Telomeres in Chromosomes Inherited from Somatic
Cell Nuclei throughout Development of Cloned Embryos, Fetuses, and Progeny

One of the essential prerequisites for epigenetic reprogramming of the cellular mem-
ory dependent on somatic cell-derived nuclear genome (nuclear DNA; nDNA) in the
ontogenesis of mammals produced by SCNT is the structural–functional rearrangement
of nuclear chromatin. The latter is associated with conformational changes in the length
of terminal ends of chromosomes known as telomeres [178–182]. In turn, epigenomic
biochemical alterations within telomeric chromatin are related to the biocatalytic activ-
ity of the telomerase enzyme [3,183–185]. One unresolved problem is the “epigenetic
age” of cloned animals, which seems to be correlated to the length of terminal DNA
fragments, i.e., the telomeres [186–189]. The telomeres are deoxyribonucleoprotein struc-
tures involved in the stabilization of the structure and conformation of nuclear chromatin
during the division period of the mitotic cell cycle. This is necessary for the replication of
mutation-free genomic DNA and karyokinetic segregation of chromosomes [190–192]. The
replication of linear DNA in eukaryotic nuclear chromatin encounters the problem that
the 5′-end of the lagging strand cannot replicate, as there is no space for the replication
initiating RNA primer. An RNA primer is synthesized on the lagging strand template by
primase or RNA polymerase, whose role is played by DNA polymerase α. This creates
the risk that somatic cell chromosomes will shorten with every replication round, thus
losing genetic information. In mammalian somatic cells, the classical α isoform of DNA
polymerase is not capable of semiconservative replication of the 5′-end synthesized in
fragments of the DNA chain, whose replication is delayed in relation to the 3′-end of
the continuously copied leading strand [182,193]. As a result, in each cell division cy-
cle, unreplicated telomere DNA sequences are gradually lost. For this reason, telomere
length is a specific “physiological mitotic clock” of the cell. The shortening of chromosome
telomeric regions is positively correlated with the number of cell divisions. Therefore,
when the telomere length reaches a critical restriction/control point in a karyokinetically
active somatic cell, this is signalized by the loss of nuclear chromatin stability, which is
epigenetically programmed in the spatial structure/configuration and telomere functions.
This is also signalized by triggering replicative senescence in the cell [187,194–196]. The
characteristics of cells that undergo progressive replicative senescence include a consid-
erable increase in diameter and a flattened shape caused by a drastic increase in cytosol
volume. All of the above-mentioned epigenetic, genetic, physiological, morphological, and
ultrastructural transformations, which occur in aging cells, lead in the first place to a rapid
slowdown of both intracellular anabolic processes and the kinetics of mitotic divisions. At
a later stage, these transformations bring about the irreversible inhibition of metabolic and
proliferative activity. As a consequence of single doubling in the population of mammalian
adult dermal fibroblasts cultured in vitro, telomere length decreases by about 48 DNA
nucleotide pairs [180,183,188,197,198].

Telomerase is a ribonucleoprotein enzyme complex that displays the total activities of
RNA reverse transcriptase and DNA integrase only in germ and embryonic cells, while its
partial activity is observed in fetal somatic cells undergoing tissue-specific cytodifferenti-
ation. However, the biocatalytic activity of this enzyme completely ceases in terminally
differentiated somatic cells of adult specimens [184,185,193,199]. The function of telom-
erase is to restore the primary length of DNA telomeres by reverse transcription of its
own RNA template. This gives rise to the de novo synthesis (reduplication) of tandem
repeats within noncoding telomere DNA sequences (5′-TTAGGG-3′) that were lost as a
result of terminating either consecutive mitotic and meiotic divisions of gametogenic (ger-
minal) cells or mitotic cycles of blastomeres, leading to consecutive cleavage divisions of
embryos. In the last phase of semiconservative DNA replication, the 3′-end of the leading
strand extends beyond the 5′-end of the lagging strand. Telomerase contains an RNA
molecule that is partially complementary to the tandem repeat of the short 5′-TTAGGG-3′

sequence at the 3′-end of the leading DNA strand, thus elongating the leading strand
of telomeric DNA region using RNA as the template. Next, the enzyme detaches and
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binds to a new telomeric end to extend the leading DNA strand. The extension process
may occur hundreds of times before telomerase finally dissociates. Then, the extended,
replicated leading strand serves as a template for replication of the 5′-end of the lagging
strand that is catalyzed by DNA polymerase α. These two processes, where the 5′-ends of
DNA are shortened during basic semiconservative replication and subsequently elongated
due to telomerase activity, are mutually balanced, whereby the total chromosomal length
remains more or less the same [180,192,199,200]. In contrast, a lack of telomerase activity
and, as a consequence, a lack of elongating the temporally and spatially restricted length
of nuclear DNA telomeric sequences are epigenomically determined factors specific for
adult somatic cells that provide a source of nuclear donors for the SCNT procedure. These
factors limit the survival rate, proliferative activity, and the number of division cycles of a
cell before the cell reaches the critical point of the maximum telomere shortening. The latter
is simultaneously the mitotic control point that signals the initiation and irreversibility of
the replicative senescence of terminally differentiated somatic cells [188,190,195,201].

The problem of telomere shortening/attrition and replicative senescence of somatic cells
was observed in chromosomes of Dolly the sheep, the first cloned mammal [114,178,189,196].
The telomeres in the chromosomes of Dolly the cloned ewe (at the age of 3 years) were much
shorter than the telomeres in the chromosomes of control animals, which were of the same
age and were born through natural reproduction. Moreover, the telomere length in Dolly’s
chromosomes was similar to that in the chromosomes of a 6-year-old sheep, which was used as
a donor of somatic cells for the cloning procedure. At the time of molecular analysis of telomeres,
Dolly was 3 years old, and her epigenetic age corresponded to the actual age of a 9-year-old
sheep. Put differently, Dolly’s somatic cells were epigenetically older by 6 years than herself.
Born on 5 July 1996, Dolly the sheep lived above 6.5 years and was euthanized on 14 February
2003 after being diagnosed with a malignant lung cancer known as Jaagsiekte (ovine pulmonary
adenocarcinoma). The etiologic agent of this chronic, contagious, and fatal lung cancer in sheep
is Jaagsiekte sheep retrovirus (JSRV), which is responsible for the oncogenic transformation of
bronchial exocrine epithelial cells, i.e., type II pneumocytes and bronchiolar club (Clara) cells. By
2000, Dolly produced a total of 6 lambs (including twins and triplets). Therefore, the cloned ewe
was reproductively sound and displayed high fertility and prolificacy, which means that her
reproductive capacity upon reaching sexual and breeding maturity was not impaired. However,
in 2001, the hind legs of 5-year-old Dolly exhibited the first symptoms of an autoimmune chronic
degenerative joint disease (osteoarthritis), namely rheumatoid arthritis. It should be noted that
this disease is relatively frequent in different breeds of sheep, but generally, it does not affect
animals younger than 10 years of age. Two questions arise: Could Dolly live 6–9 years less
than the expected lifespan of 12–15 years (which is the average lifespan of Finn Dorset sheep,
represented by the somatic cell donor ewe in the SCNT procedure)? As a result of somatic
cell cloning, did she exhibit rapidly progressing symptoms of premature (anatomical and
physiological) aging of the entire body or of some of its parts, tissues, and organs? The results of
experiments performed to determine the telomeric age of Dolly the sheep suggest that animals
cloned by transferring adult somatic cell nucleus into the enucleated oocyte are epigenetically
compromised. For this reason, they have a genetic age of a specimen playing the role of somatic
cell donor for SCNT. This means that at birth, they are epigenetically and genetically much
older than their real-time birth date [178,184,189,196]. However, the evidence for cloned sheep
was not reflected in the studies focused on the analyses of chromosomes isolated from somatic
cells derived from cloned cattle. A study by Lanza et al. [194] on the chromosomes of cloned
calves produced by using long-term cultured fibroblast cells for SCNT showed that the telomere
length of these young animals is even slightly greater than that of control animals, despite the
fact that the chromosomes of nuclear donor cells were almost completely depleted of telomeres.
These analyses confirmed that the terminal ends of chromosomes are efficiently resynthesized
in blastomeres of bovine cloned embryos, with a contribution from highly active telomerases.
Analogously, Tian et al. [179] demonstrated that telomere length in chromosomes of four live
(about 15.4 kbp) and six dead cloned calves (about 15.9 kbp) that had been generated using
dermal fibroblast cells or cumulus cells derived from a 13-year-old cow not only did not differ
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considerably from the telomere length characteristic of control chromosomes (about 14.7 kbp)
but also significantly exceeded (by about 3–3.5 kbp) the telomere length in chromosomes of the
aging cow (about 12.4 kbp), which served as the donor of somatic cells for SCNT-based cloning.
Finally, Kato et al. [202] provided evidence that in cloned cattle, the telomere length is shortened
only in the tissues matching those from the biopsy specimens of which the primary cell cultures
were established. In turn, the latter provided the somatic cell lines that were nuclear donors
used for SCNT procedures.

Telomere length in chromosomes of the dermal fibroblast cells originating from six
transgenic cloned pigs matched the telomere length of the chromosomes of dermal fi-
broblast cells originating from control animals of the same age and produced by natural
reproduction. In turn, two cloned piglets that died 3 to 7 days after birth displayed the
same length of terminal ends of chromosomes as the telomeres of chromosomes in fetuses
at the third trimester of pregnancy [185]. The terminal restriction fragment (TRF) assay of
genomic DNA isolated from the cells stemming from the biopsy specimens retrieved from
different organs/tissues of cloned fetuses (gonads, heart, liver, lungs, kidneys, and skin)
has confirmed that telomere length in chromosomes remains constant in all the cell lines
arising from cytodifferentiation that takes place throughout fetogenesis. The reason for
this is the high efficiency of restoring the primary length of terminal chromosome ends
via the active telomerase isoform throughout the interphase replication cycle of nuclear
DNA in differentiating somatic cells that occupy new tissue niches and are engaged in
multi-stage histo- and organogenesis processes. During the postnatal period, telomeres
are gradually shortened with each mitotic division of somatic cells, and the reduction
of telomere length is tissue-specific. This reflects inhibition of the biocatalytic activity of
telomerase in differentiated lines of somatic cells derived from skin tissue explants and
various internal organs harvested from gilts and boars both before and after attainment of
sexual maturity [180,181,185,192,198].

5. Comprehensive Summary and Future Goals

Cloning by SCNT is currently used in assisted reproductive technologies (ARTs) of
many mammalian species, including various species of farm animals. The application of
this technology in experimental embryology and in molecular population genetics is of
great importance for livestock breeding.

Somatic cell cloning as a method of asexual reproduction offers the opportunity for pro-
duction and/or multiplication of monogenetic and monosexual progeny of high breeding
worth, whose genotypic and phenotypic identity with progenitor donor of transcriptional
mitochondrial and nuclear apparatus of the somatic cell only concerns genomic DNA.
Animals produced by SCNT differ in phenotypic traits determined by the random segre-
gation of oocyte-derived/maternal and somatic cell-derived/somatogenic mitochondrial
genome (mtDNA) as a result of cytoplasmic (extranuclear) inheritance of genetic mate-
rial [106,133,159,161]. Nevertheless, the particularly high application value of somatic cell
cloning technology is related to the possibility of generating genotypically and phenotypi-
cally identical transgenic animals, i.e., animals with transformed nuclear genomes that are
valuable due to the expression product of modified genes [4,28,38,203]. The yield of recom-
binant transgenic protein synthesis by genetically transformed cloned specimens is, to a
certain extent, dependent on the effect of heteroplasmic sources of mitochondrial genotype
(mitotype) on the transcriptional activity profile of modified nuclear DNA genes. This cor-
relation may be negative with a high coefficient of heritability and regressive repeatability
of a given quantitative and qualitative trait resulting from the transgenization of a breeding
herd [2,133,158]. Therefore, an important problem in the production and multiplication of
transgenic cloned specimens (the so-called clonal founder animals) is to generate offspring
with an identical mitochondrial genome. These offspring carry only homoplasmic copies
of mtDNA derived either from recipient oocytes or from somatic donor cells of genetically
modified nuclei. Not without significance is the effect of inheritance of extranuclear genetic
information that is accumulated in mitochondrial reservoirs of both somatic (somatogenic)
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and germinal (gametogenic) cell lines on the transcriptional activity of quantitative trait
loci (QTLs). The latter encompass loci for such traits of transgenic cloned specimens as
reproductive traits (e.g., fertility and prolificacy), productive traits, including meatiness
(e.g., loin eye area, contents of striated muscle tissue, intramuscular and intermuscular
connective tissue, adipose tissue in different carcass, and half-carcass cuts) and milk yield
traits (e.g., volume of milk synthesis, and milk secretion and ejection per day and per
lactation period) [2,4,106,108,136,157,159,203]. In turn, genetic determinants of prolificacy
or fertility traits from the heteroplasmic or homoplasmic pattern of mitochondrial genome
segregation may influence the processes of intergenerational transmission of the transgene
in germ cell lines of the descendant generations of cloned animals with the transformed
nuclear genotype. On the one hand, a negative or positive genetic correlation between milk
yield or dressing percentage traits (inherited with genomic DNA) and the transcriptional
activity profile of mitochondrial DNA genes may be responsible for different extents or
patterns of tissue-specific or organ-specific expression of xenogeneic (e.g., human) gene
constructs in transgenic cloned animals. The expression extents or patterns of these gene
constructs may be characterized by the inhibition or onset of their transcriptional suppres-
sion. On the other hand, the above-mentioned negative or positive correlation may also
affect the expression profile of xenogeneic gene constructs (transgenes) in different cells,
tissues, and organs of genetically modified cloned specimens. This profile of transcriptional
activity of the transgenes integrated with the nuclear genome may be homogenous or
heterogeneous, resulting in the induction or absence of transgenic mosaicism/chimerism
in cloned animals [4,5,136,158,168,169]. The xenogeneic expressive gene constructs that
have been incorporated into genomic DNA of cells localized in different tissues and organs
of transgenic cloned animals can encode, for example, recombinant human therapeutic
proteins. The synthesis and exo- or endocrine secretion of these proteins can be targeted at
secretory cells of the mammary gland or smooth and striated muscle tissue found in all the
corporeal organs, organ systems, and parts of farm animals [35,139,204–207].

Intergenomic communication between mitochondrial DNA and the transgene stably
integrated with nuclear DNA may also create differences in the efficiency of transgenesis,
which induces targeted mutagenesis, i.e., monoallelic deletion or the insertional inactivation
of the gene coding for myostatin. Myostatin is a muscle-tissue-specific hormonal protein
that paracrinally inhibits the gain (hypetrophy and hyperplasia) of skeletal and smooth
muscles [18,208]. The presence of one or two knockout alleles of the myostatin gene or
the presence of one or two posttranscriptionally silenced mRNA copies encoded by the
myostatin gene in heterozygous or homozygous transgenic cloned beef cattle increases
meatiness in cows and bulls. This results from the hypertrophy and hyperplasia of not
only striated but also smooth muscle tissue [18,204].

The attractiveness of SCNT-based cloning of transgenic mammals, including various
species of domesticated animals, is decided by the applicability of the hormonal or enzy-
matic product of the modified gene expression. This applicability first of all determines
the scale and scope of the research. Although the first cloned mammal was a sheep, re-
search targeted at the somatic cell cloning of other livestock species had a much wider
span. The mammary glands (udders) of transgenic cloned cows [11,12,14,206,209,210],
transgenic cloned sheep [23,24], and transgenic cloned goats [17,19] may become live
bioreactors for producing humanized milk, easy-to-digest milk, or milk containing recom-
binant human therapeutic proteins (biopharmaceuticals or nutraceuticals). The latter may
find clinical application in the treatment of patients afflicted with genetically determined
diseases [12,211–213].

Compared to other ARTs in mammals (including livestock species), the efficiency of
somatic cell cloning in domesticated animals, which is measured by the percentage of off-
spring born in relation to the number of reconstructed oocytes, remains low and oscillates
between 0.3% and 2% on average. Nonetheless, the biotechnological possibilities of the
somatic cell cloning in different mammalian species is far ahead of our understanding
of the biological determinants, in particular the molecular and epigenetic aspects, of this
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method [108,132,192,203]. Yet, the biological foundations that have been laid for embryonic
genome engineering of domesticated animals, especially over the last 24 years, made
feasible the development of an innovative technology of in vitro embryo production using
the somatic cell cloning procedure, which may meet the requirements for application in lab-
oratories or, in some cases, only for limited practical purposes [127,214,215]. The assisted
reproductive technology that encompasses SCNT could be used on a larger practical scale
only after the efficiency of somatic cell cloning in various mammalian species, including
livestock, is increased to match the efficiency of in vitro fertilization (IVF) or artificial
insemination (AI) as part of multiple ovulation and embryo transfer (MOET) programs in
cattle. However, due to the relatively high incidence of lethal or sublethal developmental
anomalies or anatomo-histological defects in cloned fetuses and progeny, it is not possi-
ble to use the somatic cell cloning of farm animals on a commercial scale, at least at the
present level of sophistication of the relevant research performed in Europe and the world.
Furthermore, it is also worth noting that the elaboration and optimization of efficient ap-
proaches applied to cryopreserving nuclear donor somatic cells, nuclear-transferred oocytes
reconstructed with somatic cells, and somatic cell-cloned embryos appear to be important
milestones that can help cryogenically protect these valuable types of biological materials.
This can bring the investigators closer to the perspective of progression in the outcome of
producing mammalian SCNT progeny. In turn, future large-scale attempts undertaken to
more successfully generate mammalian cloned offspring can expedite their practical use
for the purposes of not only agricultural, transgenic, biotechnological, biomedical, and
biopharmaceutical research fields but also ex situ conservation of biological diversity in
different anthropogenic and unspoiled natural ecosystems.

To sum up, it seems that after making the transition from basic to applied research,
the techniques for intra- and interspecies somatic cell cloning of mammals could contribute
to (1) the conservation of genetic resources and the establishment of the genetic reserves of
threatened mammalian species and breeds, (2) the restoration and multiplication of the
subpopulations of endangered or vulnerable wild and domesticated species of mammals
in order to maintain biodiversity and to increase the level of intra-population and inter-
specimen genetic variability, and (3) revival (“resurrection”) and reintroduction into the
wild of extinct, free-living species of mammals. Moreover, the practically applied research
into the cloning of domesticated animals could serve to achieve other tangible benefits,
including (4) the improvement of the breeding (genetic) and productive value of different
farm animal breeds, e.g., increasing their milk and meat yields and reproductive ability
(prolificacy and fertility), and (5) the implementation of basic research into interdisciplinary
sciences aimed at the generation of animal biotechnological (transgenic) products for the
biomedical, biopharmaceutical, nutraceutical, and food technology industries. One classic
example of this is the permanent and highly heritable targeted transgenization of the
mammary glands of domesticated species of small and large ruminants (i.e., sheep, goats,
and cattle, respectively) and their use as animal bioreactors for producing humanized milk
or milk containing recombinant human therapeutic proteins such as biopharmaceuticals
and nutraceuticals.
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Abbreviations

AI Artificial insemination
APC/C Anaphase-promoting complex/cyclosome
ARTs Assisted reproductive technologies
IVF In vitro fertilization
JSRV Jaagsiekte sheep retrovirus
MII Metaphase II
MOET Multiple ovulation and embryo transfer
mtDNA Mitochondrial DNA
nDNA Nuclear DNA
QTLs Quantitative trait loci
SCNT Somatic cell nuclear transfer
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74. Skrzyszowska, M.; Smorąg, Z.; Słomski, R.; Kątska-Książkiewicz, L.; Kalak, R.; Michalak, E.; Wielgus, K.; Lehmann, J.; Lipiński, D.;
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