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Abstract
Alzheimer’s disease, a progressive neurodegenerative disease, affects learning and memory resulting from 
cholinergic dysfunction. Scopolamine has been employed to induce Alzheimer’s disease-like pathology 
in vivo and in vitro through alteration of cholinergic system. N-benzylcinnamide (PT-3), purified from 
Piper submultinerve, has been shown to exhibit neuroprotective properties against amyloid-β-induced 
neuronal toxicity in rat cortical primary cell culture and to improve spatial learning and memory of aged 
rats through alleviating oxidative stress. We proposed a hypothesis that PT3 has a neuroprotective effect 
against scopolamine-induced cholinergic dysfunction. PT-3 (125–200 nM) pretreatment was performed in 
human neuroblastoma SH-SY5Y cell line following scopolamine induction. PT-3 (125–200 nM) inhibited 
scopolamine (2 mM)-induced generation of reactive oxygen species, cellular apoptosis, upregulation of ace-
tylcholinesterase activity, downregulation of choline acetyltransferase level, and activation of p38 and JNK 
signalling pathways. These findings revealed the underlying mechanisms of scopolamine-induced Alzheimer’s 
disease-like cellular dysfunctions, which provide evidence for developing drugs for the treatment of this de-
bilitating disease.  

Key Words: Alzheimer’s disease; acetylcholine; apoptosis; acetylcholinesterase inhibitor; oxidative stress; 
N-benzylcinnamide; natural product; scopolamine; neuronal regeneration

Introduction
Alzheimer’s disease (AD), an age-related neurodegenerative 
disease, is the most common cause of dementia (Kumar et 
al., 2015). Hyperphosphorylation of tau protein generates 
neuritic plaques comprising amyloid-β and neurofibrillary 
tangles, which are characteristics of AD (Anand et al., 2014). 
A cholinergic deficit, particularly in basal forebrain, together 
with a decrease in acetylcholine promotes cognitive impair-
ment (Schliebs and Arendt, 2011). In addition, the presence 
of acetylcholinesterase (AChE), results in a decline in cho-
linergic transmission (Mesulam, 2013). Currently, primary 
treatment for AD is a cholinergic replacement therapy based 
on AChE inhibitors, such as donepezil, galantamine, and ri-
vastigmine (Zemek et al., 2014).

Scopolamine, a muscarinic acetylcholine receptor antago-
nist used in animal models and in humans (Bajo et al., 2015; 
Ghumatkar et al., 2015; Alvarez-Jimenez et al., 2016), induc-
es cognitive impairment, which is associated with an attenu-
ation of cholinergic neurotransmission as well as an increase 
in oxidant stress and inflammation (Kwon et al., 2010; Min 

et al., 2015; Balaban et al., 2017).  Scopolamine has been em-
ployed in in vitro testing of new compounds, especially those 
from natural products, for their potential to restore cognitive 
impairment. For example, scopolamine causes cytotoxicity 
and downregulation of neuronal and glial cell markers in 
neuronal (IMR32) and C6 glioma cells respectively, proper-
ties that are reversed upon treatment of an alcoholic extract 
of Ashwagandha leaves (Konar et al., 2011). Pandareesh and 
Anand (2013) demonstrated that pre-treatment with Baco-
pa monniera extract protects against scopolamine-induced 
damage in rat phochromocytoma PC12 cell line associated 
with upregulation of AChE and downregulation of brain-de-
rived neurotrophic factor. Lee et al. (2014) reported that 
sulforaphane (10 or 20 μM), an organosulfur compound 
present in cruciferous vegetables, attenuates acetylcholine 
and choline acetyltransferase (ChAT) expression in scopol-
amine-treated primary mouse cortical neurons.

N-benzylcinnamide (PT-3), purified from Piper submult-
inerve, has been shown to exhibit neuroprotective properties 
against amyloid-β-induced neuronal toxicity in rat cortical 
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primary cell culture (Thangnipon et al., 2013). PT-3 treat-
ment also improves spatial learning and memory of aged rats 
through impacting on parameters associated with oxidant 
stress, inflammation, apoptosis, and AChE activity (Thang-
nipon et al., 2015). In addition, PT-3, in combination with 
bone morphogenetic protein 9, induces neuronal differen-
tiation of human amniotic fluid mesenchymal stem cells by 
enhancing β-III tubulin-containing cell numbers and ChAT 
content (Thangnipon et al., 2016). 

Hence, in this study, we investigated the neuroprotective 
mechanisms of PT-3 against scopolamine-induced choliner-
gic dysfunction in human neuroblastoma SH-SY5Y cell line.

Materials and Methods
Chemicals and reagents
Unless otherwise indicated, media and supplements used 
for cell culture were obtained from Gibco (Carlsbad, CA, 
USA). Scopolamine hydrobromide, 3-(4,5-dimethylth-
iazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 
2,7-dichlorodihydrofluorescein diacetate (DCFH-DA), 
5,5′-dithio-bis-(2-nitrobenzoic acid) (DTNB), acetylthiocho-
line iodine and Bradford reagent were from Sigma (St. Louis, 
MO, USA). Rabbit anti-ChAT antibody was from Abcam 
(Cambridge, MA, USA) and other primary and secondary 
antibodies were from Cell Signalling Technology (Cell Sig-
nalling Technology Inc., MA, USA).

Cell culture and treatment
Human neuroblastoma SH-SY5Y cell line was a kind gift from 
Dr. Martin Broadstock (Wolfson  Centre for Age Related Dis-
eases, King’s College London, UK). Cells were cultured in Dul-
becco’s modified Eagle’s medium (DMEM) supplemented with 
10% fetal bovine serum  (FBS), 100 U/mL penicillin, and 100 
μg/mL streptomycin at 37°C under a humidified atmosphere of 
5% CO2 and 95% air. At 80–90% confluence, cells were treated 
with 0.25% trypsin-ethylenediaminetetraacetic acid (EDTA) 
and plated onto a 96- or 24-well plate at a density of 2 × 105 
cells/mL. Culture medium was changed to serum-free DMEM 
(Huang et al., 2014) supplemented with 50–200 nM of PT-3 
for 1 hour (Thangnipon et al., 2013) prior to incubation with 
0.1–3 mM (usually 2 mM) scopolamine hydrobromide for 24 
hours (Pandareesh and Anand, 2013). All experiments were 
performed using cells from passages 18 to 20.

Cell viability assay 
Cells were incubated with 0.5 mg/mL MTT at 37°C for 3 
hours, then supernatant was removed and A570 nm of the blue 
formazan crystals dissolved in 100 μL of dimethyl sulfoxide 
(DMSO) was measured with a microplate reader (Spectra-
Max® 180, Sunnyvale, CA, USA) as described previously 
(Ivins et al., 1999). Cell viability was presented as the per-
centage of A570 nm of each sample relative to control.

Reactive oxygen species (ROS) assay 
A DCFH-DAdye assay was used to determine levels of intra-
cellular ROS levels (Lin et al., 2000). In brief, following sequen-
tial treatment with PT-3 and scopolamine, cells were incubated 

with 50 μM DCFH-DA in absolute ethanol for 1 hour in the 
dark at 37°C. Dichlorofluorescein (DCF) fluorescence (485 
nm excitation, 530 nm emission) was quantified using a multi-
mode reader (DTX880, Beckman Coulter, Wals, Austria).

Acetylcholinesterase (AChE) activity assay 
SH-SY5Y cells (5 × 105/mL) were cultured in complete 
DMEM medium in a 96-well plate for 24 hours, then incu-
bated with 50–200 nM PT-3 for 1 hour, followed by 2 mM 
scopolamine in serum-free DMEM for further 24 hours. 
Then cells were washed twice with 100 μL of phosphate-buff-
ered saline (PBS) and incubated at room temperature with 
50 μL of 1.3 mM 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB) 
and 50 μL of 1.9 mM acetylthiocholine iodide, both dis-
solved in PBS (Ellman et al., 1961; Gustafsson et al., 2010). 
A420 nm of TNB2– was measured at 1, 15, and 30 minutes using 
a multimode reader (DTX880, Beckman Coulter, Fullerton, 
CA, USA). Absorbance without substrate or cells was sub-
tracted as background.

Western blot analysis 
Cell lysate proteins (30 μg; determined using Bradford meth-
od) were separated by 10% sodium dodecyl sulfate-poly-
acrylamide gel electrophoresis (SDS-PAGE) under sulfhy-
dryl-reducing condition and transferred onto polyvinylidene 
fluoride membrane. Membranes were incubated with the 
following primary antibodies in TBS-T overnight at 4°C at 
the specified dilution: rabbit anti-ChAT (1:1,000 dilution), 
anti-Bcl-2 (1:1,000 dilution), anti-Bax (1:1,000 dilution), 
anti-activated caspase-3 (1:500 dilution), anti-phospho-p38 
(1:1,000 dilution), anti-p38 (1:1,000 dilution), anti-phos-
pho-ERK1/2 (1:1,000 dilution), anti-ERK1/2 (1:1,000), 
anti-phospho-JNK (1:1,000), anti-JNK (1:1,000), anti-phos-
pho-Akt (1:1,000 dilution), anti-Akt (1:1,000 dilution) or 
anti-β-actin (1:2,500 dilution) (latter as internal control) 
antibodies, and then incubated with horseradish peroxidase 
(HRP)-conjugated secondary anti-rabbit IgG (1:1,000 dilu-
tion) antibodies at room temperature for 1 hour. Immuno-
reactive protein bands were detected using an ECL western 
blotting substrate (Bio-Rad, Hercules, CA, USA) and record-
ed on HyperfilmTM (Amersham Pharmacia Biotech). Band 
density was determined as scanning units using imageJ soft-
ware (National Institutes of Health, MA, USA) and expres-
sion levels were quantified relative to that of β-actin.

Statistical analysis 
One-way analysis of variance (ANOVA) was performed using 
Prism 5.0a (GraphPad Software, Inc., San Diego, CA, USA) 
to measure statistical significance of differences, followed by 
Student-Newman-Keuls test. Data are presented as the mean 
± SEM of three independent experiments in triplicate. Results 
are considered statistically significant at P-value < 0.05.

Results
PT-3 attenuated scopolamine-induced cytotoxicity, ROS 
generation and apoptosis of SH-SY5Y cells
Exposure to scopolamine (1–3 mM) for 24 hours signifi-
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Figure 1 N-benzylcinnamide (PT-3) pretreatment prevented scopolamine (Sco)-induced cytotoxicity and intracellular reactive oxygen
species (ROS) generation in SH-SY5Y cells. 
Cell viability and intracellular ROS levels were determined using MTT assay and DCFH-DA reagent respectively. (A) Viability of SH-SY5Y cells ex-
posed to 2 mM scopolamine. (B) Viability of SH-SY5Y cells treated with 125–200 nM PT-3 prior to 2 mM scopolamine exposure was significantly 
increased. (C) Intracellular ROS production of SH-SY5Y cells treated with 125–200 nM PT-3 prior to 2 mM scopolamine exposure was significant-
ly decreased. Results are shown as the mean ± SEM of three independent experiments. ***P < 0.001, vs. control; #P < 0.05, ##P < 0.01, ###P < 0.001, 
vs. scopolamine-treated group (one-way analysis of variance followed by Student-Newman-Keuls test). (D) Morphology observed under inverted 
phase-contrast microscopy of untreated SH-SY5Y cells. (E) Presence of moribund SH-SY5Y cells (arrows) following 2 mM scopolamine treatment. 
(F) Prior treatment with 150 nM PT-3 restored neurites of SH-SY5Y cells (arrowheads) subjected to 2 mM scopolamine treatment. The insets in D–
F are higher magnification views of SH-SY5Y cells. Scale bar: 50 µm. 

Figure 2 N-benzylcinnamide (PT-3) pretreatment prevented 
scopolamine (Sco)-induced reduction of choline acetyltransferase 
(ChAT) activity and induction of pro-apoptosis events in SH-SY5Y cells.
Cells were treated with PT-3 and Sco as described in legend to Figure 1. 
ChAT activity, activated caspase-3, Bax and Bcl-2 levels were determined 
by western blot analysis (upper panels). PT-3 pretreatment increased ChAT 
activity (A), and reduced activated caspase-3 (B) and Bax/Bcl-2 (C) levels. 
Results are shown as the mean ± SEM of three independent experiments. 
*P < 0.05, **P < 0.01, ***P < 0.001, vs. control group; ###P < 0.001, vs.  
Sco treated group (one-way analysis of variance followed by Student-New-
man-Keuls test). Con: Control.
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Figure 4 N-benzylcinnamide (PT-3) pretreatment reversed scopolamine (Sco)-induced upregulation of phosphorylated p38 (p-p38) and 
downregulation of phosphorylated JNK (p-JNK), but did not affect phosphorylation of ERK1/2 and Akt in SH-SY5Y cells (western blot 
analysis). 
Cells were treated with PT-3 and Sco as described in legend to Figure 1. Levels of p38, p-p38, JNK, p-JNK, ERK1/2, p-ERK1/2, Akt, and p-Akt were 
determined by western blot analysis (upper panels). (A) Phospho-p38/p38 ratio. (B) Phospho-JNK/JNK ratio. (C) Phospho-ERK1/2/ERK1/2. (D) 
p-Akt/Akt ratio. Results are shown as the mean ± SEM of three independent experiments. **P < 0.01, ***P < 0.001, vs. control group; #P < 0.05, 
##P < 0.01, ###P < 0.001, vs. Sco-treated group (one-way analysis of variance followed by Student-Newman-Keuls test). Con: Control.

Figure 3 N-benzylcinnamide (PT-3) pretreatment reversed scopolamine (Sco)-induced elevation of acetylcholinesterase (AChE) activity in 
SH-SY5Y cells.
Cells were treated with PT-3 and Sco as described in legend to Figure 1. AChE activity was measured by hydrolysis of acetylthiocholine. PT-3 treat-
ment reduced AChE activity determined at 1, 15 and 30 minutes (min), respectively. Results are shown as the mean ± SEM of three independent 
experiments. *P < 0.05, **P < 0.01, ***P < 0.001, vs. control group; ###P < 0.001, vs. Sco-treated group (one-way analysis of variance followed by 
Student-Newman-Keuls test). 
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cantly decreased human neuroblastoma SH-SY5Y cell via-
bility in a dose-dependent manner (Figure 1A), which is in 
accordance with findings from a previous study (Konar et 
al., 2011). In all subsequent experiments, 2 M scopolamine 
resulted in 50.6 ± 2.2% loss in cell viability, which was inhib-
ited by pretreatment with 125–200 nM PT-3 for 1 hour in a 
concentration-dependent manner (Figure 1B). In addition, 
PT-3 pretreatment ameliorated scopolamine-induced ROS 
formation over the same concentration range in a dose-de-
pendent manner (Figure 1C). Treatment with PT-3 alone 
had no apparent effect on cell viability or endogenous ROS 
level. 

An inverted phase-contrast microscopy revealed that live 
cells presented shrinkage and cell death (apoptosis) of SH-
SY5Y cells following scopolamine exposure, which were pre-
vented by PT-3 pretreatment (Figure 1D–F). Cell apoptosis 
was confirmed by the presence of activated caspase-3 (Figure 
2B) and elevated Bax/Bcl-2 ratio (Figure 2C), which again 
were diminished by PT-3 (200 nM) pretreatment.

PT-3 suppressed AChE activity but restored ChAT activity 
in scopolamine-treated SH-SY5Y cells
As scopolamine upregulated AChE activity in rat PC12 cells 
(Pandareesh and Anand, 2013), a similar phenomenon was 
observed when SH-SY5Y cells were treated with 2 mM sco-
polamine, resulting in 150.5 ± 3.5%, 131.7 ± 2.1%, and 113.4 
± 1.5% increase in AChE activity compared to untreated 
control when assayed for 1, 15 and 30 minutes, respectively 
(Figure 3), which, as expected, was prevented by PT-3 (50–
200 nM) pretreatment. PT-3 restored ChAT activity, reduced 
by scopolamine, with 1.5 ± 0.16-fold increase in ChAT ac-
tivity compared to control cells at the highest (200 nM) PT-3 
concentration used (Figure 2A).

PT-3 modulated p38 and JNK pathways in SH-SY5Y cells 
exposed to scopolamine
Scopolamine activated redox-responsive cell signaling 
pathways, such as oxidative stress, inflammation, and cell 
death (Foyet et al., 2015). In order to identify the pathway(s) 
involved in the situation of SH-SY5Y cells, western blot 
analysis was employed to identify key signature factors of ac-
tivated signaling pathways. Exposure to 2 mM scopolamine 
resulted in 1.6-fold increase in phospho-p38/p38 ratio over 
untreated control SH-SY5Y cells, and this was restored to 
near control value by prior incubation with 100–150 nM 
PT-3, but only to 50.2 ± 1.8% of control with 200 nM PT-3 
(Figure 4A). Whereas 2 mM scopolamine reduced phos-
pho-JNK/JNK ratio to 75.4 ± 2.4% of control cells, which 
was further reduced by 100 and 150 nM PT-3 pretreatment 
(Figure 4A, B). However, phosphorylation of ERK1/2 and 
Akt was not affected (Figure 4C, D). 

Discussion
SH-SY5Y cells were chosen for study as they are commonly 
used as models to investigate in vitro neuronal function 
(Forster et al., 2016) and to assess pharmacological and tox-
icological potential of AChE inhibitors (Kanhed et al., 2015; 

Santillo and Liu, 2015). In a previous study (Zhang et al., 
2016), scopolamine-induced ROS formation and cellular 
apoptosis (via the classical Bax/Bcl-2 pathway) in SH-SY5Y 
cells were ameliorated by pretreatment with PT-3. PT-3 
manifests antioxidant property (Thangnipon et al., 2013). 
C6 glioma cells pre-treated with 0.5–2 μM lactucopicrin, 
a sesquiterpene lactone derived from Lactuca virosa and 
Cichorium intybus, have reduced 2′,7′-dichlorofluorescein 
toxicity induced by 3 mM scopolamine (Venkatesan et al., 
2016). 

Interestingly, PT-3 pretreatment was capable of suppress-
ing scopolamine-stimulated SH-SY5Y AChE activity. Xian et 
al. (2015) reported that Honokiol, a lignin from the bark of 
Magnolia officinalis, decreases AChE activity in brain tissues 
of scopolamine-treated mice. Honokiol contains two pheno-
lic groups, which can exhibit antioxidant property similar to 
PT-3 (Dikalov et al., 2008). 

There is evidence that undifferentiated or differentiated 
SH-SY5Y cells contain AChR mRNA (Korecka et al., 2013). 
In this study, PT-3 restored ChAT activity in SH-SY5Y cells 
that had been reduced by scopolamine, probably by increas-
ing ChAT expression and thereby restoring cholinergic cell 
function. This property is not confined to PT-3 as Lim et al. 
(2016) recently demonstrated that curcumin, a natural an-
tioxidant, increases immunoreactive ChAT level in scopol-
amine-treated mouse hippocampus and improves learning 
impaired by scopolamine insult.

The activation of p38 and JNK signalling pathways is asso-
ciated with cellular stress and pro-inflammatory responses 
(Davis, 2000). Scopolamine induces a number of patholog-
ical phenomena associated with neurodegenerative diseases 
linked to memory decline, including increased oxidative 
stress, impaired antioxidative defence system and mitochon-
drial dysfunction (Wong-Guerra et al., 2017). Additionally, 
JNK and p38 are stress-activated MAP kinases preferentially 
activated by cell stress-inducing signals, including oxidative 
stress, environmental stress and toxic chemical insults. Sus-
tained activation of JNK or p38 is implicated in the induc-
tion of many forms of neuronal apoptosis in response to a 
variety of cellular injuries (Wong-Guerra et al., 2017). In sco-
polamine-treated SH-SY5Y cells, PT-3 inhibits phosphory-
lation of p38 and JNK, as have been observed in rat primary 
cultures and human mesenchymal stem cells (Thangnipon et 
al., 2013, 2016). Although low doses of PT-3 (100–150 nM) 
inhibited scopolamine-induced cytotoxicity via inactivation 
of JNK, surprisingly high dose of PT-3 (200 nM) enhanced 
JNK activation (but lower than that in control cells) as has 
been reported by Shi et al. (2009). In that study, low concen-
trations (50–100 μg/mL) of EGb761, an extract from Ginkgo 
biloba leaves, inhibits H2O2-induced cell apoptosis via sup-
pression of JNK and caspase-3 activation while high concen-
trations (250–500 μg/mL) enhance JNK phosphorylation. It 
is worth noting that pre-treatment with a number of natural 
phenolic compounds show similar effects on p38 and JNK 
pathways in oxidant stressed SH-SY5Y cells (Dhanalakshmi 
et al., 2015; Zhu et al., 2015).

ROS plays a critical role in cell signalling, particularly in 
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redox mechanisms involved in apoptosis, such as the mito-
chondria-to-cytosol release of cytochrome c, a central event 
in apoptosis initiation (Circu and Aw, 2010). Interestingly, 
a Liriope platyphylla extract exerts neuroprotective effects 
against H2O2 by modulating only p38 and not ERK in SH-
SY5Y cells (Park et al., 2015). In addition, p38 inhibitor 
SB203580 blocks cell loss in H2O2-treated SH-SY5Y cells 
(Park et al., 2015). Thus, in SH-SY5Y cells, H2O2 requires 
p38 activation for cytotoxicity. 

Lee et al. (2005) suggested that baicalein, a flavonoid from 
Scutellaria root, induces a significant reduction in phos-
pho-JNK level of 6-hydroxydopamine-induced neuronal 
cell death. They also found that ERK and Akt pathways are 
not altered by scopolamine treatment. These pathways are 
responsible for cell proliferation, cell differentiation and cell 
survival (Junttila et al., 2008). Similarly, Voleti et al. (2013) 
found a low dose of scopolamine treatment (25 μg/kg) does 
not disturb activated ERK level and has a minimal effect on 
phospho-Akt in cultured rat pyramidal neurons. Gunjima 
et al. (2014) reported a similar observation of protection by 
3,4-dihydroxybenzalacetone, a catechol-containing com-
pound isolated from Inonotus obliquus (persoon) Pilat, against 
6-hydroxydopamine toxicity in SH-SY5Y cells that is not af-
fected by ERK inhibitor PD98059. Similarly, Wang et al. (2014) 
demonstrated that glycyrrhizic acid, a major compound of 
Glycyrrhiza radix, alone or in combination with 20 mM gluta-
mate, has no effect on phospho-Akt level in PC12 cells. 
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