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In neuroscience, all kinds of computation models were designed to answer the
open question of how sensory stimuli are encoded by neurons and conversely, how
sensory stimuli can be decoded from neuronal activities. Especially, functional Magnetic
Resonance Imaging (fMRI) studies have made many great achievements with the rapid
development of deep network computation. However, comparing with the goal of
decoding orientation, position and object category from human fMRI in visual cortex,
accurate reconstruction of image stimuli is a still challenging work. Current prevailing
methods were composed of two independent steps, (1) decoding intermediate features
from human fMRI and (2) reconstruction using the decoded intermediate features.
The new concept of ‘capsule’ and ‘capsule’ based neural network were proposed
recently. The ‘capsule’ represented a kind of structure containing a group of neurons to
perform better feature representation. Especially, the high-level capsule’s features in the
capsule network (CapsNet) contains various features of image stimuli such as semantic
class, orientation, location, scale and so on, and these features can better represent
the processed information inherited in the fMRI data collected in visual cortex. In this
paper, a novel CapsNet architecture based visual reconstruction (CNAVR) computation
model is developed to reconstruct image stimuli from human fMRI. The CNAVR is
composed of linear encoding computation from capsule’s features to fMRI data and
inverse reconstruction computation. In the first part, we trained the CapsNet model to
obtain the non-linear mappings from images to high-level capsule’s features, and from
high-level capsule’s features to images again in an end-to-end manner. In the second
part, we trained the non-linear mapping from fMRI data of selected voxels to high-
level capsule’s features. For a new image stimulus, we can use the method to predict
the corresponding high-level capsule’s features using fMRI data, and reconstruct image
stimuli with the trained reconstruction part in the CapsNet. We evaluated the proposed
CNAVR method on the open dataset of handwritten digital images, and exceeded about
10% than the accuracy of all existing state-of-the-art methods on the structural similarity
index (SSIM). In addition, we explained the selected voxels in specific interpretable image
features to prove the effectivity and generalization of the CNAVR method.

Keywords: brain decoding, functional magnetic resonance imaging (fMRI), visual reconstruction, capsule network
(CapsNet), machine learning
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INTRODUCTION

Human brain decoding (Cox and Savoy, 2003; Haynes and Rees,
2006; Norman et al., 2006) plays an important role in brain-
machine interfaces, may be extended to help disabled persons
in expressing and motioning, and can also help us explore more
about the brain mechanism. In these years, functional magnetic
resonance imaging (fMRI) has become an effective tool to
monitor brain activities and visual decoding based on fMRI data
obtained more and more attention. In contrast to visual encoding
(Kay et al., 2008) that predicts the brain activities in response
to visual stimuli, the inverse decoding (Haynes and Rees, 2005;
Kamitani and Tong, 2005) aims to predict the information about
visual stimuli through brain activities. In general, classification,
identification, and reconstruction of image stimuli based on fMRI
data are three main means of visual decoding. Some progresses
(Naselaris et al., 2011) have been achieved, but the most of
previous researches focused on either prediction of its category
(Damarla and Just, 2012; Mokhtari and Hossein-Zadeh, 2013)
or identification (Kay et al., 2008) from a candidate set of image
stimuli for one unknown image stimulus. The reconstruction of
image stimuli is the full-information and most difficult means of
decoding, and fewer studies (Naselaris et al., 2009) worked on it.
The accuracy of visual reconstruction was restricted by several
problems: (1) the complex noise during the acquisition of fMRI
data; (2) the high dimensionality and limited number of fMRI
data; (3) difficulties when imitating the human visual mechanism
to develop the computation models.

Current reconstruction methods mainly focused on some
simple or small image stimuli. Some methods (Thirion et al.,
2006; Miyawaki et al., 2008; Van Gerven et al., 2010) directly
tried to learn a linear or non-linear mapping based on limited
number of samples. Thirion et al. (2006) reconstructed simple
images by rotating Gabor filters in the passive viewing experiment
and imagery experiment for the same subject. Miyawaki et al.
(2008) achieved the reconstruction of simple binary contrast
patterns (resolution: 10 × 10) by linearly mapping fMRI data
to each pixel of image stimuli. Van Gerven et al. (2010)
reconstructed handwritten digits ‘6’ and ‘9’ (resolution: 28 × 28)
from fMRI data based on deep belief network (Hinton, 2006).
Yargholi and Hossein-Zadeh (2016) employed the gauss network
to reconstruct handwritten digits ‘6’ and ‘9’. Schoenmakers
et al. (2013) tried to reconstruct handwritten English letters of
‘BRAINS’ (resolution: 56 × 56) from fMRI data using linear
gauss model based on sparse learning. However, the direct
linear mapping has limited ability to parse the complex function
of visual information processing in human visual cortex, and
direct non-linear mapping is easy to be overfitting based on
limited number of samples and has weak generalization. So, some
methods (Hardoon et al., 2004; Fujiwara et al., 2013) started to
map the fMRI data to the feature representation of corresponding
image stimuli, then tried to employ these features to reconstruct
image stimuli. Fujiwara et al. (2013) proposed the Bayesian CCA
(BCCA) model based on probabilistic extension of canonical
correlation analysis (CCA) model (Hardoon et al., 2004) that
related fMRI data to image stimuli via a set of latent variables.
Wang et al. (2015) proposed the deep canonically correlated auto

encoders (DCCAE) with a non-linear observation model, and
reconstruct each view using learned representations.

With powerful feature representation, the convolutional
neural network (CNN) architecture (Simonyan and Zisserman,
2014; He et al., 2016) has driven rapid development in
visual computing area. Some work (Yamins et al., 2013, 2014;
Kriegeskorte, 2015) has proved that features of some layers in
CNN behaved strong correlation with the brain activities of
particular visual cortex, and the current state of the art visual
reconstruction methods relied on the mapping from fMRI data
to the features of specific layer in CNN architecture, then tried
to reconstruct image stimuli based on information stream of
CNN architecture. Using the convolution features of the first layer
in CNN, Wen et al. (2017) implemented the reconstruction of
dynamic video frame by frame, and proposed two-stage cascade
neural decoding method based on multivariate linear regression
and deconvolutional neural network (Zeiler et al., 2011). They
first predicted features by multivariate linear regression, then
reconstructed images by feeding the estimated features in the
pretrained deconvolutional neural network. Du et al. (2017)
presented a deep generative multi-view model (DGMM) to
regard the visual reconstruction as the Bayesian inference of the
missing view. These studies have suggested that DNN especially
CNN could help interpret human brain visual information.
However, the accurate reconstruction of image stimuli remains
to be challenging, and is CNN architecture the path for solving
the reconstruction of image stimuli?

We analyzed the problem from the perspective of invariance
and equivariance. Invariance and equivariance are two very
important perceptions in visual representation. As shown in
the Figure 1, the invariance is usually designed for the
specific task such as the semantic extracting, at the cost of
discarding other features that are not correlated with the
semantic information. However, the equivariance that keeps the
quantity of information unchanged while feature representation
can be designed for many tasks, because it keeps various
feature information such as location, pose, orientation, and
so on. Essentially, CNN architecture composed of hierarchical
convolutional and pooling layers, was firstly designed for
invariance including translation invariance, rotating invariance,
scale invariance, and so on. During the forward propagation
in CNN architecture, extracted features are more and more
abstract and local detailed information such as pose and location
which are valuable for detection or segmentation is sacrificed,
which lead to the difference of performance (Jia et al., 2009) on
classification (Krizhevsky et al., 2012) and detection (Girshick
et al., 2014) or segmentation (Long et al., 2015) in computer
vision area. In neuroscience area, CNN can be usually designed
for specific procedure of information processing in human
visual cortex, such as semantic extracting, or decoding of space
location, however, CNN cannot extract various features of image
stimuli, thus incapable of accurate reconstruction that requires
various sensory information extracting such as semantic class,
orientation, location, scale, and so on.

In addition, we analyzed it from the perspective of human
visual mechanism. As we know, after one person glances at one
image, he or she can simultaneously answer many questions
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FIGURE 1 | The difference between invariance and equivariance. Invariance performs the invariable representation when transforming location, pose, and orientation
of digit ‘6’, in order to keep invariable class. Equivariance performs the transformed representation when transforming the location, pose, and orientation of digit ‘6’,
in order to keep equivariant representation. Invariance is usually designed for the specific task, but equivariance can be used for many tasks, because the equivariant
representation contains more various features about the image.

about the image such as ‘what is the main object?’, ‘where is
the object?’, ‘what characteristics does the object have?,’ and so
on. We noticed that these questions contain many characteristics
of the image and we can conclude that the procedure of visual
information representation in human visual cortex requires the
equivariance instead of invariance, because only equivariance
can ensure that the semantic class, location, scale, orientation
and some other detailed information be preserved instead
of discarding, in order to efficiently deal with various visual
tasks.

According to the above analysis, in order to achieve accurate
visual reconstruction, we need an architecture that can keep the
equivariance when feature representation and contain various
features to make it possible to achieve accurate reconstruction
from the perspective of information completeness.

Aimed at the equivariance instead of simple invariance,
Sabour et al. (2017) firstly proposed the concept of capsule
and designed the promising capsule network (CapsNet) based
on convolutional operation and routing by agreement. In
CNN architecture, each layer just includes some disorder
neurons which makes it hard to perform some organizations
of detailed internal structure. However, in the CapsNet,
capsules serve as the basic units of each layer and contain
a group of neurons, which can organize some internal
structures inspired by the structure of cortical mini column

(Buxhoeveden and Casanova, 2002) including several hundred
neurons in primates. The length of a capsule’s features
can predict the presence of a particular object for the
invariance, and the capsule’s features can predict the various
attributes of a particular object for the equivariance. The
CapsNet reached high accuracy on MNIST (LeCun, 1998)
digits recognition and reconstruction, which benefits from the
equivariance when feature representation. The CapsNet can
achieve accurate classification, which can prove that the capsule’s
features contained abstract information; can achieve accurate
reconstruction, which can prove that the capsule’s features
contained various information of image stimuli and is the
equivariance of image stimuli.

In this study, our main contributions are as follows: (1)
we introduced the concept of invariance and equivariance
to analyze the disadvantage of previous CNN on visual
reconstruction compared to the new CapsNet architecture;
(2) we proposed the new CapsNet architecture based visual
reconstruction (CNAVR) method that accords well with
the human visual information representation in human
visual cortex based on the equivariance; (3) we interpreted
the selected voxels used to reconstruct image stimuli in
specific interpretable features; (4) this paper is the first to
study visual reconstruction via the new promising CapsNet
architecture.
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MATERIALS AND METHODS

Experiment Data
We employed the dataset from Van Gerven et al. (2010) in the
study. A hundred handwritten gray-scale digits (equal number
of ‘6’ and ‘9’) at a 28 × 28 pixel resolution taken from the
MNIST database were presented to one subject. In each trial, a
handwritten digit ‘6’ or ‘9’ was presented to the subject, remained
visible for 12.5 s, and flickered at a rate of 6 Hz on a black
background. There are four runs interspersed with 30 s rest
periods to perform 100 trials in total, and trials in the same
run were separated by a 12.5 s interval. The Siemens 3T MRI
system was used to acquire blood-oxygenation-level dependent
(BOLD) sensitive functional images. The single-shot gradient EPI
sequence with a repetition time (TR) of 2.5 s and isotropic voxel
size of 2× 2× 2 mm3 was employed. The functional images were
acquired from 10 to 15 s after trial onset and averaged to obtain
an estimate of the steady-state response. The acquired data was
pre-processed including motion-corrected, coregistered with the
anatomical scan, detrended, and high-pass-filtered dealing with
hemodynamic response function (HRF) issue within Statistical
Parameter Mapping (SPM5) software. The fMRI data of each
image stimulus contains 3,092 voxels in total from V1, V2, and
V3 regions. Additional, the detailed information about the fMRI
data can refer to Van Gerven et al. (2010), and the public dataset
can be downloaded through1. In the experiment, we employed
10-fold cross validation to test the CNAVR method.

The Overview of CNAVR Method
In order to achieve accurate visual reconstruction, as analyzed
in the introduction about the equivariance and invariance, we
employed the new CapsNet architecture (Sabour et al., 2017) to
construct the feature representation of the equivariance between
image stimuli and capsule’s features, and learned the mapping
from fMRI data to capsule’s features based on several fully
connected neural network. As shown in the Figure 2. Our
proposed CNAVR method included two-stage training. Firstly,
we employed the CapsNet to train the equivariance from images
to capsule’s features, and from capsule’s features to images in
an end-to-end manner by using convolutional, fully connected,
and routing by agreement operations. After the training, given
one input image, we can obtain the corresponding high-level
capsule’s features, and can reconstruct the input image accurately
again based on the capsule’s features, which indicated that
the capsule’s features did not throw away location, pose, scale
characteristics and so on for the sake of invariance, and kept
complete information of the image when feature representation.
Then we selected voxels to reduce dimensionality of fMRI data
by encoding performance with capsule’s features, and learned the
mapping from dimensionality-decreasing fMRI data to the high-
level capsule’s features using three layers’ fully connected neural
network. After the two-stage training, given the fMRI data of one
presented image stimulus, we can predict its high-level capsule’s
features about digits ‘6’ and ‘9’ with the learned mapping, and

1http://artcogsys.com/data/69dataset.mat

the accurate reconstruction can be accomplished using the longer
capsule.

It should be noted that next section “Capsule and Dynamic
Routing Between Capsules” and “Training Image Feature
Representation of Equivariance” simply introduced the basic
concept of capsule unit and the CapsNet architecture respectively
to make it easy to understand our CNAVR method, and more
detailed information about the CapsNet can refer to Sabour et al.
(2017). The section “Selecting Voxels by Encoding Performance
to Decrease Dimensionality of fMRI Data” demonstrated how to
select valuable voxels to reduce the dimensionality of fMRI data.
How to train the mapping from the dimensionality-decreasing
fMRI data to the high-level capsule’s features was illustrated in the
section “Training the Mapping From Dimensionality-Decreasing
fMRI Data to High-Level Capsule’s Features,” and the section
“Reconstructing Image Stimuli From Human fMRI” explained
how to use previous trained network in the section “Training
Image Feature Representation of Equivariance,” and “Training
the Mapping From Dimensionality-Decreasing fMRI Data to
High-Level Capsule’s Features” to accomplish reconstruction
from human fMRI.

Capsule and Dynamic Routing Between
Capsules
Sabour et al. (2017) recently proposed the concept of capsule and
dynamic routing between capsules. Each capsule contains a group
of neurons. As the equation (1), the capsule j performs the non-
linear squashing activation function for the given input vector sj,
and output vector vj. The orientation of vector sj is preserved,
but the length is squashed between 0 and 1. The parameters in
vj represent the various properties of a particular entity such
as position, scale, and texture, and the length of vj is used to
represent the existence of the entity.

vj =
||sj||

2

1+ ||sj||2
sj

||sj||
(1)

The input sj is a weighted sum over all prediction vectors ûj|i that
is produced by multiplying the output ui of a capsule in the layer
below by a weight matrix Wij.

ûj|i =Wijui (2)

sj =
∑

i

cijûj|i (3)

The coupling coefficients cij are determined by the iterative
dynamic routing process. The coupling coefficients between
capsule i and all the capsules in the layer above are determined by
the softmax of bij indicating the probability that capsule i should
be coupled to capsule j.

bij = bij + ûj|ivj (4)

cij =
exp(bij)∑
k exp(bij)

(5)

Where bij is initially set to zero, then is iteratively refined
by measuring the agreement between the output vj and the
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FIGURE 2 | The proposed CNAVR method. The first stage of training aims to construct the equivariance of feature representation between image stimuli and
high-level capsule’s features. The second stage of training aims to construct the mapping from the fMRI data to the corresponding capsule’s features for digits ‘6’
and ‘9’. The reconstruction can be achieved by using the longer capsule’s features that represent the various features about the image stimuli.

prediction ûj|i made by capsule i in the layer below, using the
scalar product vjûj|i. Three looping can obtain the nice coupling
coefficients and routing by agreement essentially tried to learn the
relationship between part and whole.

Training Image Feature Representation
of Equivariance
We employed the CapsNet (Sabour et al., 2017) to train
the equivariance between images and corresponding high-level
capsule’s features using handwritten digit images from LeCun
(1998). As shown in Figure 3, the CapsNet can be divided
into three parts. The first part (feature representation part) is
used to extract image features, the second part (classification
part) is used to classify the input image with the extracted
features, and the third part (reconstruction part) is used to
reconstruct images again with the extracted features. In detail,
the CapsNet architecture is shallow with only two convolutional
layers, dynamic routing layers and several fully connected layers.
Given one image (size: 28× 28), the first layer (Conv1) performs
256 convolutional (kernels: 9 × 9) operations with a stride
of 1 and ReLU (Szegedy et al., 2015) activation. This layer
converts pixel intensities to the local features (size: 20 × 20)
that are then used as inputs to the primary capsules. The second
layer (PrimaryCaps) also performs 256 (32 × 8) convolutional
(kernels: 256 × 9 × 9) operations with a stride of 2 to produce
32 capsule maps (size: 6× 6) whose capsule is an 8D vector. This
layer is to construct capsules for dynamic routing operation in
next layer. The final Layer (DigitCaps) has one 16D capsule per
digit class (6 and 9) and each of these capsules receives input from
all 1152 (32× 6× 6) capsules in the layer below.

Because the length of each capsule represents the probability
that a specific entity exists, the CapsNet aims to make the
corresponding high-level capsule vector longer if some digit is
present in the image and make the other high-level capsule
vectors shorter. So, the classification loss is simply the sum of
the losses of two digit capsules, and defined as shown below. In

the training, set TC = 1 if a digit of class c is present and set
m+ = 0.9, and m− = 0.1 and λ = 0.5.

LClassification =
∑

c
(Tcmax

(
0,m+ − ||vc||

)2
+ λ(1− Tc)max

(6)
(
0, ||vc|| −m−

)2
)

Most importantly, in order to ensure the equivariance of
mapping from images to high-level capsule’s features, the
CapsNet adds a decoding network (reconstruction part) on the
top of the capsule network. The decoding network contains three
fully connected layers using ReLU activation function in the first
two layer and sigmoid activation function in the output layer.
The reconstruction can be accomplished with the corresponding
capsule’s features. The full valuable various information for image
reconstruction is preserved in the high-level capsule’s features
by minimizing the mean squared error (MSE) between the
reconstructed image and the input image.

So, the overall loss LOverall is the classification loss plus the
weighted decoding loss. The classification loss is to force the
high-level capsules distinct in the length for different digits. The
reconstruction loss is to force the network to preserve all the
information required to reconstruct the image throughout the
CapsNet, and acts a bit like a regularization.

LOverall = LClassification + µMSE(I, FCdecoding(vk)) (7)

In the experiment, the Adam optimizing (Kingma and Ba, 2014)
was used to avoid overfitting and fasten the training. It is noted
that was set 4.0 and batch size was set 10. We finished the
training after about 20 epoch based on the MNIST dataset using
Tensorflow (Abadi et al., 2016).

Selecting Voxels by Encoding
Performance to Decrease Dimensionality
of fMRI Data
After finishing the training of the CapsNet, we obtained the
architecture of feature representation for equivariance instead of
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FIGURE 3 | The architecture of CapsNet. The first two layers perform convolutional operations to construct the primary capsule structure. Each capsule in the
PrimaryCaps layer includes 8D features, and each high-level capsule in the DigitCaps layer includes 16D features that include more various features. The architecture
employs the dynamic routing to replace the pooling operations to avoid the loss of the valuable information such as orientation, location, scale, and other detailed
features that are important for the equivariance when forward propagation. The ‘deep yellow’ mark represents the capsule for digit ‘6’ in the DigitCaps and using it
can predict the input image based on three fully connected layers.

invariance. Given one image stimulus, we can predict its two
high-level capsule’s features and also can reconstruct the image
using the longer 16D capsule’s features. In order to realize the
reconstruction of image stimuli from fMRI data, we need to
map fMRI data to high-level capsule’s features. However, the
amount of fMRI data is usually limited because of the acquiring
device, subjects, time and other reasons, and the dataset used
in this study only contains 100-pair digits (50 digits ‘6’ and
50 digits ‘9’) and corresponding fMRI data in total. Moreover,
the dimensionality of the fMRI data reaches 3,092, a very high
number compared to the number of the samples, which easily
lead to overfitting during training.

Faced with the problem of high dimensionality, we chose
to use those voxels that are maximally correlated with the
image stimuli and the correlation is measured by the effect
of fitting namely encoding performance. So, we built encoding
model mapping image stimuli to voxels. As shown in the
Figure 4, given one image stimuli, we can predict its two
(digits ‘6’ and ‘9’) high-level capsule’s features based on
the trained CapsNet in the section “Training Image Feature
Representation of Equivariance”, and selected the longer capsule,
then employed simple linear regression to learn to fit each voxel
using the capsule’s features that are the equivariance of image
representation, contain all valuable information and have the
shorter dimensionality. During fitting each voxel using linear
regression, we can measure the encoding performance of each
fMRI voxel using the coefficient of determination (R2), which
indicates the percentage of variance that is explained by the
model. Finally we selected those voxels whose R2 is at the top 100,
and reduced the dimensionality of fMRI data from 3092 to 100.

Training the Mapping From
Dimensionality-Decreasing fMRI Data to
High-Level Capsule’s Features
Next, as shown in the Figure 5, we designed the network
that maps the dimensionality-decreasing fMRI data to the two

capsules of digits ‘6’ and ‘9’. Our network was composed of three
fully connected layer using ReLU activation function in the first
two layer and no activation function in the last layer. In the
experiment, we tried to add the number of layers, but find no
benefit. The output of first layer was 256D, the second 128D,
and the last 32D. We added the L2 regularization operations
in the first two layers to prevent the network from overfitting
because the number of training samples is too limited to be
easily overfitting. The output of last layer was split into two
16D vectors in the middle and employed squashing function
to resize each length between 0 and 1. The two 16D vectors
represent the prediction of high-level capsule’s features. The true
high-level capsule’s features can be obtained based on the feature
representation part of trained CapsNet in the “Training Image
Feature Representation of Equivariance”. We employed the mean
square error (MSE) between predicted and true capsule’s features
to perform gradient descent to update the weight parameters
of the three layer’s neural network. It should be noted that the
weights in the CapsNet is fixed when training the three layers’
network.

We employed the Adam optimizing method to perform
the training. The batch size is set 10, initial learning rate
is set 0.0001. The learning curve of the training was shown
in the Figure 6. We finished the training after about 10,000
iterations using Tensorflow, and we can see that our network
behaves well on the 90 training samples and do not suffer
from the overfitting because of the regularization and voxels
selecting operations. So far, we accomplished the mapping from
the dimensionality-decreasing fMRI data to high-level capsule’s
features.

Reconstructing Image Stimuli From
Human fMRI
After the two-stage training above, we accomplished the
equivariance between images and capsule’s features in the
“Training Image Feature Representation of Equivariance”, and
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FIGURE 4 | The encoding architecture used to select valuable voxels. The simple linear regression is used to fit to the each of voxels (3092D) using the longer of two
high-level capsule’s features. The encoding performances are measured through R2. According to the R2 values of each linear regression for each voxel, those
voxels whose R2 values belong to top-100 are selected and used to perform next reconstruction.

FIGURE 5 | The architecture that maps the fMRI data to capsule’s features. The three fully connected layers are employed to predict ‘pale yellow’ capsule and ‘deep
yellow’ capsule that represent digit class ‘9’ and ‘6’ respectively. The ‘cyan’ vector represents the dimensionality-decreasing fMRI data based on the encoding
performance that evaluated by the linear regression of high-level capsule’s features. The trained CapsNet in Figure 3 is used to make up training samples (pairs of
two capsule’s features and dimensionality-decreasing fMRI data) to train the mapping from the fMRI data to capsule’s features.

the mapping from the dimensionality-decreasing fMRI data to
high-level capsule’s features in the section “Training the Mapping
From Dimensionality-Decreasing fMRI Data to High-Level
Capsule’s Features”. So, we can obtain our CNAVR model and
reconstruct the image stimuli using dimensionality-decreasing
fMRI data. As show in the Figure 7, given one fMRI vector,
we firstly selected the valuable voxels according to the encoding
performance in the section “Selecting Voxels by Encoding
Performance to Decrease Dimensionality of fMRI Data,” and
predicted its two high-level capsule’s features about the digits ‘6’
and ‘9’ based on the trained three layer’ neural network in the
section “Training the Mapping From Dimensionality-Decreasing
fMRI Data to High-Level Capsule’s Features,” secondly we take
out the longer capsule, finally we can accomplish accurate
reconstruction by the mapping from high-level capsule’s features
to images based on the reconstruction part of trained CapsNet

in the section “Training Image Feature Representation of
Equivariance”.

RESULTS

The Encoding Performance
The dimensionality (3092D) of the fMRI data is too big to
train the mapping from fMRI data to the high-level capsule’s
features using limited number (90) of samples, so we selected
some valuable voxels according to coefficient of determination
R2 reflecting the performance of fitting on training set. As
shown in the Figure 8, we employed the 10-fold cross validation
to test our encoding performance for each voxel. We can see
that mean correlation coefficient of top-100 voxels reached
0.86 and that of top-700 voxels exceeded more than 0.65. The
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FIGURE 6 | The learning curves during training. The mapping from fMRI data to high-level capsule’s features is important for next reconstruction. The MSE on testing
samples is close to that on the training samples, which indicates that our proposed CNAVR method avoided the overfitting, because of the dimensionality-decreasing
operations and the capsules including the feature information of equivariance. The performance will get improved when obtaining more fMRI data.

FIGURE 7 | The flow of visual reconstruction. The former half part trained at the second training stage is responsible for the mapping from dimensionality-decreasing
fMRI data to the two high-level capsule’s features, the latter part (reconstruction part) trained at the first stage is responsible for the reconstruction based on the
longer capsule. In this way, the high-level capsule’s features are used to bridge between fMRI data and image stimuli.

performance indicated that the capsule’s features make for better
encoding although using the simplest linear regression, which
proved the advantage of equivariance of CapsNet when feature
representation. In addition, we found that we nearly selected the
most of those top voxels using R2, and the selected voxels reached
nearly about 85% of top-k voxels in terms of mean correlation
coefficient. The comparison demonstrated that selecting voxels
by R2 is a good choice and ensures the performance of the next
visual reconstruction.

The Results of Reconstruction
We employed several standard image similarity metrics,
including Pearson correlation coefficient (PCC), mean squared
error (MSE), and structural similarity index (SSIM) (Wang
et al., 2004). Note that MSE and PCC is not highly indicative
of similarity, and serves as the auxiliary metrics, while SSIM
proposed to measure structural similarity, can address this
shortcoming by taking texture into account and has strong
persuasion.

Firstly, we presented the reconstruction results of 12 distinct
handwritten digits including the equal number of digits ‘6’
and ‘9’. In order to present the results clearly, we gave
image stimuli, the theoretical reconstruction based on the true
high-level capsule’s features of image stimuli through trained

CapsNet in section “Training Image Feature Representation
of Equivariance”, and the visual reconstruction based on the
predicted high-level capsule’s features of fMRI data through
trained three layers’ neural network in section “Training
the Mapping From Dimensionality-Decreasing fMRI Data to
High-Level Capsule’s Features”. The theoretical reconstruction
demonstrates the theoretical upper limit of our CNAVR
method.

From the Figure 9, we can see that the theoretical
reconstruction is perfect and much close to the image stimuli,
because capsule’s features guarantees no missing information
when feature representation through trained CapsNet, which
proved the equivariance. In addition, our visual reconstruction
results are also much similar with image stimuli, which
proved the proposed CNAVR method. In detailed, we gave
corresponding quantitative evaluation for each reconstruction in
Table 1. It cannot be denied that some image reconstruction is
not good, as shown in the column ‘f ’ and ‘l’ in the Figure 9.
We analyzed that the second stage of mapping from voxels to
capsule’s features remained improvement based on limited fMRI
data, and the reconstruction part in the CapsNet is sensitive to the
input capsule, and reconstruction results will change when the
high-level capsule’s features are slightly perturbed. In addition,
we can see that these image stimuli that cannot be reconstructed
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FIGURE 8 | The encoding performance according to different methods of selecting. The X-axis represents the number of voxels selected from 3,092 voxels. The
Y-axis represents the mean correlation coefficient of prediction on testing set for selected voxels by 10-fold cross validation. We can see that employing the
high-level capsule’s features can achieve good encoding performance, which indicates that these capsules include various features such as semantic class,
orientation, location, and so on.

FIGURE 9 | Reconstruction results of the proposed CNAVR method. The presented reconstruction both includes five high-quality and one low-quality results for
digits ‘6’ and ‘9’. Except for the ‘f’ and ‘l’ columns, the reconstruction gets close to original image stimuli, from the view of orientation, scale, location, and so on. The
‘f’ and ‘l’ columns represent the small number of low-quality reconstruction, and we can see that the most of low-quality reconstruction belong to the strange image
stimuli, which needs further specific improvement.

accurately indeed do not belong to the common digits. The
subject may recall corresponding common pattern if a common
subject suddenly looks at the strange kind of image stimuli, which
may be an interesting question.

Next, we presented the quantitative results based on 10-
fold cross validate compared to the several state of the art
methods. As shown in the Table 2 below, although the PCC
and MSE of our proposed CNAVR method is a little weaker
than the current best DGMM (Yamins et al., 2014) and De-
CNN (Wen et al., 2017), the CNAVR exceeds about 10%
than them on more important SSIM metric. We analyzed
that the methods should not be crazy about the much high
MSE and PCC, because the complex noise in the fMRI

data and limited samples reduce the significance of pixel-
level comparison. Moreover, human do not care much detailed
information in pixel-level and should care much of structure
according to attention mechanism. So, the two metrics just serve
as the auxiliary measure, and our CNAVR performed better
overall.

Demonstration of Voxels Related to
Specific Features
Further, we presented the relationship between voxels and
specific interpretable features to make the proposed CNAVR
method interpretable and prove its generalization. In order to
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TABLE 1 | The corresponding quantitative evaluation for each presented reconstruction in Figure 9.

Metrics a b c d e f g h i j k l

MSE 0.023 0.021 0.029 0.037 0.048 0.090 0.014 0.013 0.022 0.026 0.024 0.115

PCC 0.934 0.917 0.833 0.832 0.774 0.521 0.912 0.900 0.890 0.873 0.869 0.460

SSIM 0.906 0.885 0.826 0.826 0.772 0.516 0.901 0.898 0.888 0.867 0.866 0.459

TABLE 2 | The quantitative comparison to other state of the art methods.

Algorithms MSE PCC SSIM

Miyawaki et al. (2008) 0.042 0.767 0.466

Fujiwara et al. (2013) 0.119 0.411 0.192

Wang et al. (2015) 0.074 0.548 0.358

Wen et al. (2017) 0.038 0.799 0.613

Du et al. (2017) 0.037 0.803 0.645

Our CNAVR 0.042 0.769 0.750

The bolded values represented the best performance on the corresponding
metrics.

interpret the selected voxels and make clear whether some voxels
can explicitly influence the appearance of reconstructed images,
such as shape, orientation and so on, we proposed to explain
voxels in specific features based on the gradient information of
the CNAVR network.

Firstly, we slightly modified one specific value in the 16D
high level capsule’s feature vector at a time and observed
the corresponding transformation of reconstructed images. In
this way, we found that some specific dimensions in the 16D

vector can be interpretable. As shown in the Figure 10, the
presented specific values in the capsule’s feature vector can
indeed control the appearance of reconstruction for digits ‘6’.
For example in the Figure 10 (A), when we modified the 1th
value in the 16D feature vector from -0.5 to +0.5, we can see
that the orientation of the top half of digit ‘6’ also changes
continuously. So, we call the 1th value in the 16D vector as
the ‘Orientation feature’. In the same way, we presented some
interpretable features for digits ‘6’. The same phenomenon about
digit ‘9’ can be also seen in the Figure 11. In comparison
between the Figures 10, 11, the same interpretable features
(for example ‘Bend feature’) of ‘6’ and ‘9’ can be controlled
by the different dimensions in the 16D feature vector, and
can also be controlled by the same dimension, which can
be seen in the Figure 12 for the ‘Width feature’. Secondly,
after making 16D capsule’s features interpretable, we tried to
find the relationship between voxels and these interpretable
features. In order to reconstruct image stimuli, the high-level
capsule’s features are firstly predicted through the three layers’
neural network using voxels. Therefore, we can obtain the
numerical relationship between the output (predicted high-level
capsule’s features) and input (voxels) based on the gradients of

FIGURE 10 | Some specific interpretable features for digit ‘6’. The three interpretable features including (A) ‘Orientation feature’, (B) ‘Bend feature’, and (C) ‘Circle
size feature’ are presented. For example, in panel (A), the first value in the 16D feature vector can control the orientation of the top half for digit ‘6’, and is called as
‘Orientation feature’. In this way, we can interpret the abstract numerical value with the image features.
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FIGURE 11 | Some specific interpretable features for digit ‘9’. The three interpretable features including (A) ‘Intensity feature’, (B) ‘Circle shape feature’, and (C)
‘Circle size feature’ are presented. For example, in panel (A), the eleventh value in the 16D feature vector can control whether light or dark for digit ‘9’, and is called
as ‘Intensity feature’. In this way, we can interpret the abstract numerical value with the image features.

the three layers’ neural network using back propagation. So,
we can obtain which voxels are more active than others for
specific dimension in capsule feature vector, and further for
interpretable features according to the values of the gradients.
In this way, we presented the relationship between voxels and
specific interpretable features. As shown in the Figure 13, we
can see that different voxels in selected 100 voxels indeed
contribute differently on specific interpretable features, and
showed different sensitivity for different interpretable features.
In addition, we can see that each interpretable features are
decided by some voxels instead of one voxel that will bring more
overfitting and less generalization considering inevitable noise
during data acquisition. Based on the two steps, we can make
voxels interpretable in specific image features, which proves the
effectivity and generalization of the proposed method.

DISCUSSION

CapsNet Architecture Performs Better in
Extracting Visual Features
In a regular CNN, there are generally several pooling layers.
Unfortunately, these subsampling layers tend to lose information
for invariance, such as the precise location and pose of
objects. It’s really not a big deal if you want to classify whole
images, but it makes it challenging to perform accurate image
segmentation, object detection, and other tasks which require
precise location and pose information. Visual reconstruction
is exactly the problem that needs to rely on complete
characteristic information, which requires the equivariance

instead of invariance when feature representation. The CapsNet
architecture can be exactly fit for the problem, which benefits
from the concept of capsule, dynamic routing, and reconstruction
regularization loss. In addition, it is obvious that human
can simultaneously accomplish many different tasks such as
image recognition, image object location, and object pose
detection after looking at one image only once. Different
tasks always need different characteristics of images and it
can conclude that visual information processing in human
visual cortex also requires the equivariance. The equivariance
ensures that the location, scale, pose, and some other detailed
information be preserved instead of discarding. The similarity
demonstrated that the new CapsNet architecture accords well
with the human visual mechanism. Other architecture such
as prevailing CNN does not have the equivariance, because
they aimed at invariance, abstracting, and continues hierarchical
abstracting in the process of forward propagation. Our results
about encoding during selecting voxels and reconstruction
results based on fMRI data both proved the significance of
the new CapsNet architecture, which is very promising for
visual reconstruction including more complex natural image
reconstruction.

The Importance of Selecting Voxels
As we know, selecting too many voxels will inevitably introduce
more noise and not selecting enough voxels will miss some
necessary information, which can both influence the quality
of visual reconstruction. So, selecting voxels is an important
procedure and challenging problem in visual reconstruction. On
one hand, from the mean correlation coefficient of encoding
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FIGURE 12 | The sharable interpretable features for both digits ‘6’ and ‘9’. The seventh value can influence whether fat or thin for both the digits ‘6’ and ‘9’, which
shows that the information between digit ‘6’ and ‘9’ can be generalized in the reconstruction part in the CapsNet.

FIGURE 13 | Heat map illustrating the relationship between voxels and specific interpretable features. The contribution of the specific voxels to the specific
interpretable features is presented, which makes the voxel interpretable. Different colors are used to distinguish whether specific voxels are more active than others
for specific image based features.

based on top-k and R2 selection, we can find that the means
of R2 nearly selected the most of top-k voxels. The second-
stage training avoid the overfitting and the 10% higher on
SSIM is partly attributed to the performance of selecting
voxels, which indirectly indicate the importance of selecting
voxels. On the other hand, we employed the much simple
linear regression for the encoding model to select voxels, and
the distance between the theoretical reconstruction and visual
reconstruction still remain wide, which indicates that we need
to select better voxels to optimize the mapping from fMRI
data to high-level capsule’s features. How to select the more of
top-k voxels and employing non-linear encoding may be next
choices.

Two-Stage Training Method
We realized the reconstruction with the two-stage training by
introducing the new CapsNet architecture that provides the
equivariance. We tried to add the third stage of fine tuning
that optimize the overall network including the CapsNet and
the mapping from fMRI data to capsule’s features, however, the
results did not present the prospective effects. We think that
the limited training samples (less than 100) are not suitable for
the jointly training. However, the jointly training or end-to-
end training is indeed a good direction from the development
of computer vision, and the end-to-end training for visual

reconstruction based on the CapsNet and more samples may
attract more attention in the future.

Generalization Analysis
Generalization is a matter of great concern in the fMRI based
studies. In the section “Demonstration of Voxels Related to
Specific Features”, voxels are interpreted in the specific features,
which indirectly indicates the generalization of our proposed
CNAVR method. However, because of the limit of subject,
equipment, time, and so on, the generalization is hard to
directly validate by performing exhaustive experiments. So, the
generalization analysis for different subjects and category of
image stimuli is additionally added to illustrate the application
in other condition. On one hand, it is well known that most
decoding models need training again for different subjects, and it
is hard for one model whose parameters are kept fixed to obtain
good reconstruction from different subjects’ fMRI, because of
the significant individual difference in human brain. So, one
architecture with different parameters for different subjects is
acceptable. While dealing with a new subject, our proposed
method is expected to obtain good reconstruction and needs
to train again by the way of two-stage training in the section
“Materials and Methods”. Certainly, the acquisition and pre-
processing of fMRI data for different subjects usually need to
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keep the same. On the other hand, current stimuli used to
perform visual reconstruction can be roughly divided into two
categories (simple image stimuli and natural image stimuli).
For simple image stimuli similar with the data used in this
study, the mass of images and corresponding category labels
are required to learn feature representation of equivariance
through the CapsNet in the section “Training Image Feature
Representation of Equivariance”. As shown in the study, we firstly
train the network by using digit images from LeCun (1998).
Luckily, the training does not need a large number of image
stimuli with corresponding fMRI data of human visual cortex,
which guarantees the generalization of the CNAVR method.
Image stimuli are usually selected from public image dataset,
and it is easy to collect a number of similar images with
category labels. Therefore the CNAVR is expected to obtain
good reconstruction for new simple image stimuli. In addition,
the CapsNet is promising for reconstruction of natural image
stimuli, a more challengeable problem, because reconstruction
of more complex image stimuli requires equivariance more, and
more complex image stimuli have more complex characteristics
and patterns. However, the CNAVR method currently has
difficult in reconstructing complex natural image stimuli, because
the equivariance from natural images to capsule features is
hard for the CapsNet to learn, which is a public problem
in the CapsNet. The next key step is to solve the problem
of how to better preserve the equivariance when feature
representation. It is worth noting that we are first to introduce
the CapsNet architecture into visual reconstruction, and it is
no doubt that there is long way to improve the generalization
further.

CONCLUSION

This paper firstly introduced the new CapsNet architecture
for visual reconstruction, inspired by the equivariance of
information processing in human visual cortex. We proposed
the CNAVR method that provides the equivariance when feature

representation. Selecting voxels to reduce the dimensionality of
fMRI data and learning the mapping from fMRI data to the
capsule’s features are the two key stages in visual reconstruction.
Based on the capsule’s features of equivariance, the performance
of the two key stages are guaranteed. In comparison to the
state of the art methods, the CNAVR exceeded by about 10%
than the state of the art in the most important SSIM metric.
These results demonstrated that our CNAVR better accords well
with the human visual cortex. In addition, we analyzed the
voxels in specific interpretable image features. To the best of
our knowledge, this paper is the first to study visual image
reconstruction via promising capsule network. Next, in order
to achieve better visual reconstruction especially for complex
images or videos, the exploration of CapsNet may spring
up. There is no doubt that it’s still a start, but a promising
start.
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