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Abstract

Large-scale three-dimensional spatial data has gained increasing attention with the development of 

self-driving, mineral exploration, CAD, and human atlases. Such 3D objects are often represented 

with a polygonal model at high resolution to preserve accuracy. This poses major challenges 

for 3D data management and spatial queries due to the massive amounts of 3D objects, e.g., 

trillions of 3D cells, and the high complexity of 3D geometric computation. Traditional spatial 

querying methods in the Filter-Refine paradigm have a major focus on indexing-based filtering 

using approximations like minimal bounding boxes and largely neglect the heavy computation 

in the refinement step at the intra-geometry level, which often dominates the cost of query 

processing. In this paper, we introduce 3DPro, a system that supports efficient spatial queries for 

complex 3D objects. 3DPro uses progressive compression of 3D objects preserving multiple levels 

of details, which significantly reduces the size of the objects and has the data fit into memory. 

Through a novel Filter-Progressive-Refine paradigm, 3DPro can have query results returned early 

whenever possible to minimize decompression and geometric computations of 3D objects in 

higher resolution representations. Our experiments demonstrate that 3DPro out-performs the state-

of-the-art 3D data processing techniques by up to an order of magnitude for typical spatial queries.

1. INTRODUCTION

Spatial data is exploding because of the wide availability of GPS devices, volunteered 

geographic information, and the development of high-resolution high-throughput imaging 

instruments. In particular, 3D spatial data has been used in various industrial applications 

such as mineral exploration [51], 3D GIS [22], urban planning [12], and 3D mapping and 
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navigation [68]. Extreme-scale 3D data is also produced from human tissues. Indeed, the 

NIH Human Biomolecular Atlas Program (HuBMAP) [16] promotes the development of 

technologies for 3D mapping of the human body with extreme resolution at a sub-cellular 

level, to derive trillions of 3D cells to be mapped and queried, together with surrounding 

vasculature structures and molecular level objects. The Human Tumor Atlas Network 

(HTAN) [23] aims to construct 3D atlases of the dynamic cellular, morphological, and 

molecular features of human cancers as they evolve. For example, with 3D pathology 

imaging [36, 39], 3D nuclei, cells, and blood vessels can be reconstructed as 3D geometries 

representing the fine structures of the human body for disease studies and computer-aided 

diagnosis.

3D data provides a more accurate representation compared with 2D data projected from 

objects in 3D space, but comes with much higher complexity, in terms of both shapes 

and surface-based 3D modeling. Example 3D structures in human tissues include nuclei, 

cells, vessels, among others. Nuclei and cells have relatively simpler shapes (Fig. 4), 

and a blood vessel is bifurcated and has tree-like structures (Fig.1). For representing 3D 

objects, polygonal modeling [52] is the most commonly used approach for modeling 3D 

objects by representing or approximating their surfaces using polygonal meshes because of 

its advantage of the flexibility and quick rendering. While higher resolution represents a 

better description of the original object and can yield more precise query results, it will 

require much higher computation and storage resources for both query processing and 

rendering. Another major challenge is the explosion of 3D data. For example, a single 

human tissue block may contain hundreds of millions of 3D objects. The complexity of 

object surfaces and the large scale of 3D data lead to heavy-duty computations in 3D spatial 

query processing when the intersection between 3D objects needs to be checked or the 

distance needs to be calculated.

Traditional spatial querying methods in the Filter-Refine paradigm [11] use approximations 

of spatial objects to produce a set of candidates in the filtering step, and examine the 

candidates concerning its exact geometry to generate exact answers in the refinement step. 

This paradigm has a major focus on indexing-based filtering using minimal bounding boxes 

(MBBs) to effectively minimize the number of objects to be processed, and largely ignore 

the high complexity inside the 3D geometry. Indeed, the refinement step can dominate 

query cost for many query types [1, 8, 63]. Each 3D object can be represented by hundreds 

to thousands of mesh faces, which can make refinement a dominant step in 3D query 

processing. For instance, it takes PostGIS [49], the most popular open-source spatial 

database management system, more than one hour to compute the distance between two 

complex 3D objects, each with 30, 000 surface faces. As shown in Section 6, the refinement 

step takes more than 99% of the execution time for all tests.

Various approaches have been proposed to mitigate the heavy computation in the refinement 

step at the intra-geometry level. The first approach is to build spatial indexes like R-tree [27, 

41, 49, 50], Axis-Aligned Bounding Box tree (AABB-tree) [13], and Orientable Bounding 

Box tree (OBB-tree) [26] on the primitives of the polyhedrons to facilitate the spatial 

relationship determinations between individual objects. The second approach is to partition 

the complex objects into multiple simple sub-objects in regular shapes with fewer surface 
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faces [4, 9, 26]. Approximating a complex object with the MBBs of all its sub-objects will 

first bring a better fitting of its shape thus a better filtering performance in the filtering step 

than approximating it with a single MBB. Besides, since only a subset of sub-objects needs 

to be evaluated in the refinement step, the total amount of geometric computations will 

be reduced. The third approach is to accelerate the geometric computation with massively 

parallel computing devices like GPU [51]. These approaches either focus on better intra-

geometry level filtering or parallel computing, and none of them reduce the complexity of 

the 3D objects.

In this paper, we take an alternative approach to reduce the complexity of 3D objects 

by representing a 3D object (modeled with polygonal meshes) with multiple levels of 

resolutions with compression, where lower resolution representation is through removing 

surface meshes. This will make it possible to use lower resolution representation for possible 

early filtering and progress to higher resolution representation only if needed. i.e., we will 

have a new paradigm of Filter-Progressive-Refine paradigm for spatial query processing. 

With filtering possible at a lower resolution, the complexity of geometric computation 

can be much reduced. To achieve this goal, we propose a novel multi-level progressive 

3D compression method, designed to guarantee that the compressed objects are certain 

types of approximations of the original objects. This will support returning correct results 

even with compressed data whenever possible. Based on this, we further propose novel 

progressive refinement for query processing, which starts from lightweight low-resolution 

representation for possible early return of results. A system 3DPro is implemented with 

progressive refinement to support highly efficient and accurate spatial queries for complex 

three-dimensional objects. The contributions can be summarized as:

• We introduce a progressive protruding-vertex pruning mesh compression method 

which reduces object complexity progressively to create multi-resolution 3D 

representations;

• We provide a Filter-Progressive-Refine paradigm based on progressive 

compression to minimize geometric computation, which can provide early 

returns of accurate results from lower resolution whenever possible;

• We take a memory-centered approach for data management and querying 

processing to mitigate I/O cost;

• We implement and evaluate our approach on three representative 3D spatial 

queries: intersection, within, and nearest neighbor search;

• We implement three existing techniques and prove that the proposed Filter-

Progressive-Refine paradigm can co-exist with all of them to achieve optimized 

3D spatial query.

The rest of the paper is organized as follows. The background on 3D data representation 

and compression is introduced in Section 2. The novel technique to facilitate 3D spatial 

compression by handling the complexity of 3D objects is described in Section 3. Progressive 

3D query processing is discussed in Section 4. Section 5 further provides implementation 

details of 3DPro. The performance of 3DPro is evaluated in Section 6, followed by related 

works and conclusion in Section 7 and Section 8 respectively.
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2 BACKGROUND

2.1 3D Data Representation

In 3D space, physical objects are represented by different 3D models [37]. Among them, 

polygonal modeling represents or approximates the surfaces of a 3D object using polygonal 

meshes [52]. In this paper, we represent a 3D object as a polyhedron, a polygonal mesh that 

encloses a bounded region of space and has no unnecessary edge junctions. A polyhedron 

consists of a collection of vertices, edges, and faces. All the faces are orientable - a face 

will have an outer side and an inner side. In this paper, the ith vertex of a polyhedron is 

denoted as vi, and each face is represented with the vertices in counter-clockwise order, such 

as v0v1v2. Therefore, the outer side of a face can be determined with the right-hand rule.

2.2 Spatial Object Approximation

A common method to improve the spatial query performance is to use object approximations 

to filter out as many objects as possible [9]. As shown in Fig. 2, there are two typical 

types of approximations: progressive approximation covers a subset region of the original 

object, and conservative approximation covers a superset region of the original object. These 

approximations can be utilized to facilitate queries based on following properties: 1) Two 

objects will intersect if their progressive approximations intersect. Meanwhile, two objects 

will not intersect if their conservative approximations do not intersect. 2) The distance 

between two objects is smaller than the distance between their progressive approximations 

but larger than the distance between their conservative approximations. An approximation 

could be a box, an ellipse, an ellipsoid, or another polyhedron with a lower resolution.

2.3 3D Object Representation with Multiple Levels of Details

3D spatial compression: A 3D object can be represented with 3D polyhedrons in 

different resolutions, or levels of details (LOD) [37]. A higher level of detail implies more 

faces on the surface, thus a more precise representation of the 3D object. A higher LOD 

also means more memory and disk space for storage and more computation resources 

for processing. Spatial compression is a common method to reduce the resolution of 

representing spatial objects. In 2D space, spatial compression can be achieved with line 

simplification by removing selected points such as the Douglas-Peucker algorithm [19, 60]. 

Similarly, in 3D space, compression can be conducted on 3D spatial objects by collapsing 

faces, edges, and vertex pairs, or removing vertices [37]. Various compression methods are 

developed to improve the compression rate and distortion rate [29, 32, 38, 46, 47, 59]. 

Next, we briefly introduce the typical steps of a classical method on compressing 3D spatial 

objects by removing vertices [38].

Fig. 3a shows the projection of part of a polyhedron to 2D space. Initially, an arbitrary 

vertex is selected for removal. As is shown in Fig. 3b, the vertex and all the faces connected 

to it are removed. As a result, a hole is generated, which is then filled with new triangles 

to make the mesh manifold. By removing the vertex, the total number of faces is reduced 

by 2. Meanwhile, all the vertices sharing edges with the removed vertex will be marked 

as irremovable and all the irremovable vertices should not be removed in this round of 

mesh simplification. One vertex after another, one round of simplification is conducted by 
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removing all the vertices except the irremovable ones. Fig. 3c shows the surface of the 

polyhedron after one round of simplification. It shows that 4 vertices are removed and the 

number of faces is reduced by 7. One round of simplification is also named one round of 

decimation [38]. For each round of decimation, the removed vertices are compressed and 

stored together for decoding, thus the compression process is invertible.

Progressive compression: By avoiding the removal of two vertices sharing the same 

edge, all parts of the surface of a polyhedron can be evenly simplified in one round of 

decimation. Therefore, we say that the polyhedron representing the object after one or 

multiple rounds of decimation as one LOD. Fig. 4 shows the original polyhedron and the 

polyhedron after one round of decimation. After one round of decimation, all the vertices 

left are reset as removable and another round of decimation can be further conducted. Fig. 

3d shows the polyhedron after two rounds of decimation. Another 3 vertices are removed 

and the number of faces is further reduced by 5. As the compression is conducted round by 

round, it is called progressive compression.

Progressive compression is attractive in supporting efficient spatial querying for representing 

multi-LODs of a 3D object in a single compressed format, for example, progressive polygon 

mesh compression (PPMC) [38]. With PPMC, the compressed object can be fully decoded 

to reconstruct the original 3D object without loss, or a representation at a specific LOD can 

be decoded for an approximated representation. Decoding to lower LOD representation is 

less expensive as the decoding is conducted progressively from a lower LOD to the next 

level, thus it is desirable to support progressive queries: determining spatial relationships 

at lower LOD for early return of query result. This has to rely on the properties of 

querying with approximations introduced in Section 2.2. However, as will be discussed 

in Section 3.2, the output polyhedrons compressed with the PPMC compression are neither 

progressive nor conservative approximations of the original objects, such that none of those 

two properties holds. In this paper, we propose a new progressive compression method 
which guarantees that the compressed polyhedron is a progressive approximation of 
the original polyhedron, and makes it possible to support precise queries with querying 
representations at low LODs.

2.4 Representative 3D Objects and Queries

While 3D objects vary dramatically between applications, in this paper, we mainly focus on 

two representative 3D structures: regular shape 3D geometries, e.g., nuclei/cells as shown in 

Fig. 4, and bifurcated geometries, e.g., blood vessels as shown in Fig.1. Nuclei and vessels 

are the two most representative 3D structures from human tissues in digital pathology [17]. 

Nuclei are small 3D objects but come in vast amounts and relatively simple shapes. Vessels 

are large complex bifurcated objects but the number is smaller. Note that our methods are 

generic and are not tissue objects specific. In this paper, we assume that 3D objects are 

represented as 3D polyhedrons and have already been extracted through image registration, 

segmentation, and reconstruction from original serials of 2D images [33, 54].

3D digital pathology holds significant potential to enhance the study of both normal and 

disease processes, particularly, those involving structural changes and those in which the 
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spatial relationship of disease features is important [25, 39]. Generally speaking, spatial 

queries can be categorized into two sets. The first set of queries is the ones to retrieve 

features from spatial objects, for instance, queries to get the perimeter/area/volume of an 

object or to get the distance between two objects. The second set of queries are the ones to 

determine the spatial relationship between spatial objects, such as intersection, containment, 

within or nearest neighbor relationships. This paper focuses on the second set of queries 

which determines the spatial relationship between objects. More specifically, we will focus 

on three typical queries: intersection, within, and nearest neighbor, and other query types can 

be implemented with a similar approach.

Spatial join is a common complex query type in both geospatial applications and 3D digital 

pathology. Given two datasets D1 and D2 of 3D objects, spatial join will return a set S of 

objects from D2 for each object o in D1, such that all those retrieved objects in S meet one of 

the spatial relationships mentioned above with o [8]. Note that the nearest neighbor spatial 

join is also known as All Nearest Neighbor query, or ANN query [69]. For example, we may 

want to identify the closest blood vessels for each nucleus.

3 PROGRESSIVE PROTRUDING-VERTEX PRUNING MESH COMPRESSION

In this section, we propose a novel progressive compression method to overcome the 

limitation of the PPMC method [38]. Compared with PPMC, the new compression method 

offers additional information in achieving accurate querying with polyhedrons representing 

objects in low LODs. Next, we introduce “protruding vertex” and explain how the new 

method guarantees the “progressiveness” of the lower LOD polyhedrons by only removing 

the “protruding vertices” during the encoding process.

3.1 Protruding Vertex

Removing different vertices from a polyhedron during the decoding process can make 

different impacts on the original polyhedron. As shown in Fig. 5a, after a vertex v0 is 

removed during the encoding process of progressive compression, all the faces v0 connects 

are also removed. New edge v2v4 and two triangle faces v1 v2 v4 and v2 v3 v4 are added 

to enclose the space bounded by the new polyhedron. v0, together with each of those 

added faces will form a tetrahedron, thus removing one vertex from the original polyhedron 

in the encoding process equals removing multiple tetrahedrons. Removing one of those 

tetrahedrons will be either cutting off a solid part from the original polyhedron or filling a 

“pit” on the surface of the original polyhedron. Whether a solid part will be cut or a “pit” 

will be filled can be determined by the intersection angle between the normal vector of the 

newly added face and a vector pointing from a random point on the newly added face to the 

removed vertex. If the intersection angle is acute, removing the tetrahedron will cut off a 

solid part and make the polyhedron slimmer (angle α in Fig. 5a). If the intersection angle is 

obtuse, removing the tetrahedron will fill a “pit” and make the polyhedron thicker (angle β 
in Fig. 5b). Otherwise, the tetrahedron is invalid, and removing it will have no impact on the 

polyhedron. If removing one vertex can only cut off solid parts from the original polyhedron 

or have no impact, we name the vertex as “protruding” vertex (Fig. 5a), and all other vertices 

as “recessing” vertices (Fig. 5b).
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3.2 Progressive Protruding-Vertex Pruning

It can be summarized that in the PPMC compression process, removing vertices can either 

cut a solid part (removing protruding vertex) or fill a “pit” (removing recessing vertex), 

and there is no guarantee that the compressed polyhedron will cover a subset or superset 

of the original object. By profiling the real-world dataset, we find that the majority of the 

vertices (e.g. 92% of the vertices in our tests) are protruding. If all the vertices removed 

during the encoding process are protruding, the compression process will always prune the 

object to make it slimmer. We call such compression Progressive Protruding-Vertex Pruning 
compression, or PPVP compression for short. As a result, a representation of an object at a 

lower LOD compressed with the PPVP compression is always a progressive approximation 

(Fig. 2) of the representation at a higher LOD. Based on these, those two approximation 

querying properties can be extended as:

• If two objects intersect with each other at a lower LOD, they must also intersect 

at a higher LOD. (Fig. 6a)

• The distance of two objects at a lower LOD must be longer than or equal to that 

at a higher LOD. (Fig. 6b, d1 > d2)

The distance of two objects mentioned in this paper equals the distance of two closest points 

at the surface of those two objects at their highest LODs. Hausdorff distance [30] focuses 

on comparing shapes and patterns to measure similarity, and will be out of the scope of this 

paper.

4 FILTER-PROGRESSIVE-REFINE PARADIGM

In this section, we introduce a novel Filter-Progressive-Refine paradigm (short as FPR 

paradigm) which consists of a filtering step and a progressive refinement step built on 

our PPVP compression. The term progressive indicates that low LOD polyhedrons are 

progressive approximations of the original objects; it also indicates that the compression is 

conducted in multiple rounds, or progressively. Next, we will discuss how the FPR paradigm 

can be utilized to facilitate three typical 3D spatial queries: inter-section, within, and nearest 

neighbor search [43]. We assume the original 3D objects are compressed based on PPVP 

and stored in memory, and the indexes are generated and stored in memory.

A comparison between the Filter-Progressive-Refine paradigm with the traditional Filter-

Refine paradigm (short as FR paradigm) is shown in Fig. 7. For each object in the target 

dataset, the candidate objects in the source dataset are retrieved by checking the spatial 
indexing such as R-tree in the filtering step of both paradigms. In the refinement step of 

the traditional Filter-Refine paradigm (Fig. 7a), all the retrieved objects are decoded to the 

highest LOD for refined spatial relationship determination to get the final result. In the 

progressive refinement step of the Filter-Progressive-Refine paradigm (Fig. 7b), instead, the 

candidate objects are decoded from lower LODs to next level LOD and refined progressively 

until the spatial relationships between the target object and candidates can be determined. 

Note that the querying methods introduced in this section work for all dimensions as long as 

the representations in all LODs cover a subset of the original object, or are all progressive 

approximations.
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4.1 Intersection Query

Given a 3D object o and a set of 3D objects D, intersection query will return a set S of 

objects from D, such that o intersects every object in S.

Get intersection candidates by querying the R-tree: As a first step to compute S for 

an object o, based on the fact that two objects whose MBBs do not intersect are guaranteed 

not to intersect, intersection detection can be accelerated by using R-trees [10, 11]. The 

objects in D whose MBBs intersect with the MBB of o are pushed into list candidates for 

further evaluation as the input of the refinement step.

Determining intersection with decoded faces: The second stage is to retrieve objects 

which actually intersect the target object o from the candidate list (Alg. 1). One common 

method to evaluate whether a candidate object o′ actually intersects object o is to check 

whether any pairs of faces in o and o′ intersect [58]. With this method, o and o′ are decoded 

into their highest LODs and all the face pairs of them are checked until at least one pair of 
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intersected faces is found and it can be concluded that two objects intersect. Otherwise, after 

knowing there are no intersected faces between two objects, we can further check if they are 

contained by each other and finally report whether those two objects intersect.

In contrast, with the Filter-Progressive-Refine paradigm, referred objects are decoded and 

refined progressively from lower LODs in the progressive refinement step. For a certain 

LOD, object o and all the objects in the Candidates list are decoded into that LOD and the 

faces are filled into the proper memory buffers (steps 2,4). Then all the decoded face pairs 

of o and o′ are evaluated one by one (step 5). If any intersected face pairs are encountered, 

two objects intersecting with each other will be reported (step 6) and the related entry 

in Candidates is removed (step 7). Otherwise, the objects are decoded to a higher LOD 

and the faces checking process is repeated. Since the geometric computation stops once 

an intersected pair of faces is found even at lower LODs, the intersection detection among 

two objects can be highly efficient. If no intersecting face pair is found after checking the 

decoded faces at the highest LOD of a candidate o′, we further check if it contains or is 

contained by o (steps 8–12). If the MBB of o′ is contained by the MBB of o, and a random 

vertex v in o′ is contained by o (step 11), we conclude that o′ is contained by o thus o′ 
intersect o. The process of checking whether a point is contained by a polyhedron can also 

be accelerated by the Filter-Progressive-Refine paradigm, but due to the space limit, we will 

not discuss it in detail here.

4.2 Within Query

Given a 3D object o and a set of 3D objects D, a within query will return a set S of objects 

from D for object o, such that every object in S is within a specified distance of o.

Get within candidates by querying the R-tree: As is denoted in [15], the distance of 

two objects can be estimated with a distance range r = [MINDIST,MAXDIST] calculated 

with their MBBs, where MINDIST equals the distance of their MBBs, and MAXDIST 
equals the length of the diagonal line of the MBB that unions their MBBs. In other 

words, r.MINDIST and r. MAXDIST represent the infimum and supremum of the possible 

distances between any random pair of points covered by two MBBs. Therefore, the distance 

ranges between the MBBs of tree nodes and objects can be facilitated to determine whether 

the objects are within the specified distance of one another [48]. A within search can be 

accelerated with the distance ranges and tree-based indexing. While traversing the R-tree, 

a distance range between the MBBs of o and an R-tree node n is calculated as r. All 

the objects n covers can be skipped if r.MINDIST is larger than the specified distance. 

Otherwise, if r.MAXDIST is smaller or equal to the specified distance, which means that 

the distances between o to all the objects covered by n must be smaller than the specified 

distance, thus all the objects covered by n should be reported as within the specified distance 

of o. At last, if none of them is true and n is a leaf node, the object at n will be pushed into 

the Candidates list for further evaluation with the decoded faces.
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Determine the within relationship with decoded faces: After getting all the within 

candidate objects for o by checking spatial indexes, a common method to retrieve the objects 

which are truly within a specified distance of o is to calculate the distances between the 

candidate objects and o and keep only the one with distance to o smaller than the specified 

distance [48]. The distance between o and o′ is computed by getting the minimum distance 

of all the face pairs of the polyhedrons which represent objects o and o′ respectively at their 

highest LODs. The distance calculation between triangles in 3D space is well-studied [42], 

and we inherit the computation method implemented in [34].

However, with the Filter-Progressive-Refine paradigm, the distances between candidate 

objects and o are calculated with geometries representing those objects at increasing LODs. 

As shown in Alg. 2, for each LOD lod, o and all the candidate objects are firstly decoded to 

lod (steps 2,4). Then the distance between the geometries representing o and each candidate 

object o′ at LOD lod, denoted as dm, is calculated by getting the minimum distance between 

the face pairs of them (step 5). If dm is smaller or equal to the specified distance, it is certain 

that the actual distance between o and o′, which equals the distance between the geometries 

representing them at the highest LOD, must also be smaller or equal to the specified distance 

as is regulated by the second progressive query property given in Section 3.2, thus we 

can stop and report that o′ is within the specified distance of o (step 7) and o′ can be 

removed from the Candidates list (step 8). As a result, the within relationship between o and 

candidate objects can be determined with geometries representing them at lower LODs, thus 

the heavy load geometric computations needed for processing high LOD geometries can be 

saved.
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4.3 Nearest Neighbor Query

A nearest neighbor query on a 3D object o and a set of 3D objects D returns the nearest 

object in D for object o.

Retrieve nearest neighbor candidates with R-tree: A nearest neighbor search can 

also be accelerated with tree-based indexing by facilitating distance ranges between MBBs 

[15]. The distance relationship of objects can be determined even with only the distance 

ranges between them. For example, a distance with range r1 is closer than a distance with 

range r2 if r1. MAXDIST<r2.MINDIST. With this fact, R-tree can be utilized to facilitate 

nearest neighbor search [7, 15, 28, 44].

While traversing the R-tree, a list Candidates maintains all the candidate objects which 

might be the nearest neighbor of o. A global variable MINMAXDIST maintains the 

minimum MAXDIST value of the distance ranges between o to all the objects in Candidates. 

If the minimum possible distance between an R-tree node n to o, denoted as rn. MINDIST, is 

larger than MINMAXDIST, all the objects it covers can be skipped since the distances from 

o to those objects must be larger than that to any object in the Candidates list. Otherwise, 

if rn. MINDIST ≤ MINMAXDIST and n is a leaf node, the object n covers need to be 

pushed into the Candidates list. Finally, the Candidates list contains all the nearest neighbor 

candidates whose distance ranges to o overlap with each other, which need to be further 

evaluated with decoded faces to get the one with the minimum distance to o.
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Determine the nearest neighbor with decoded faces: After getting the nearest 

neighbor candidates for object o, the common method to get the nearest neighbor is to 

decode o and all the objects in the candidate list to their highest LODs, then get the distances 

from o to all those decoded objects and pick the one with the minimum distance as the 

nearest neighbor.

With the Filter-Progressive-Refine paradigm, instead of comparing the faces of polyhedrons 

representing objects at the highest LOD, the faces of polyhedrons at low LODs can be 

evaluated first to further reduce the size of the candidate list to avoid heavy geometric 

computations conducted on polyhedrons at high LODs. As shown in Alg. 3, multiple 

iterations of refinements are conducted on the polyhedrons. Starting from a low LOD, object 

o is decoded and the faces of the polyhedron at that LOD are packed into the memory buffer 

(step 2). At the beginning of each refinement round, each entry in the candidates list needs 

Teng et al. Page 12

Adv Database Technol. Author manuscript; available in PMC 2022 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to be reevaluated with the newest value of MINMAXDIST as it is continuously decreasing 

during the processing. The object whose minimum possible distance to o, denoted as 

r. MINDIST, is larger than MINMAXDIST will be removed from candidates (step 5). 

Otherwise, the candidate object o′ is decoded to current lod (step 7), and the minimum 

distance of the face pairs between o and o′, denoted as dm, is computed (step 8). Since the 

PPVP compression is prune-only, the distances between objects at lower LODs are always 

larger than those at higher LODs. Therefore the supremum of the distance range between 

objects o and o′, or r. MAXDIST, always decreases and is set to dm (step 9). When the 

highest LOD is reached, the distance range r collapses to an exact value, and the infimum 

r. MINDIST is also set to dm (step 11). Meanwhile, the value of MINMAXDIST is updated 

every time that a smaller MAXDIST is encountered (step 13).

After checking all the candidate objects with the faces decoded at a certain LOD, some 

candidates may not qualify anymore and can be removed from the candidate list (steps 

14–16). When only one object is left in the candidates list, it will be reported as the 

nearest neighbor of o (step 18). With this method, the nearest neighbor for some objects 

can be determined before decoding objects into the highest LOD, thus the burden of 

decoding and geometric computation at high LODs can be mitigated, and the overall query 

performance is significantly improved as will be demonstrated with our experiments in 

Section 6. Meanwhile, k Nearest Neighbor query (kNN) can be implemented with the 

Filter-Progressive-Refine paradigm by keeping at least k entries in the candidates list.

4.4 Choice of Level of Details

For the progressive refinement conducted for all three types of queries, the LODs that 

the refinements need to be performed on are recorded in list lod_list in ascending order. 

The list is ended with the highest LOD to make sure accurate results can always be 

returned. The decision to choose which LODs for refining objects directly impacts overall 

query performance. On one hand, additional computations are involved in conducting every 

round of refinement on the polyhedrons at a certain LOD. On the other hand, refining the 

polyhedrons at a certain LOD may reduce the size of the candidate list thus saving some 

heavy geometric computations conducted on polyhedrons at higher LODs.

Taking the nearest neighbor query as an example, the number of face pairs evaluated to 

get the distance between the representations of two objects at LOD i is N1
i × N2

1, where 

Nj
i is the number of faces for the representation of object j at LOD i. When refinement 

is conducted over ne object pairs at LOD i and np object pairs are pruned, then the 

amount of computations conducted in refining at LOD i is ne × N1
i × N2

i , and the amount 

of computations saved by pruning those np object pairs is np × N1
i + 1 × N2

i + 1. To make the 

refining at LOD i beneficial, ne × N1
i × N2

i  must be smaller than np × N1
i + 1 × N2

i + 1. Let 

us assume Nj
i + 1 equals r × Nj

i, then the value of 
np
ne

 must be larger than 1
r2 . Note that 

simplifying the surface complexity of the polyhedron reduces the face density but preserves 

the topology of the surface elements. As a result, the portion of vertices removed in each 

round of decimation is a constant, thus the value of r is a constant. The value of r for typical 
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spatial data and the impact of choosing appropriate LODs on queries will be evaluated with 

experiments in Section 6.5.

5 IMPLEMENTATION OF 3DPRO

In this section, we provide further implementation details of 3DPro about how other 

acceleration approaches are implemented along with the Filter-Progressive-Refine paradigm 

and how the memory and computing resources are managed to facilitate progressive 

refinement. Fig. 8 illustrates the architecture of 3DPro. After receiving a spatial query 

request, the query processor searches the global index to retrieve the candidate objects. The 

candidate objects are then evaluated progressively with the geometry computer starting from 

lower LODs as the progressive refinement step. The 3D object decoder works on decoding 

the compressed objects into target LODs.

5.1 Techniques to Reduce Geometric Computation Costs

3DPro equipped the geometry computer with three existing techniques to support efficient 

geometric computations among individual geometries decoded at each LOD. The FPR 

paradigm can coexist with all of them to minimize the geometric computations and further 

boost their efficiency.

Indexing individual objects with AABB-tree: Similar to R-tree, an AABB-tree 

constructs a hierarchical structure of Axis-Aligned Bounding Boxes (AABBs) of the 

polyhedron primitives [6, 13]. In our implementation, after decoding two objects o and 

o′ to a certain LOD, an AABB-tree is built with the AABBs of all the faces of o′, and then 

the AABB-tree is queried with the AABBs of all the faces of o to accelerate the distance 

calculation and spatial relationship determining at that LOD. Utilizing AABB-tree reduces 

the computational complexity of evaluating two geometries from O NlNl′  to O Nllog Nl′ , 

where Nl and Nl′ are the numbers of faces of the polyhedrons representing objects o and o′ 

at LOD l respectively.

Partitioning complex 3D objects: Another technique implemented and compared in 

3DPro is the one that partitions the original object into simple sub-objects. Each sub-object 

is then approximated with Orientable-Bounding Boxes (OBBs) [26] or Minimum Bounding 

Boxes (MBBs) [6]. Those boxes, instead of a single MBB, are indexed in the global spatial 

index to achieve a better filtering efficiency. In the filtering step, a subset of sub-objects 

instead of the entire object is retrieved as the candidate.

In the refinement step, while processing data at a specific LOD, the decoded faces are 

grouped and assigned to proper candidate boxes for further processing. There exist multiple 

methods to partitioning 2D or 3D spatial objects [4, 6, 26], of which 3DPro adopts the 

skeleton-based approach [4]. Initially, a list of skeleton points is extracted from the target 

geometry, and then each primitive of the geometry representing the object at the highest 

LOD is assigned to the skeleton point that is closest to the primitive. Finally, a group is 

formed for each skeleton point with the faces assigned to it, and an MBB is generated with 

those faces.

Teng et al. Page 14

Adv Database Technol. Author manuscript; available in PMC 2022 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



GPU-based Parallelization: The repetitive tasks for evaluating face pairs fit nicely with 

GPU parallelism and can be accelerated by general-purpose GPU computing [51]. During 

processing, a computation buffer is maintained in the memory of each GPU. The face pairs 

which need to be checked are packed in the buffer. Then a list of computation tasks with the 

same number of face pairs that need to be evaluated is generated and each task is processed 

with a single GPU kernel. Operators like intersection detection and distance calculations are 

implemented as kernel functions. With this method, geometric computations are conducted 

with GPU in a massively parallel process.

5.2 Computation Resource Management

As demonstrated in Section 6, geometric computation and mesh decoding dominate the 

execution of all types of spatial join queries. The availability of the computation resources 

like the GPU and CPU determines the overall processing performance. 3DPro provides 

transparent management of the CPU cores and GPUs with an independent resource 

management module. The geometric computations between decoded geometries are grouped 

into small tasks with a fixed number of face pair evaluations. Those tasks are then completed 

quickly by CPU cores or GPU when either of them is available, which fully exploits all 

the computation capability of CPU and GPU. For the purpose of experimental evaluation 

(Section 6), only CPU or GPU will be used for each test to evaluate the performance of 

different methods. Besides, the query processor, geometry computer, and object decoder will 

compete for the CPU resources during execution.

5.3 Memory Management

3DPro takes a memory-centered approach for data management and processing and manages 

compressed 3D objects and their indexes in memory. The objects are partitioned into fixed-

sized cuboids according to their positions. The compressed data for the objects in the same 

cuboid are stored in the same file for persistent and loaded to a continuous memory region 

for inmemory computing. For each object, the MBB is read out from the compressed data 

and assigned with a unique ID and the memory location where its compressed data are 

stored. An R-tree is built with the MBBs for all the objects.

Cache Management for Decoded Data: To avoid repetitive data decoding, which is 

compute-intensive, 3DPro maintains a Least Recently Used (LRU) decoding cache which 

keeps early decoded data for reuse. Each entry of the cache is an area of memory that 

contains the decoded faces for one object at a certain LOD. Thus the handle of the cache 

entry is composed of the object ID and the LOD. During query processing, whenever the 

geometry computer fails to find data for a specific object at a certain LOD in the cache, 

it sends a request to the object decoder and waits for the data to be decoded to such LOD 

and served in the cache. For all queries conducted on two data sets, data in both sets 

are partitioned following the same space partition scheme, and the queries referring to the 

objects in the same cuboids will be conducted in batch. By doing so, recently decoded 

data have a higher possibility to be reused by serving queries conducted on the objects in 

the same cuboids thanks to the spatial locality. Objects in multiple cuboids are processed 

simultaneously for parallelization. The decoding of objects is thread-safe with the protection 
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of cuboid level locks. Note that the objects in different cuboids are indexed in the same 

global index, thus the objects crossing cuboid boundaries need not be handled separately.

6 EXPERIMENTAL EVALUATION

We compare the efficiency of the Filter-Progressive-Refine paradigm over the traditional 

Filter-Refine paradigm by conducting all types of 3D spatial queries implemented in Section 

4 on 3DPro. Besides, we also run all the tests on PostGIS [49], an open-sourced spatial data 

management system with 3D support.

6.1 Experimental Setup

All the tests are conducted on a compute node with a 24-core CPU (AMD Ryzen 

Threadripper 3960X at 3.8GHz) and a GPU (NVIDIA GeForce RTX 2080 Ti with 11GB 

memory and 4,352 cores). The node comes with 128GB memory (DDR4 3200) and a 2TB 

SSD (NVMe M.2 PCI-Express 3.0). 80GB memory space is allocated as the decoding cache 

to host the decoded objects and surface elements. The OS is Ubuntu 18.04.4 with 5.3.0–40 

kernel. The CUDA version is 11.4, and the PostGIS version is 3.1.0. We run all tests with 

multiple threads to exploit all the CPU resources. Before querying, all the data utilized by 

3DPro and PostGIS are loaded in memory, thus no I/O is involved in all tests.

6.2 Dataset

We conduct tests over two types of datasets to evaluate the performance of 3DPro and 

other systems. The first dataset contains about 10 million nuclei which have regular shapes 

with an average of 300 surface faces per object. The second dataset contains about 50, 000 

vessels with bifurcation with a large number of surface faces for each vessel. Each vessel 

contains an average of 30, 000 faces and 5 bifurcations. The objects in the same dataset do 

not intersect with each other. The 3D objects are generated by reconstructing 2D segmented 

objects from adjacent tissue slides from brain tissues [35, 36].

Data partitioning: As is discussed in Section 5.3, data objects are stored in partitions 

according to their positions. Different from the geospatial data, the objects in the same 

human tissue have a more balanced distribution, thus both the nuclei and vessels are 

uniformly distributed in the sampled tissue. All the 3D objects are in a space that is 

partitioned into 1, 000 cuboids. Each cuboid covers around 50 vessels and 10, 000 nuclei 

and takes about 20MB space after compression which is a reasonable size for a storage 

unit. The decoding cache is set to 80GB which is large enough to host the decoded data for 

all the objects processed in the past 50 partitions and the repeated data decoding is almost 

eliminated.

Data compression: All objects are represented with polyhedrons at 6 LODs, LOD0, 

to LOD5, where LOD5 represents the original polyhedron. Details about how the LODs 

are chosen can be found in Section 6.5. The total size of the fully decoded objects 

is about 1.15TB and the size of the compressed objects is 18.4GB which can fit into 

memory comfortably. The compression ratio is high because the PPVP compression applies 

techniques like spatial compression, entropy encoding, and adaptive quantization introduced 
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in [38]. The vertices and the connection information for the base polyhedron (LOD0) and the 

vertices removed during encoding at all the LODs are stored together for the same object in 

one uniformed file format. Fig. 9 shows the portions of the space taken by the base (LOD0) 

and the other LODs. Note that decoding one object to a specific LOD also needs to retrieve 

the data for all the LODs lower than that LOD.

Portion of protruding vertices: As shown in Fig. 4, the shape of a nucleus is almost 

convex, and as many as 99% of the vertices in the nuclei dataset are protruding. In contrast, 

as shown in Fig. 1, the shapes of vessels are bifurcated, and there exist many recessing parts 

like the joint of two branches. As a result, about 75% of the vertices for the vessel dataset 

are protruding. In total, 92% of the vertices for the polyhedrons representing the data used in 

our tests in all the LODs are protruding which proves the claim we made in Section 3.2.

Compression cost: On average, it takes 0.4 and 36.3 milliseconds to compress one 

nucleus and one vessel with the PPVP compression respectively. It takes 120 seconds to 

compress the data in our experiments with 48 threads. Furthermore, another 308 seconds 

are used to load the raw data to the CGAL [14] inmemory data structures which is a 

necessary cost for tests with or without progressive refinement. Note that the compression 

is a one-time process for each dataset and the cost is negligible. The preprocessing time can 

also be hidden by the cost of I/O if the uncompressed objects need to be loaded from disks.

6.3 Experimental Design

We evaluate the efficiency of the Filter-Progressive-Refine paradigm on three types of 

spatial joins based on the queries introduced in Section 4. We tested the intersection spatial 

join over two nuclei datasets derived from two alternative methods. In digital pathology, 

it is a common approach to evaluate the effectiveness of one image analysis algorithm by 

comparing the spatial objects it generates with one ground truth data with an intersection 

spatial join [62]. We evaluate the efficiency of the FPR paradigm on the nearest neighbor 

join with two types of dataset combinations: nuclei versus nuclei (nuclei-nuclei) and nuclei 

versus vessels (nuclei-vessels). That is, given two datasets D1 and D2, for each object o 
in D1, get the object in D2 that is closest to it. D1 is a set of nuclei, and D2 could be 

a set of nuclei or vessels. Similarly, the within join is also tested with those two dataset 

combinations. As is listed in Table 1, there are a total of 5 different types of tests. Each type 

of test is named X-YZ, where X represents the query types: INT for intersection, WN for 

within, and NN for nearest neighbor. Y and Z represent the types of the first dataset and the 

second dataset respectively: N for nuclei and V for vessels. For instance, NN-NV represents 

conducting nearest neighbor join over a nuclei dataset and a vessel dataset.

To evaluate the efficiency of the existing accelerating approaches, each type of test is 

conducted in many rounds with different combinations of accelerating approaches applied 

(partition, AABB, and GPU). A test that conducts geometric computations in a brute-force 

way is compared as the baseline. Besides, each of those tests is conducted twice with 

the Filter-Refine (FR) Paradigm and the Filter-Progressive-Refine (FPR) Paradigm to show 

the efficiency of the novel progressive refinement. The query latencies for all tests are 

recorded and listed in Table 1. During the execution of each test, the times spent on filtering, 
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decompressing, and conducting geometric computations are profiled respectively for a better 

understanding of the query processing. Fig. 10 shows the breakdown of the execution time 

for all tests. Next, we will analyze the results in detail for each query.

6.4 Query Result Analysis

Intersection spatial join: Fig. 10 (INT-NN) shows the time spent by conducting 

intersection join with different accelerating methods. Note that the evaluating process returns 

immediately when one pair of intersected faces are detected, thus the intersection detection 

among two decoded objects can be very efficient, and the amount of geometric computation 

is much less compared with other distance-based queries. As a result, decompressing objects 

to higher LODs dominates the execution, and all existing methods compared in the test 

do not improve the overall query performance significantly. In contrast, when the FPR 

paradigm is applied (right bars), much fewer objects need to be decoded into higher 

LODs, thus both the decompression and geometric computations are minimized. Overall, 

applying the FPR paradigm achieves at least 4X performance improvement even with other 

accelerating methods applied. It can also be observed that filtering takes a tiny portion of 

the execution time for all types of queries. It proves that the refinement step dominates the 

processing cost of 3D spatial queries.

Within spatial join: Fig. 10 (WN-NN) and 10 (WN-NV) show the results of all 

within spatial join tests with different accelerating approaches over two different dataset 

combinations using 3DPro with the traditional FR paradigm (left bars) and the FPR 

paradigm (right bars) respectively. Different from the intersection query, all pairs of faces 

for two polyhedrons need to be evaluated to determine the distance between them, thus 

conducting geometric computations will dominate the execution. As those three existing 

methods majorly improve the performance of conducting the geometric computations, most 

of those methods can significantly reduce the overall query latency. One exception is the 

within join over nuclei-nuclei datasets with the partition-based method applied. As the 

shapes of nuclei are simple, very few of the nuclei are partitioned and the efficiency 

of partitioning the object into simpler objects is not obvious. In contrast, for the same 

query over nuclei-vessel datasets, the partition-based method achieves 39X performance 

improvement over calculating distances in a brute-force way. This is because the shapes of 

vessels are complex, partitioning them into simpler objects could significantly improve the 

efficiency of filtering with finer-grained MBBs and reduce the total amount of geometric 

computations.

It also shows that the FPR paradigm can co-exist with all those methods to further 

improve the within join query performances for querying both data combinations. For 

the nuclei-nuclei test (WN-NN), the FPR paradigm achieves 20.9X, 6.4X, and 4.1X 

performance boosts when partition-based, AABB-tree-based, and GPU-based methods are 

applied respectively. For the nuclei-vessel test (WN-NV), those performance boosts rates are 

5.8X, 5.7X, and 3.3X respectively. Note that, for the nuclei-vessel test, the partition-based 

method and GPU-based method can co-exist to achieve even better query performance. 

Therefore, we conducted two more tests with both partition and GPU-based accelerating 

methods applied. As shown in the last column of Table 1, using GPU can further reduce the 
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query latency by 70% (645.1 to 196.3) when the vessels are already partitioned into simple 

objects. As can be expected, the FPR paradigm can further improve the query performance 

by 2 folds (196.3 to 95.1).

Nearest neighbor join: Fig. 10 (NN-NN) and 10 (NN-NV) show the results for all 

the nearest neighbor join tests. It can be observed that the execution time of the nearest 

neighbor join query over different datasets with different accelerating methods follows a 

similar pattern as the within join query, and conducting geometric computations dominates 

the execution. The AABB and GPU-based methods work for both data combinations and 

the partition-based method only works for the test with the nuclei-vessel datasets. When 

the FPR paradigm is applied, the nearest neighbor join query can be further accelerated for 

all tests. For the nuclei-nuclei test (NN-NN), the FPR paradigm further improves the query 

performance by 2.5X, 1.7X, and 1.6X when partition, AABB-tree, GPU based methods are 

applied respectively. For the nuclei-vessel test (NN-NV), the FPR paradigm boosts the query 

efficiency by 3.9X, 5.2X, and 6.1X when partition, AABB-tree, GPU based methods are 

applied respectively. When both the partition and GPU-based methods are applied, the FPR 

paradigm further reduces the execution time by 56% (392.8 to 172.3).

Efficiency of the decoding cache: 3DPro maintains an LRU decoding cache to keep 

the faces for the recently decoded objects. Table 2 lists the decoding time taken by different 

tests with and without the decoding cache enabled. It shows that the decoding time is 

significantly reduced when the decoding cache is enabled and the recently decoded objects 

are cached for future reuse. It also shows that the decoding time reduction is even more 

significant when vessels are involved. That is because one vessel might be the within or 

nearest neighbor candidate for hundreds of nuclei, such that each vessel needs to be decoded 

hundreds of times without the help of the decoding cache. Note that the decoding cache is 

enabled by default for all tests.

Repeated face pair evaluation: Note that one face may be shared by the polyhedrons 

in multiple LODs for the same spatial object, thus the same pair of faces may be repeatedly 

evaluated while conducting refinement at two LODs. In practice, the majority of the faces 

in low LOD polyhedrons will be replaced in the process of decoding to a higher LOD. By 

profiling the compressed data, we find that an average of about 15.6% of the faces are shared 

by at least two LODs of polyhedrons. In addition, repeated face pair evaluation happens only 

when both the evaluated faces are shared by the same two LODs of polyhedrons. As a result, 

the potion of the repeatedly evaluated face pairs, or the redundant evaluations, is much less, 

which is only about 1.8% in our test.

Overall analysis: Conclusions can be drawn based on the experiments described above. 

First, the AABB-tree-based method, which indexes the faces of the decoded polyhedron 

with a hierarchical tree structure, can reduce the computation complexity for all the tests 

but the efficiency is not as good as the other methods for most cases. Second, the GPU-

based method can also help to conduct the geometric computations much faster than the 

multi-core CPU for all the tests. Third, the partition-based method can significantly reduce 

the total amount of geometric computations involved in the refinement step only when the 
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queried polyhedrons are complex in shape but does not help much when the objects are 

simple. Fourth, the FPR paradigm reduces the complexity of the objects involved in the 

refinement step which further reduces the amount of geometric computations from another 

dimension. As a result, it can work together with any other existing accelerating method 

to achieve optimized 3D spatial queries. Fifth, decompressing objects is time-consuming 

and even dominates the execution in some of the tests, such as the intersection tests (Fig. 

10 INT-NN) and within query on nuclei-nuclei data set when the FPR paradigm is applied 

(Fig. 10 WN-NN right bars). The decompression efficiency of 3DPro is highly bounded by 

the performance of a third-party dependency library CGAL [14]. We will decouple those 

dependencies and implement the spatial decompression on GPU as future work.

6.5 Choosing Level of Details with Profiling

As is discussed in Section 4.4, one critical parameter that affects the performance of 3DPro 

with the FPR paradigm is at which LODs representation objects need to be refined during 

the progressive refinement step. To determine on which LOD the objects need to be refined, 

we conduct all the queries mentioned above on the objects in a single cuboid which contains 

45 vessels and 9, 945 nuclei. All the join tests are implemented with 9, 945 independent 

queries over individual objects, and for each independent query, all LODs are checked to 

progressively prune the candidates until the final result is determined. Each query needs to 

evaluate multiple pairs of objects in the refinement step after filtering with the index, and at 

each LOD, all the object pairs need to be evaluated but only some of them will be pruned.

To avoid too many faces being shared by two consecutive LODs, we denote that the LOD 

is reduced by one level after two rounds of decimation. As shown in Fig. 11, the number 

of faces decreases half after two rounds of decimation, thus r equals 2 for all LODs. 

Furthermore, a polyhedron representing a nucleus contains only about 10 faces after 10 

rounds of decimation, which cannot be further compressed. To make it consistent, 6 levels 

of LODs (1 original and 5 compressed) for both nuclei and vessels datasets are chosen. As 

the value of r equals 2, the value of 
np
ne

 in Section 4.4 must be larger than 1
4  or 25%. In 

other words, at least a quarter of the object pairs should be pruned to make the refinement at 

a specific LOD beneficial. Fig. 12 shows the total number of object pairs that are evaluated/

pruned and the portion of the pruned object pairs at each LOD for all types of queries. The 

LOD needs to be refined when the portion is larger than 25%. For instance, the INT-NN 

test needs to conduct progressive refinement on LODs 0, 1, and 5. Note that when the 

partition-based approach is applied, the vessel dataset can be treated as a different dataset 

with simpler objects. As the portion of the pruned object pairs at each LOD is highly dataset 

depended, for each test, one round of profiling can be conducted automatically with the 

sampled objects to determine the LODs the progressive refinements need to be conducted 

on.

6.6 Comparison with PostGIS

We further compare the performance of 3DPro with PostGIS in supporting all those three 

types of spatial queries over 3D data. As 3D join queries over complex 3D objects is 

to be optimized in PostGIS, it may take too long to complete the queries [22, 51]. For 
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convenience, we conducted the join queries only on one cubic of the data which contains 45 

vessels and 9945 nuclei. We compare the average latency of those queries with the average 

latency of tests using 3DPro with the FR or the FPR paradigm. For fairness, the geometric 

computations in 3DPro are conducted in a brute-force way without the help of any other 

facilitating approaches like AABB-tree and GPU. Each test is conducted with a single thread 

for both 3DPro and PostGIS. All the data accessed is in memory thus no I/O is involved 

for both PostGIS and 3DPro. Furthermore, as PostGIS does not support nearest neighbor 

candidates filtering with indexing [48], for fairness, we calculate the distances from all 

geometries to their nearest neighbors with 3DPro and use the largest distance as a buffer 

size. To get the nearest neighbor of a geometry with PostGIS, a buffer geometry is created 

with the buffer size, and all the geometries in the source dataset with MBB intersecting the 

buffer geometry are retrieved as nearest neighbor candidates.

Fig. 13 shows the query latency of all queries using PostGIS and using 3DPro with FR 

or FPR paradigm. It shows that PostGIS is up to two orders of magnitude slower than 

3DPro even with the Filter-Refine paradigm. In contrast, when the Filter-Progressive-Refine 

paradigm is applied, the query can be further accelerated by up to one order of magnitude. 

This set of tests proves that the state-of-the-art spatial data management systems (SDBMS) 

are not optimized for supporting queries over complex 3D spatial objects. All existing 

accelerating methods, together with the FPR paradigm proposed in this paper, can be applied 

to improve the query performance of the state-of-the-art SDBMS by up to 5 orders of 

magnitude for certain types of queries.

7 RELATED WORK

3D spatial data processing:

Support of 3D objects with a comprehensive 3D model is limited in traditional spatial 

database management systems. PostGIS [49] recently introduced 3D support using a 

surface-based model, where no data compression, multiple levels of details, or 3D 

specialized indexing is adopted, leading to limited performance for complex 3D objects. 

Lumic-GIS boosts 3D spatial queries on top of PostGIS with the help of GPU [51], but it 

does not reduce the total load of geometric computations. Oracle Spatial takes a method on 

building an R-tree on the primitives of complex geometries to facilitate queries [41, 50]. 

However, none of them takes advantage of multiple LODs, and the Filter-Progressive-Refine 

paradigm can coexist with these systems for further efficiency improvement.

Spatial compression in other domains:

Spatial compression is an important research topic in computational geometry and computer 

graphics. One research area focuses on minimizing the distortion of the compressed object. 

Peng et. al proposed an OCTree-based method to improve the efficiency of encoding 

meshes with arbitrary topological structures [47]. They also proposed a feature-oriented 

generic progressive lossless mesh coder which focuses more on the presentation of the 

compressed objects [46]. Yet another Incremental Parametric Refinement based approach 

is proposed which also improves the quality of compression using a novel refinement 

scheme [59]. PPMC achieves a lower distortion rate with a lifting schema and improves the 
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compression quality [38]. Furthermore, multiple LOD representations are first introduced in 

the computer graphics field for faster rendering and visualization [37]. For instance, [18] 

proposed a hierarchical representation for efficient graph rendering with GPU. In contrast, 

the progressive refinement method proposed in this paper requires that the compressed 

objects should preserve a spatial relationship with the original object (covering a subset) to 

make querying with the compressed objects possible.

Wavelet-based compression:

Wavelet implements multiple resolution representations of 3D objects with slightly different 

underlying logic [55]. With wavelet representation, the original polyhedron is re-meshed to 

make the edges follow a certain pattern with a sacrifice of precision, then the re-meshed 

polyhedron is compressed with wavelet transforms. The wavelet-based compression is then 

implemented over normal meshes representations to improve the compression efficiency 

[31]. Instead of selecting the removed vertices arbitrarily, the selected vertices and edges 

in wavelet representation follow a certain topology structure, thus progressive rendering 

and querying can be achieved by fetching the details of an object in batches. [45] studied 

methods to improve the storage efficiency of wavelet-based compression. [2, 3] proposed a 

motion-aware approach that retrieves objects in proper resolution considering the movement 

of the objects. The motion-aware approach significantly reduced the I/O and computation 

cost with the dynamical loading. We will adapt the Filter-Progressive-Refine paradigm to all 

those progressive compression methods as future work.

Researches in spatial join:

Spatial join is well studied in both 2D and 3D spaces [8–11, 40, 66]. However, most of 

the objectives are to minimize the I/O cost and implement spatial joins over a large chunk 

of data with limited memory capacity [9–11]. TOUCH achieves efficient in-memory spatial 

join by using hierarchical data-oriented space partitioning [40]. A GPU-based approach is 

proposed in [66] which rasterizes polygons into labeled grids and conducts spatial join over 

those grids. [24] proposes scalable algorithms for nearest neighbor join for trajectory data. 

Besides Minimum Bounding Boxes (MBBs), [9, 10] study the efficiencies of many other 

approximation methods like Maximum Enclosed Boxes, Minimum Bounding Ellipse, and 

Convex Hulls in filtering out more objects. [53] proposes Clipped Bounding Box (CBB) 

for a better approximation of the region covered by spatial index nodes. [57, 67] takes 

advantage of raster representations of objects to achieve a better approximation. They all 

aim to improve the efficiency of the filtering step, not on easing geometric computations 

introduced in the refinement step.

Distributed spatial data management:

There is much recent work on scalable 2D spatial data management with distributed data 

processing frameworks, such as Hadoop-GIS [1], Spatial-Hadoop [21], GeoSpark [65], 

Simba [64], SparkGIS [5], and LocationSpark [56]. CG_Hadoop implements common 

computational geometry operations with Hadoop framework [20]. iSPEED is a recent 

research project on supporting 3D data in distributed and in-memory computing, intending 

to achieve fast query response by sacrificing the accuracy of queries using low-resolution 
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objects from progressive compression [35, 61]. Those distributed big spatial data processing 

systems can benefit from the progressive refinement proposed in this work.

8 CONCLUSION

In this paper, we propose a new Filter-Progressive-Refine paradigm for 3D spatial queries 

at an extreme scale. 3DPro aims to provide high-performance 3D spatial queries with 

effective access methods, in-memory computing, complexity reduction, and CPU-GPU 

hybrid parallelization. The progressive protruding-vertex pruning-based compression not 

only significantly reduces the data size for in-memory processing, but also provides 

hierarchical encoding to progressively reduce the surface complexity. With its unique 

properties preserved during encoding, the progressive compression enables progressive 

query processing to minimize decoding and geometric computation. 3DPro achieves 

significant performance improvement over state-of-the-art 3D spatial data management 

systems and provides a promising approach for many 3D applications.
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Figure 1: 
An object represented as polyhedrons in different levels of details (LODs)
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Figure 2: 
Two types of spatial object approximations
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Figure 3: 
Simplifying polyhedron surface by removing vertices and faces
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Figure 4: 
One round of decimation conducted on a polyhedron. Green colored faces with a vertex are 

removed.
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Figure 5: 
Protruding and recessing vertices
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Figure 6: 
Properties of querying multiple LODs
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Figure 7: 
Pipelines of conducting queries with the Filter-Refine paradigm and the Filter-Progressive-

Refine paradigm

Teng et al. Page 33

Adv Database Technol. Author manuscript; available in PMC 2022 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8: 
Overview of the architecture of 3DPro
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Figure 9: 
Portions of space taken by different LODs

Teng et al. Page 35

Adv Database Technol. Author manuscript; available in PMC 2022 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10: 
Performance comparison of 3DPro with traditional FR paradigm (left bars) and the proposed 

FPR paradigm (right bars) utilizing different accelerating approaches: Brute force(B), 

Partition(P), AABB(A), and GPU(G) on all tests
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Figure 11: 
The number of remaining faces vs the number of decimation rounds
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Figure 12: 
The number of object pairs evaluated and pruned with refinements performed at different 

LODs

Teng et al. Page 38

Adv Database Technol. Author manuscript; available in PMC 2022 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 13: 
The latency of tests querying with PostGIS and 3DPro with FR/FPR paradigms
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Table 1:

The execution time (Seconds) of tests for three queries with different datasets and accelerating approaches

Query Datasets Test ID Paradigm Brute-force Partition AABB GPU Partition+GPU

Intersect Nuclei-Nuclei INT-NN
FR 356.0 355.7 338.2 340.4 N/A

FPR 84.8 86.4 82.7 80.7 N/A

Within

Nuclei-Nuclei WN-NN
FR 2253.7 2249.0 480.2 250.8 N/A

FPR 108.2 108.5 74.7 60.5 N/A

Nuclei-Vessel WN-NV
FR 25056.8 645.1 11197.3 9827.0 196.3

FPR 8458.8 111.6 1948.7 2990.1 95.1

Nearest Neighbor

Nuclei-Nuclei NN-NN
FR 2264.0 2268.9 516.9 267.9 N/A

FPR 893.8 893.1 306.6 164.1 N/A

Nuclei-Vessel NN-NV
FR 151630.0 1649.8 108799.9 62506.1 392.8

FPR 24968.1 422.2 21025.6 10202.0 172.3
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Table 2:

The total decoding time (in Seconds) for tests with and without the decoding cache.

Test ID without cache with cache speedup

INT-NN 325.7 309.7 1.1

WN-NN 496.7 110.8 4.5

WN-NV 11134.9 175.4 63.5

NN-NN 300.4 125.9 2.4

NN-NV 106906.8 463.8 230.5
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