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Abstract

Background: Arnebia euchroma (A. euchroma) is a traditional Chinese medicine (TCM) used for the treatment of
blood diseases including leukemia. In recent years, many studies have been conducted on the anti-tumor effect of
shikonin and its derivatives, the major active components of A. euchroma. However, the underlying mechanism of
action (MoA) for all the components of A. euchroma on leukemia has not been explored systematically.

Methods: In this study, we analyzed the MoA of A. euchroma on leukemia via network pharmacology approach.
Firstly, the chemical components and their concentrations in A. euchroma as well as leukemia-related targets were
collected. Next, we predicted compound-target interactions (CTIs) with our balanced substructure-drug-target
network-based inference (bSDTNBI) method. The known and predicted targets of A. euchroma and leukemia-related
targets were merged together to construct A. euchroma-leukemia protein-protein interactions (PPIs) network. Then,
weighted compound-target bipartite network was constructed according to combination of eight central attributes
with concentration information through Cytoscape. Additionally, molecular docking simulation was performed to
calculate whether the components and predicted targets have interactions or not.

Results: A total of 65 components of A. euchroma were obtained and 27 of them with concentration information,
which were involved in 157 targets and 779 compound-target interactions (CTIs). Following the calculation of eight
central attributes of targets in A. euchroma-leukemia PPI network, 37 targets with all central attributes greater than
the median values were selected to construct the weighted compound-target bipartite network and do the KEGG
pathway analysis. We found that A. euchroma candidate targets were significantly associated with several apoptosis
and inflammation-related biological pathways, such as MAPK signaling, PI3K-Akt signaling, IL-17 signaling, and T cell
receptor signaling pathways. Moreover, molecular docking simulation demonstrated that there were eight pairs of
predicted CTIs had the strong binding free energy.

Conclusions: This study deciphered that the efficacy of A. euchroma in the treatment of leukemia might be
attributed to 10 targets and 14 components, which were associated with inhibiting leukemia cell survival and
inducing apoptosis, relieving inflammatory environment and inhibiting angiogenesis.
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Weighted network

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: zengruiwu@ecust.edu.cn; ytang234@ecust.edu.cn
1Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East
China University of Science and Technology, Shanghai 200237, China
Full list of author information is available at the end of the article

BMC Complementary
Medicine and Therapies

Wang et al. BMC Complementary Medicine and Therapies          (2020) 20:322 
https://doi.org/10.1186/s12906-020-03106-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s12906-020-03106-z&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:zengruiwu@ecust.edu.cn
mailto:ytang234@ecust.edu.cn


Background
Leukemia is a common malignancy in children and
adults originating from pluripotent hematopoietic stem
cells. Due to various reasons, leukemia cells undergo
enhanced self-renewal, over proliferation, and blocked
differentiation and apoptosis. Abnormal immature cells
proliferate and accumulate in bone marrow and other
hematopoietic tissues, leading to the suppression of nor-
mal hematopoiesis and infiltration of other organs and
tissues. According to the types of cells affected and the
developmental stage of the originating cells, leukemia is
classified into four major categories: acute myeloid
leukemia (AML), acute lymphoblastic leukemia (ALL),
chronic myeloid leukemia (CML), and chronic lympho-
blastic leukemia (CLL).
The usual approach to treat leukemia is the use of

toxic compounds to kill cancer cells, which will eventu-
ally destroy the immune system, and make patients
susceptible to fatal bacterial and fungal infections. For
that reason, it was suggested that approaches such as in-
ducing leukemia cell differentiation and apoptosis other
than killing cells may be more effective in the treatment
of leukemia [1]. Traditional Chinese medicine (TCM)
has shown potentials for the treatment of leukemia, for
example, arsenic trioxide (ATO), the main component
of TCM white arsenic, has been applied in the treatment
of leukemia [2].
Arnebia euchroma (Royle) Jonst., also called Xinjiang

Zicao, is a TCM used in the treatment of blood diseases
including leukemia [3]. It has been reported that among
the 295 empirical prescriptions for treating haemato-
logical diseases in Chinese medicine, the frequency of A.
euchroma is 10.3%, and the frequency of A. euchroma
powder, a prescription that takes A. euchroma as the
monarch herb is 53.1% [4]. The components of A.
euchroma consist of two major categories: one is hydro-
philic components, mainly a mixture of polysaccharides
and glycoproteins; the other is lipophilic substances with
a variety of biological activities, including naphthoqui-
nones, alkaloids, monoterpene phenol and benzoqui-
nones, organic acid ester, and so on. Among these,
typical naphthoquinones include shikonin and a series of
derivatives [5], which have a common scaffold of 5,8-di-
hydroxy-2-isohexene-1,4-naphthoquinone. According to
the optical configuration of the chiral center in the side
chain, naphthoquinones can be divided into two sub-
types: R-configuration (named shikonin) and S-configur-
ation (named alkannin) (see Supplementary Figure S1)
[6]. Studies have shown that naphthoquinones are the
major active ingredients of A. euchroma that exert its
pharmacological effects, whose concentrations are no
more than 7% [7, 8]. Especially, some studies demon-
strated that shikonin has therapeutic effects on leukemia
cells, mainly including HL-60 cells and K562 cells [9–

11]. However, the underlying mechanism of action
(MoA) for all the components of A. euchroma on
leukemia is barely explored systematically.
In 2007, network pharmacology was proposed to

describe the multiple interactions among drugs, targets
and diseases [12, 13], which coincides with the “multi-
component, multi-target” characteristics of TCM and
has been widely used in the research and development
of TCM. In this field, our group has developed a series
of computational methods to predict compound-target
interactions (CTIs), including network-based inference
(NBI), substructure-drug-target network-based inference
(SDTNBI), and balanced SDTNBI (bSDTNBI) [14–16].
In previous studies we have demonstrated that these
methods could predict potential targets for TCM
components and help to understand MoA of TCM
reasonably [17–19].
Since NBI only can predict targets for old compounds

within a known CTI network, while bSDTNBI has dem-
onstrated better performance than SDTNBI in predic-
tion of targets for new compounds outside the known
CTI network in our previous publications. Therefore, in
this study, we used bSDTNBI to predict targets for
components of A. euchroma, and then investigated the
material basis and MoA of A. euchroma on leukemia via
network pharmacology approach, which may provide
some basis and enlightenment to deeply explore the
chemical and pharmacological basis of TCM.

Methods
Data collection and preparation
The components and their concentrations in A.
euchroma were collected from several sources including
TCM-MESH (http://mesh.tcm.microbioinformatics.org/,
entering at Apr 2019) [20], TCMID (http://119.3.41.228/
tcmid/, entering at Apr 2019) [21], Chinese Natural
Product Chemical Composition Library (http://pharm-
data.ncmi.cn/cnpc/, entering at Apr 2019), and Phyto-
chemicals database (http://chemdb.sgst.cn/scdb/main/
plant_introduce.asp, entering at Apr 2019), as well as re-
lated literature from PubMed (https://www.ncbi.nlm.nih.
gov/pubmed/, entering at Apr 2019), Web of Science
(http://apps.webofknowledge.com, entering at Apr 2019)
and CNKI (http://www.cnki.net/, entering at Apr 2019).
The structures of these compounds were obtained from
NCBI PubChem Compound Database (https://www.
ncbi.nlm.nih.gov/pccompound, entering at Apr 2019).
Duplicates were removed.
Known compound-target interactions (KCTIs) for

each component of A. euchroma were collected from
four databases, including BindingDB (http://www.bin-
dingdb.org/bind/index.jsp, entering at Apr 2019) [22],
IUPHAR/BPS Guide to PHARMACOLOGY (https://
www.guidetopharmacology.org/, entering at Apr 2019)
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[23], ChEMBL (https://www.ebi.ac.uk/chembl/, entering
at Apr 2019) [24], and PubChem (https://pubchem.ncbi.
nlm.nih.gov/, entering at Apr 2019) [25]. Target protein
names of components were converted into gene names
with the species limited into “Homo sapiens” by UniProt
(https://www.uniprot.org/, entering at Apr 2019). Dupli-
cated KCTIs were removed.
Leukemia related targets were obtained from five data-

bases: OMIM (https://www.omim.org/, updated on Jan.
3, 2018) [26], PharmGkb (https://www.pharmgkb.org/,
updated on Dec. 28, 2017) [27], TTD (http://bidd.nus.
edu.sg/group/cjttd/, updated on Sep. 15, 2017) [28], Dis-
GeNET (https://www.disgenet.org/search, entering at
Apr 2019) [29], and MalaCards (https://www.malacards.
org/, entering at Apr 2019) [30].

Prediction of compound-target interactions
The bSDTNBI method was used to predict potential
compound-target interactions (PCTIs) for each compo-
nent of A. euchroma. In bSDTNBI method, three param-
eters, namely α, β and γ, should be determined first.
Among them, α controls the relative importance of sub-
structure vs. target nodes, and β defines the importance
of drug-substructure vs. drug-target edges, while γ deter-
mines the importance of hub nodes. The three parame-
ters were optimized by grid search and 10-fold cross
validation. First of all, α and β were optimized under the
condition of ignoring the influence of hub nodes (γ = 0).
Then, under the optimal values of α and β, the optimal
value of parameter γ was searched. Therefore, with the
optimal parameters α, β and γ, bSDTNBI method was
used to predict 10 potential targets for each component
of A. euchroma. The predicted targets were further stan-
dardized as official gene symbols. Eventually, the col-
lected known and predicted CTIs were integrated.

Construction of PPI network and selection of leukemia-
related targets
Targets of components of A. euchroma (TA) and targets
related to leukemia (TL) were imported into Cytoscape
3.6.0, respectively. Protein-protein interactions (PPIs) of
TA and TL were obtained by stringAPP, a Cytoscape plu-
gin. High-confidence PPIs with scores above 0.7 were se-
lected to construct A. euchroma PPI network (PPIA) and
leukemia PPI network (PPIL). Then PPIA and PPIL were
merged together to construct A. euchroma-leukemia PPI
network.
A. euchroma-leukemia PPI network was analyzed by

CytoNCA, another Cytoscape plugin. Each node in the
network has eight central attributes, including subgraph
centrality (SC), degree centrality (DC), eigenvector
centrality (EC), information centrality (IC), local average
connectivity-based method (LAC), betweenness central-
ity (BC), closeness centrality (CC), and network

centrality (NC). For all target nodes, the targets of TA that
meet the screening criteria “SC > median SC & DC >
median DC & EC > median EC & IC > median IC & LAC
> median LAC & BC > median BC & CC > median CC &
NC > median NC” were regarded as leukemia-related
targets of A. euchroma (TAL) and were retained [31].

Construction of weighted compound-target bipartite
network
Compound-target interactions for TAL were obtained
from all CTIs (KCTIs + PCTIs). Here the concentrations
of components in A. euchroma were used to weight the
importance of each component. Since the concentrations
of components were determined under different experi-
mental conditions and influenced by many factors, such
as the origin and growth time of A. euchroma, we proc-
essed the original concentration data as follows. Firstly,
all the concentrations of components were summarized
and standardized to a uniform percentage (mass per-
centage). Then, the average value of percentage of each
component was calculated after the maximum and mini-
mum values were removed. Finally, with “percent con-
centration value = 0.1%” as the threshold, components
were divided into three classes, and the formula was as
following:

Components
Class I : weight ¼ 3; concentration > 0:1%

Class II : weight ¼ 2; 0 < concentration < 0:1%
Class III : weight ¼ 1; without concentration data

8
<

:

9
=

;

After all components were weighted, a weighted
compound-target bipartite network was constructed
through Cytoscape.

Enrichment of KEGG pathways
KEGG pathway enrichment analysis is usually used to de-
scribe the characteristics of query targets. Here, STRING
10.5 (https://string-db.org/cgi/input.pl, entering at Apr
2019) [32] was used to perform KEGG pathway enrichment
analysis. The KEGG pathways with FDR (False Discovery
Rate) < 0.05 were regarded as significant and useful. Targets
in weighted compound-target bipartite network were input-
ted to STRING, and KEGG pathways with FDR < 0.05 were
obtained. A scoring function was designed to screen path-
ways, and the equation was as following:

Norm Yð Þ ¼ 1 − 0:1ð Þ� Y i − MIN Yð Þ
MAX Yð Þ − MIN Yð Þ þ 0:1

PSm ¼ Norm
Xj¼NT

j¼1

Norm
Xi¼NC

i¼1

Xi

 ! !

þ Norm LFDRmð Þ

in which, PSm refers to the score of the m-th KEGG
pathway; NT refers to the number of targets involved in
the m-th pathway; NC refers to the number of compo-
nents that interact with the j-th target in the compound-
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target bipartite network; Xi refers to the weight of the i-
th component; LFDRm refers to the negative logarithmic
value of FDR of the m-th pathway; Norm refers to the
min-max normalization method with normalize data
from 0.1 to 1.
After all pathways were scored, pathways that meet

the role “score > 1.5 median score” were selected. Refer-
ring to the pathway classification standard of KEGG
Pathway Database, here, these selected pathways were
divided into four categories, including cell survival and
death, immune system, endocrine system and specific
human diseases. In order to facilitate analysis, we re-
moved specific human disease pathways, which were not
directly related to the treatment mechanism of leukemia,
and the other pathways were remained.

Selection of hub genes and molecular docking simulation
Targets that were involved in the above qualified path-
ways were selected out and scored further by the follow-
ing scoring function:

Norm Xð Þ ¼ 1 − 0:1ð Þ� Xi − MIN Xð Þ
MAX Xð Þ − MIN Xð Þ þ 0:1

TS j ¼ Np�Norm
Xi¼N c

i¼1

Xi

 !

in which, TSj refers to the score of the j-th target; Np re-
fers to the number of pathways that the j-th target in-
volved in; Nc refers to the number of components that
have interactions with the j-th target; Xi refers to the
weight of the i-th component; Norm refers to the min-
max normalization method with normalize data from 0.1
to 1.
After all targets were scored, targets that meet “score

> 1.5 median score” were regarded as hub genes, and
CTIs that were associated with these targets were
selected out. The molecular docking simulation was fur-
ther performed to detect whether the components and
predicted targets form reasonable interactions and esti-
mate their binding affinities.
First, we collected the crystal structures of the selected

protein from the RCSB Protein Data Bank (PDB, http://
www.pdb.org/, updated on 2020-4-10) and selected the
relatively higher resolution crystal structures with the li-
gands. Second, the structures of chemical components
contained in A. euchroma were downloaded from the
NCBI PubChem Compound Database. Then, protein
preparation module of Schrödinger’s Maestro Molecular
modeling suite (Schrödinger Release 2015–2) was uti-
lized for preparation of the protein crystallographic
structures. Water molecules were subsequently deleted
from the structures, and the amide moieties in the side
chain were adjusted to optimize their interactions with

surrounding residues and groups of atoms. Force field
OPLS_2005 was also added. A ligand grid generation
was based on the ligand in the co-crystallographic struc-
ture. The docking region was centered on the ligand,
and after the ligand grid was generated, the compounds
were imported into Mastero. LigPrep module of the
Maestro molecular modeling package was used to obtain
the 3D structures and energy minimization of the identi-
fied compounds. Compounds were docked in the gener-
ated grid using the standard Glide docking mode.

Results
In this study, we took the concentrations of components
in A. euchroma into account, and analyzed the MoA of
A. euchroma on leukemia by network pharmacology ap-
proach, which involved three steps in the whole work-
flow (Fig. 1): (1) data collection. The components of A.
euchroma along with their concentrations, correspond-
ing targets and leukemia related targets were identified
by various databases and literature; the predicted targets
were obtained through bSDTNBI method; (2) network
establishment. A. euchroma-leukemia PPI network and
weighted compound-target bipartite network were con-
structed through Cytoscape; (3) network analysis. Hub
genes were selected out according to KEGG pathways
analysis, and molecular docking was used to calculate
whether the components from A. euchroma and pre-
dicted targets have interactions or not and to construct
the critical compound-target bipartite network. Figure 1
depicts a workflow of the technical strategy used in this
study.

Components and concentrations of A. euchroma and
leukemia related targets
During the process of data collection, all the compo-
nents were collected from several databases and publica-
tions based on two criteria. On the one hand, the
component should be found in at least two sources, such
as two databases, or a database and a publication, or two
publications; on the other hand, the component should
have a clear structure. Finally, a total of 65 components
of A. euchroma were obtained, and 27 of them with con-
centration information (see Supplementary Table S1).
Considering that our bSDTNBI method could not dis-
tinguish stereoisomers, components that were mutually
stereoisomers were treated as the same molecule among
the 65 components.
According to the collected concentration information

of each component, after the maximum and minimum
values were removed, the average of percentage (mass
percentage) was calculated. Finally, 11 components with
concentration greater than 0.1% had a weight of 3 (Con-
centration Score, X = 3), 16 components with concentra-
tion less than 0.1% but greater than 0 had a weight of 2
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Fig. 1 Workflow for A. euchroma on leukemia
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(X = 2), and the remaining 38 components without
collected concentration data had a weight of 1 (X = 1).
From OMIM, PharmGkb, TTD, DisGeNET, and

MalaCards, a total of 332 targets were ultimately
reserved after removing the duplicates.

Known and predicted compound-target interactions
A total of 129 KCTIs for 13 components (MOL16,
MOL18, MOL36, MOL38, MOL42, MOL43, MOL46,
MOL47, MOL49, MOL53, MOL55, MOL56, and
MOL57) were collected from databases, which were in-
volved in 92 targets (see Supplementary Table S2). Only
13 of the 65 components of A. euchroma have known
targets. Therefore, it is especially necessary to predict
potential targets for components.
Herein, our bSDTNBI method was used to predict 10

targets for each of the 65 components. After grid search
and 10-fold cross validation, the optimal values of the
three parameters were set as α = 0.3, β = 0.1, γ = − 0.4.
Then a total of 79 potential targets were obtained,
resulting in 650 new CTIs. After the known and pre-
dicted CTIs were merged, duplicated CTIs were then re-
moved. Finally, the number of retained CTIs was 779,
involved in 65 components and 157 targets (see Supple-
mentary Table S2).

A. euchroma-leukemia PPI network
157 targets (TA = 157) of 65 components in A. euchroma
and 332 leukemia related targets (TL = 332) were
imported to Cytoscape, respectively. When the confi-
dence (score) cutoff was set to 0.7, 129 targets out of TA

had 364 PPIs (PPIA = 364), while 270 targets out of TL

had 1335 PPIs (PPIL = 1335). When they were merged,
1658 PPIs were obtained. Among these, there were 709
PPIs for the 129 targets of A. euchroma components.
These 709 PPIs were selected out and re-submitted to
Cytoscape to construct A. euchroma-leukemia PPI net-
work. In the PPI network, eight central attributes were
calculated by CytoNCA (see Supplementary Table S3).
According to the screening criteria, there were 37 targets
of A. euchroma components (TAL) were qualified (Fig. 2),
which corresponding to 55 components and 114 CTIs.

Weighted compound-target bipartite network
114 CTIs of the 37 TAL were imported into Cytoscape
to construct the weighted compound-target bipartite
network, as shown in Fig. 3 (see Supplementary Table
S4). Three weight values were given to each of the
components according to their concentrations in A.
euchroma. Figure 3 illustrated the network as a bipartite
graph for the components and their potential targets
with color-coded nodes. In total, this network consisted
of 92 nodes and 114 edges, with 55 components as
hexagon nodes and 37 targets as circle nodes.

To further clarify the relationships between the active
compounds and their targets, we divided the 55
compounds into three groups according to their concen-
trations, namely Class I components, which have the
highest concentration (orange node); Class II compo-
nents, which have a lower concentration (green node);
and Class III components, which do not have concen-
tration information (gray node). There were 10 Class
I components, 13 Class II components and 32 Class
III components. Among Class I components, only
MOL16 (acetylalkannin/acetylshikonin) and MOL18
(alkannin/shikonin) had interactions with more than
one target; the remaining ones were associated with
only one target. As for Class II components, eight
components had interactions with one target, the
others were associated with more than one target.
NFE2L2 as the target with the most components, it
could be hit by 42 components.

Analysis of KEGG pathways
37 TAL were enriched into 115 KEGG pathways. Accord-
ing to the scoring function, 34 pathways were qualified.
We divided the 34 pathways into four categories, includ-
ing four cell survival and death pathways, two immune
system pathways, three endocrine system pathways and
25 specific human diseases pathways (see Supplementary
Table S5). For ease of analysis, we remove 25 specific
human diseases pathways that are not directly related to
possible leukemia treatment mechanisms, and retain
other nine pathways. We constructed a pathway-gene
network based on the nine pathway-related genes by
Cytoscape to identify hub genes in the pathway. The
pathway-gene network contained 30 nodes and 53 edges,
including 21 genes and nine pathways (Fig. 4).
There were four cell survival and death pathways in-

clude MAPK signaling pathway (hsa04010), PI3K-Akt
signaling pathway (hsa04151), Sphingolipid signaling
pathway (hsa04071), Apoptosis (hsa04210). These four
pathways were related to cell growth, differentiation and
apoptosis. MAPK signal transduction pathway plays a
crucial role in cell proliferation, differentiation and other
processes. As a caspase activator, MAPK also plays an
important role on apoptosis. AKT1, CASP3, EGFR,
HSPB1, MAPT, TNF, and TP53 participated in the
MAPK signaling pathway, and 22 components could act
on them. PI3K/Akt signaling pathway is extensively
present in cells. It is believed to be one of the pivotal sig-
naling pathways regulating cell growth, proliferation, dif-
ferentiation and apoptosis. Akt (gene symbol as AKT1)
is a direct downstream target of PI3K/Akt pathway. Ac-
tivated Akt can inhibit the release of cytochrome c from
the mitochondria, which blockade the apoptosis trig-
gered by caspases. The PI3K/Akt signaling pathway
enriched eight genes, including AKT1, EGFR, GSK3B,
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IL2, MCL1, PTEN, TLR2, TP53, and a total of 11 com-
ponents could act on them. Apoptosis is also known as
programmed cell death, which plays a critical role in
maintaining development, homeostasis and defending

against pathogens. In transmitting apoptotic signals,
CASP3 is the major effect factor. The activation of
CASP3 triggers apoptosis. MCL1 is a member of the
Bcl-2 family, which is an apoptotic inhibitor. Inactivation

Fig. 2 Construction of A. euchroma-leukemia PPI network. a A. euchroma PPI network (PPIA); b Leukemia PPI network (PPIL); c A. euchroma-
leukemia PPI network; d Targets of A. euchroma that meet the screening criteria
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Fig. 4 KEGG pathway analysis. a the score of 9 selected KEGG pathways. 9 pathways were divided into three categories, including four cell
survival and death pathways (orange), two immune system pathways (cyan), three endocrine system pathways (green); b the selected 9 KEGG
pathway-target interaction

Fig. 3 Weighted compound-target bipartite network. Pink circle nodes represent potential targets, hexagon nodes remark components and each
edge represent the interaction between them. Orange hexagon nodes represent Class I components, which have the highest concentration;
green hexagon nodes remark Class II components, which have a lower concentration; gray hexagon nodes remark Class III components, which
have without concentration data. Silver edges represent predicted CTIs and black edges remark known CTIs
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of p53 functions also causes cancer cells to escape
apoptosis. The p53 plays a pivotal role in leukemic
hematopoiesis. A total of five genes were enriched in
Apoptosis signaling pathway, they were AKT1, CASP3,
MCL1, TNF, TP53, and 15 components were associated
with them. Analysis of the above results indicates that
induction of cell apoptosis may be a key factor in the
treatment of leukemia by A. euchroma.
There were two immune system pathways, include IL-

17 signaling pathway (hsa04657) and T cell receptor sig-
naling pathway (hsa04660). The IL-17 signaling pathway
were enriched by five genes, include CASP3, GSK3B,
MMP1, MMP9 and TNF. As for T cell receptor signal-
ing pathway (hsa04660), AKT1, FYN, GSK3B, IL2 and
TNF were enriched. It’s well known that cytokines play a
critical role in the context of inflammation, and exten-
sive research has also proved that cytokines exert
profound effects on the progression of hematopoietic
malignancies including leukemia. It can be inferred that
A. euchroma relieves inflammatory environment may be
related to its treatment of leukemia.
The other three pathways were endocrine system-

related pathways, include Estrogen signaling pathway
(hsa04915), Thyroid hormone signaling pathway
(hsa04919) and Relaxin signaling pathway (hsa04926). A
total of 12 genes enriched by these three pathways, they
were AKT1, EGFR, ESR1, GSK3B, HDAC3, HIF1A,
MMP1, MMP2, MMP9, RARA, SP1 and TP53. Of
which, EGFR, one of the transmembrane tyrosine kinase
receptors, serves as a stimulus for cancer growth, which
is aberrantly activated in most common tumors, includ-
ing leukemia.

Molecular docking analysis and critical compound-target
bipartite network
According to the scoring function, 10 hub targets
(AKT1, CASP3, EGFR, GSK3B, HIF1A, MMP2, MMP9,
PTEN, TNF and TP53) were qualified, and 18 compo-
nents formed interactions with them in all CTIs. These
components include arnebinone (MOL6), shikonofuran
b (MOL8), acetylalkannin/acetylshikonin (MOL16),
alkannin/shikonin (MOL18), arnebiabinone (MOL21),
dehydroalkannin (MOL24), oleanolic acid (MOL47),
shinjulactone k (MOL65), ursolic acid (MOL49), o9-
angeloylretronecine (MOL41), caffeic acid (MOL42),
linoleic acid (MOL53), daucosterol (MOL38), beta-
sitosterol (MOL36), echimidine (Mol39), alkannin ange-
late (Mol19), 3-hydroxy-3-methyl butyric acid (Mol51),
and tormentic acid (Mol48).
There were 27 CTIs between the 18 components and

10 targets, and 11 of them were KCTIs, 16 were PCTIs.
All of the 16 PCTIs were composed of CTIs related to
HIF1A and TNF while all of the CTIs related to HIF1A
and TNF were PCTIs. In this study, we used the

molecular docking stimulation to identify the binding
ability of the 16 pairs of PCTIs that between compo-
nents of A. euchroma and the obtained hub genes.
As the above described, only HIF1A and TNF-related

CTIs were predicted, the other hub genes and their asso-
ciated CTIs were KCTIs. Therefore, the molecular dock-
ing simulation was further performed to determine the
binding level between the two predicted targets (HIF1A
and TNF) and their corresponding components contain-
ing in A. euchroma. The docking scores of 16 pairs of
PCTIs were listed in Table S6. There were eight pairs of
PCTIs had strong binding free energy, since their dock-
ing scores were higher than the median value of all pairs.
The eight pairs of PCTIs consisted of six pairs of TNF-
related PCTIs and two of HIF1A. The action modes be-
tween TNF and its corresponding compounds were
shown in Fig.5a-f, the interplay between HIF1A and its
corresponding compounds were shown in Fig.5g-h. It
can be found that dehydroalkannin (MOL24) could form
a hydrogen bond with Tyr151, oleanolic acid (MOL47)
could form a hydrogen bond with Ser60. In addition,
dehydroalkannin (MOL24) could form a π-π interaction
with Tyr59. Besides, arnebinone (MOL6) had the best
binding ability with TNF (docking score = − 6.222), and
followed by arnebiabinone (MOL21) (docking score = −
5.658), dehydroalkannin (MOL24) (docking score = −
5.405).
The eight pairs of PCTIs and 11 pairs of KCTIs were

used to critical compound-target bipartite network,
which involved in 10 targets and 14 components, as
shown in Fig. 6. Here, two (MOL6 and MOL8) compo-
nents were monoterpene phenol and benzoquinones
(green nodes), four (MOL24, MOL21, MOL18 and
MOL16) were naphthoquinones (gold node), three
(MOL65, MOL47 and MOL49) were triterpenoids (blue
nodes), one (MOL41) was alkaloids (cyan node), two
(MOL38 and MOL36) were steroids (purple nodes), and
the other two (MOL42 and MOL53) were organic acids
(brown nodes). Structures of the 14 components were
shown in Supplementary Figure S2.

Discussion
A. euchroma has been used to treat blood diseases, in-
cluding leukemia in the clinical of Chinese medicine [3].
In recent years, more and more studies have indicated
that shikonin and some of its derivatives can inhibit
leukemia cell proliferation, induce leukemia cell differen-
tiation and promote apoptosis [9–11]. Most of the stud-
ies focus on individual or several ingredients, and the
effects of all components of A. euchroma have never
been explored systematically. Network pharmacology fo-
cuses on “multi-constituents, multi-targets to treat dis-
eases”, which coincides with the holistic and systematic
concepts of TCM [33]. Moreover, although the
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importance of TCM dosage has received widespread at-
tention, few TCM-related network pharmacology studies
have considered the influence of ingredient concentra-
tion on the effectiveness of TCM. In this study, we
employed network pharmacology approach to explore
the MoA of A. euchroma on leukemia. We retrieved 65
components and 157 targets of A. euchroma from
known databases and literature. Combined with network
analysis and molecular docking simulation, we found
that 14 components and 10 targets were potential crit-
ical components and targets, which might contribute to
the effect of A. euchroma on leukemia treatment. The 14
components include alkannin/shikonin (MOL18), arne-
binone (MOL6), shikonofuran b (MOL8), arnebiabinone
(MOL21), acetylalkannin/acetylshikonin (MOL16), dehy-
droalkannin (MOL24), oleanolic acid (MOL47), shinju-
lactone k (MOL65), ursolic acid (MOL49), o9-
angeloylretronecine (MOL41), caffeic acid (MOL42),
linoleic acid (MOL53), daucosterol (MOL38), beta-
sitosterol (MOL36). The 10 targets include AKT1,
CASP3, EGFR, GSK3B, HIF1A, MMP2, MMP9, PTEN,
TNF and TP53. Our results indicated that the possible
MoA might be involved in three aspects: 1. A. euchroma
inhibits leukemia cell survival and induces apoptosis; 2.

A. euchroma relieves inflammatory environment; 3. A. euchroma
inhibits angiogenesis.
Apoptosis, also known as programmed cell death, is a

physiological process or some pathological condition, in
which the cells take part in the death process after they
are triggered by a certain signal. Inhibiting leukemia cell
survival and inducing leukemia cell apoptosis is a prom-
ising therapeutic approach for leukemia. There were four
pathways (MAPK signaling pathway (hsa04010), PI3K-
Akt signaling pathway (hsa04151), Sphingolipid signaling
pathway (hsa04071), Apoptosis (hsa04210)) were related
to cell survival and apoptosis, and 13 targets, 26 compo-
nents in weighted compound-target bipartite network
were mapped onto the four pathways. When transmit-
ting apoptotic signals, CASP3 is the major effect factor.
The activation of CASP3 triggers apoptosis. As one of
the caspase activators, MAPK is well known to play a
crucial role in apoptosis. Extensive studies have shown
that targeting to MAPK signaling cascades, alone or in
combination with other drugs, results in enhanced anti-
leukemic responses in AML [34, 35]. It has been shown
that activation of p38 MAPK promoted BCL2 degrad-
ation, which partly induced K562 cell apoptosis [36].
Huang et al. reported that shikonin treatment activated

Fig. 5 The interactive modes of 2 targets and the corresponding 8 compounds. a arnebinone to TNF (docking score = − 6.222); b arnebiabinone
to TNF (docking score = − 5.658); c dehydroalkannin to TNF (docking score = − 5.405); d oleanolic acid to TNF (docking score = − 4.875);
e shinjulactone k to TNF (docking score = − 4.875); f ursolic acid to TNF (docking score = − 4.789); g shikonofuran b to HIF1A (docking score = − 4.802);
h o9-angeloylretronecine to HIF1A (docking score = − 4.488)
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p38 MAPK and JNK phosphorylation in human lens epi-
thelial cells [37]. The PI3K/Akt signaling pathway regu-
lates diverse cellular processes, including growth,
proliferation, differentiation and apoptosis by phosphor-
ylating its downstream target, including BCL2L11, BAD,
MDM2, XIAP, CASP9, GSK3B and so on. TP53 is a
tumor suppressor protein and regulator of the cell cycle,
which plays a pivotal role in leukemic hematopoiesis,
but its functions are frequently suppressed by MDM2.
Therefore, inhibition of MDM2 is beneficial to the sta-
bility of TP53. However, Akt enhances MDM2 activity,
which is harmful for the stability of TP53. PTEN is a
main negative regulator of the PI3K/Akt pathway, and
plays an important role in maintaining hematopoietic
stem cells and preventing leukemia [38]. It has been
demonstrated that impaired PTEN function and aber-
rantly activated PI3K/Akt were present in many
leukemia cases [9, 39]. Pan et al. suggested that com-
bined BCL2 inhibition and TP53 activation may be a
promising therapeutic approach for AML [40].
It is well known that inflammation is one of the major

barriers to cancer therapy. In recent years, it has become
evident that inflammation plays a key role in leukemia
[41]. There were two pathways, including IL-17 signaling
pathway (hsa04657) and T cell receptor signaling path-
way (hsa04660) were related to inflammation. A total of
eight targets were enriched into inflammation-related
pathway, they were TNF, IL2, CASP3, GSK3B, MMP1,

MMP9, AKT1 and FYN. And these eight targets had
interactions with 13 components in the weighted
compound-target bipartite network. As a pro-
inflammatory cytokine, TNF is recognized as a key me-
diator of inflammatory reactions in tumor tissues, and
also responsible for increased NF-κB activity in many
tumors. TNF promotes the progression of several
hematopoietic tumors by participating in several signal-
ing pathways, including NF-κB, and PI3K/Akt [42, 43]. It
has been reported that TNF can be produced by various
leukemia cells, including AML [34], ALL [44], CML
[45], CLL [46], and so on. There was also evidence
showing that TNF induced MMP9 expression or secre-
tion in leukemia cells [47]. TNF has been used as an
anti-cancer drugs in various cancer cells. Staniforth et al.
found that shikonin (MOL18), isobutyrylshikonin
(MOL26), acetylshikonin (MOL16), β, β-dimethylacryl
shikonin (MOL31) and isovalerylshikonin (MOL27)
showed significant dose-dependent inhibition of TNF
in vivo [48].
Angiogenesis is a critical element to cancer cell sur-

vival, and increased vascularity was found in patients
with AML [49]. HIF1A, a key regulator of the cellular re-
sponse to hypoxia, controls a vast array of gene products
involved in energy metabolism, glycolysis, angiogenesis,
apoptosis and cell cycle [50]. HIF1A has been recognized
as a strong promoter of tumor growth and it is respon-
sible for VEGF gene expression [51]. VEGF is one of the

Fig. 6 Critical compound-target bipartite network. Pink circle nodes represent critical targets, hexagon nodes remark components and each edge
represent the interaction between them. Orange nodes represent naphthoquinones; green nodes remark monoterpene phenol and
benzoquinones; cyan nodes remark alkaloids; purple nodes represent steroids; brown nodes remark organic acids; blue nodes represent
triterpenoids. Silver edges represent predicted CTIs and black edges remark known CTIs
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major angiogenesis-activating protein, it has been impli-
cated in leukemia-associated angiogenesis [52]. There
were some data showed that HIF1A over-expressed in
some leukemia cells [53, 54]. Frolova et al. reported that
blockade of HIF1A-mediated signaling may enhance the
efficacy of the therapeutic regiments in ALL [55]. As one
of the important factors to promote angiogenesis, matrix
metalloproteinase (MMPs) were found highly expressed
in B-CLL cells, and promoted the migration and inva-
sion of leukemia cells [56]. MMP9, secreted by leukemic
cells, mediates opening of the blood–brain barrier by
disrupting tight junction proteins in CNS leukemia [57].
Sustained or enhanced MMP9 secretion plays an
important role in the pathophysiology of tumor
progression.
On the basis of the targets of A. euchroma discovered

by network pharmacology, molecular docking simulation
was used to explore the binding ability of between com-
ponents and proteins. This technique is structure-based
and could help researchers discover the interactions be-
tween the components of TCM and network targets. In
this study, HIF1A and TNF were selected for molecular
docking studies because they were predicted targets for
components. TNF was involved in five pathways, include
IL-17 signaling pathway (hsa04657), MAPK signaling
pathway (hsa04010), T cell receptor signaling pathway
(hsa04660), Sphingolipid signaling pathway (hsa04071)
and Apoptosis (hsa04210), which were related to both
apoptosis and inflammation. The molecular docking re-
sults indicated that six components (MOL6, MOL21,
MOL24, MOL47, MOL65, and MOL49) had strong
binding free energy with TNF, and two components
(MOL8 and MOL41) had good binding affinity with
HIF1A, since their docking scores were higher than the
median value of all pairs. Among the eight components,
MOL6 and MOL8 were monoterpene phenol and
benzoquinones, MOL24 and MOL21 were naphthoqui-
nones, which were the two main types of active compo-
nents in A. euchroma.
According to the above analysis, we selected 10 targets

and 14 components as critical targets and key compo-
nents. Among these, shikonin (MOL18) was the most
studied components of A. euchroma, it was demon-
strated to have anti-inflammatory and pro-apoptotic
effects [10, 58]. Acetylshikonin (MOL16) was found to
induce tumor cell apoptosis through activating the pro-
apoptotic bcl-2 family and caspase-3 [59].
As one of the most famous Chinese medicine for treat-

ing leukemia, ATO is an effective and relatively safe
drug in the treatment of APL (acute promyelocytic
leukemia, a subtype of AML) [2]. Combining
compound-target network of A. euchroma and related
literature, we compared ATO and A. euchroma in terms
of leukemia treatment, and we found some

commonalities: (1) MAPK signaling pathway. ATO has
been demonstrated to activate all three MAPKs path-
ways, ERKs, JNKs, and p38 kinases to exert its anti-
leukemia effect [60]. The MAPK signaling pathway was
also included in pathways that enriched by targets of A.
euchroma. (2) Angiogenesis. ATO was reported to in-
hibit angiogenesis by inhibiting the production of VEGF
in leukemic cell [61]. As for A. euchroma, seven compo-
nents could act on HIF1A, which is responsible for in-
creased expression of VEGF. Moreover, several studies
have shown that some components of A. euchroma ex-
hibited antiangiogenic activity by inhibiting VEGF [62,
63]. (3) Caspases. ATO was shown to increase caspases
activity to induce apoptosis of leukemia cells [64]. Exten-
sive studies have demonstrated that components of A.
euchroma increased the expression of caspases to induce
apoptosis [10, 65]. As a result, we have reasons to specu-
late that A. euchroma may be a potential anti-leukemia
agent with less toxicity than ATO.
In this study, we found that the MoA of A. euchroma

on leukemia involves the inhibition of leukemia cell sur-
vival and induction of leukemia cell apoptosis, the relief
of inflammatory environment, and the inhibition of
angiogenesis. Concretely speaking, it includes three
aspects: (1) A. euchroma impacts the PI3K/AKT and
MAPK signaling pathway, which inhibit leukemia cell
survival and induce leukemia cell apoptosis. (2) A.
euchroma inhibits the expression of inflammatory
medium, such as TNF, IL6, IL2 and so on to relieve
inflammatory environment. (3) A. euchroma inhibits
angiogenesis by regulating HIF1A, MMP2, MMP9 and
other factors related to angiogenesis. The results prelim-
inarily validated and explained the therapeutic material
basis and mechanism of A. euchroma on leukemia,
which provided a preliminary information and basis for
further in-depth exploration of its MoA, and a reference
for the study of the more complex components of TCM.

Conclusions
Considering the concentration information of compo-
nents in A. euchroma and combined with the methods
of network analysis and molecular docking simulation,
we found that 55 active components and 37 targets
might be related to the anti-leukemia effects of A.
euchroma, of which 14 components (MOL6, MOL8,
MOL16, MOL18, MOL21, MOL24, MOL47, MOL65,
MOL49, MOL41, MOL42, MOL53, MOL38, and
MOL36) and 10 targets (AKT1, CASP3, EGFR, GSK3B,
HIF1A, MMP2, MMP9, PTEN, TNF, and TP53) were
considered to be critical. It was demonstrated that A.
euchroma has potential anti-leukemia activities because
of its effects on inhibiting leukemia cell survival and in-
ducing apoptosis, relieving inflammatory environment
and inhibiting angiogenesis. We further realized that,

Wang et al. BMC Complementary Medicine and Therapies          (2020) 20:322 Page 12 of 15



not only shikonin, the most fully studied ingredient of A.
euchroma, one of compound of naphthoquinones, other
components among the 14 critical components of A.
euchroma, including monoterpene phenol and benzoqui-
nones, triterpenoids, alkaloids, steroids and organic acids
would also have therapeutic effects on leukemia.
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