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Abstract: Stimulation and release of proinflammatory
cytokines is an essential step for the activation of an
effective innate host defense, and subsequently for the
modulation of adaptive immune responses. Interleukin-1b
(IL-1b) and IL-18 are important proinflammatory cytokines
that on the one hand activate monocytes, macropages,
and neutrophils, and on the other hand induce Th1 and
Th17 adaptive cellular responses. They are secreted as
inactive precursors, and the processing of pro-IL-1b and
pro-IL-18 depends on cleavage by proteases. One of the
most important of these enzymes is caspase-1, which in
turn is activated by several protein platforms called the
inflammasomes. Inflammasome activation differs in vari-
ous cell types, and knock-out mice defective in either
caspase-1 or inflammasome components have an in-
creased susceptibility to several types of infections.
However, in other infections and in models of sterile
inflammation, caspase-1 seems to be less important, and
alternative mechanisms such as neutrophil-derived serine
proteases or proteases released from microbial pathogens
can process and activate IL-1b. In conclusion, IL-1b/IL-18
processing during infection is a complex process in which
the inflammasomes are only one of several activation
mechanisms.

The Role of IL-1b and IL-18 in Host Defense

The main cellular innate host defense mechanisms are the

phagocytosis and killing of bacteria and fungi by neutrophilic

granulocytes, monocytes, and macrophages [1,2], and the lysis of

viral-infected cells by natural killer (NK) cells [3]. Upon

recognition of a microorganism, proinflammatory cytokines such

as tumor necrosis factor (TNF), interferon-c (IFNc), interleukin

(IL)-18, and IL-1b are secreted. These cytokines activate

neutrophils and macrophages to phagocytose the invading

pathogen and to release toxic oxygen and nitrogen radicals.

TNF is an essential component of the host defense, as

demonstrated by the important infectious complications in patients

treated with anti-TNF biological agents [4]. Similarly, IFNc
activates both neutrophils and macrophages for intracellular

killing of bacteria or fungi. Patients with defects in the IL-12/

IFNc activation pathways are at increased risk of severe

mycobacterial and Salmonella infections [5], and recombinant

IFNc is an established therapy in patients with chronic

granulomatous disease [6]. However, in addition to TNF and

IFNc, the proinflammatory cytokines of the IL-1 family, most

notably IL-1b and IL-18, also have very important roles for

antimicrobial host defense. IL-1a and IL-1b, which bind and

activate the same receptor [7], activate the release of other

proinflammatory cytokines such as TNF and IL-6, and induce a

Th17 bias in the cellular adaptive responses [8]. In vivo, IL-1 is

largely responsible for the acute phase response, which includes

fever, acute protein synthesis, anorexia, and somnolence [7], while

IL-18 is essential for the induction of IFNc and Th1 responses [9].

Through these mechanisms, cytokines of the IL-1 family are a

crucial component of the host defense against infections.

IL-1b and IL-18 Processing and Release: The
Inflammasomes

Much interest has been generated regarding the processing and

release of bioactive IL-1b since the discovery of an entire group of

disorders called autoinflammatory syndromes that specifically

respond to the blockade of the IL-1 receptor with the IL-1 receptor

antagonist (IL-1Ra), or with neutralization of IL-1b by the

monoclonal anti-IL-1b antibodies. These syndromes are charac-

terized by attacks of sterile inflammation of joints, serositis, fever,

and skin lesions. Some of the best known diseases in this group

include familial Mediterranean fever (FMF) [10], cryopyrin-

associated periodic syndromes (also known as cryopyrinopathies,

which include familial cold auto-inflammatory syndrome [FCAS]

[11], Muckle-Wells syndrome [MWS] [12], and neonatal onset

multisystem inflammatory disease [NOMID] [13]), hyperimmu-

noglobulin D syndrome (HIDS) [14], TNF receptor–associated

periodic syndrome (TRAPS), and adult-onset Still’s disease [15].

Blood monocytes from patients with some of these disorders,

especially cryopyrinopathies, readily release more IL-1b than

monocytes from unaffected controls, revealing a loss of the tight

control that regulates the processing and release of active IL-1b.

An abnormal production of IL-1b has been therefore proposed to

be the underlying cause of these diseases.

Several mechanisms control the production and activity of

IL-1b, including the processing of the 31-kDa inactive IL-1b
precursor form into the bioactive 17-kDa IL-1b [16], and the

release from secretory lysosomes through K+-dependent mecha-

nisms [17,18]. In addition, control over IL-1 activity is exerted by
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the IL-1 receptor antagonist (IL-1Ra) or the type II decoy receptors

[19]. Processing of bioactive IL-1b (and that of IL-18) depends on

activation of caspase-1 by protein complexes termed the inflamma-

somes [20]. Several protein platforms/inflammasomes have been

described for the activation of caspase-1, and each of them include

members of the NOD-like receptor (NLR) family of proteins [21].

Through CARD–CARD and pyrin domain–pyrin domain inter-

actions, a large macromolecular complex is formed to represent a

scaffold for the recruitment and activation of pro-caspase-1. It is

believed, yet not proven, that caspase-1 activation in the

inflammasome is induced by the formation of oligomers and

proximity between caspase-1 molecules.

Several major inflammasome complexes that activate caspase-1

have been described to date. The most intensely studied has been

the inflammasome formed by the NLR family member NLRP3,

which forms complexes that include the adapter protein ASC for

the activation of caspase-1 (Figure 1A). Mutations in NLRP3 have

been described in the cryopyrin-associated periodic syndromes

(CAPS; cryopyrin is a name previously used for NLRP3), whereas

specific NLRP-3 polymorphisms have been associated with

Crohn’s disease [22]. A large number of stimuli have been

described to activate the NLRP3 inflammasome: some of them of

bacterial origin (muramyl dipeptide [MDP], bacterial RNA,

double-stranded RNA), some of them are danger-associated

molecular patterns (uric acid crystals, amyloid-b), but also

exogenous compounds such as asbestos, silica, or alum adjuvant

[23–27]. The precise mechanism leading to the activation of the

NLRP3 is still unclear. The diverse molecular structure of these

compounds most likely precludes the direct stimulation of the

NLRP3 inflammasome. A unifying hypothesis proposes that

common intracellular activities such as induction of hypokalemia,

reactive oxygen species, or calcium-dependent phospholipase 2 are

indirectly activating the inflammasome [28]. However, stimulation

of cells solely with ATP, a known inducer of potassium efflux

through P2X7-mediated mechanisms, is unable to activate

caspase-1, and cell priming with lipopolysaccharide (LPS) is

necessary for ATP to induce inflammasome activation. In this

context, induction of NF-kB-dependent transcription of NLRP3

by Toll-like receptor (TLR) ligands [29] or proinflammatory

cytokines [30] seems to be the critical checkpoint needed for cell

priming prior to inflammasome activation by ATP. In addition,

formation of pores by pannexin-1 is one mechanism through

Figure 1. The prototypical NLRP3 and NLRC4 inflammasomes. (A) The NLRP3 inflammasome is activated by both bacterial (e.g., MDP,
bacterial RNA, b-glucan), exogenous (e.g., silica, alum), and endogenous (e.g., uric acid cristals, ATP) stimuli. (B) The NLRC4 inflammasome is activated
by flagellin in a TLR5-independent fashion.
doi:10.1371/journal.ppat.1000661.g001
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which microbial products (e.g., MDP) can be delivered into the

cytoplasm to activate the inflammasome [31].

The only inflammasome that has been reconstituted biochem-

ically is the NLRP1 inflammasome. A study using purified

NLRP1, ASC, and caspase-1 has shown that NLPR1 forms

oligomers in the presence of MDP [32]. However, no evidence has

been presented that MDP can actually bind NLRP1, although

another study suggested the involvement of NOD2/NLRP1

complexes in this process [33]. NLRP-1 polymorphisms have

been associated with vitiligo and autoimmune diseases [34].

In addition to the NLRPs, another NLR member, NLRC4/

IPAF, forms an inflammasome that activates caspase-1 in response

to intracellular flagellin in an ASC-independent manner [35,36].

Caspase-1 activation by flagellin/NLRC4 is independent of TLR5,

suggesting that flagellin recognition is mediated by two systems:

extracellular sensing by TLR5, and intracytoplasmatic sensing by

NLRC4 (Figure 1B). Finally, a newly described mechanism

involving recognition of bacterial DNA by the intracellular sensor

AIM2 suggests the existence of a specific inflammasome complex

that induces caspase-1 activation upon sensing nucleic acids [37,38].

This is a particularly important finding, as intracellular detection of

DNA from invading pathogens is likely to be central for an effective

host defense. AIM2-dependent activation of IL-1b has been

suggested to be critical for the activation of host defense against

vaccinia virus and Francisella tularensis [37], and it is to be expected

that similar effects will be identified in the future for other

pathogens.

Through these studies on the structure and function of

the various inflammasomes, a dogma has emerged during the

last few years in which production and release of IL-1b and IL-18

is the result of two independent signals: one signal is induced

through pattern recognition receptors ( e.g., TLRs) to activate

transcription of pro-IL-1b and pro-IL-18, and one signal is

mediated by the NLR-containing inflammasomes (and indepen-

dent of the TLRs) that induce cleavage of cytokine precursors

into the active IL-1b and IL-18 forms through caspase-1

activation.

Differential Role of the Inflammasome in
Monocytes and Macrophages

Despite the progress made in understanding the process of

IL-1b synthesis, controversy surrounded the capacity of TLR

ligands such as LPS to activate caspase-1 and cause the release of

active IL-1b. By using transfected cell lines and/or NLRP3 knock-

out mice, a broad panel of exogenous and endogenous stimuli

have been proposed to activate the NLRP3 inflammasome (see

above), but purified TLR ligands such as LPS were not among

these inflammasome stimuli. Therefore, based on defective

responses of the monocyte-like leukemia cell line THP-1 to LPS

stimulation, a concept has arisen that IL-1b production induced

by LPS is due to contamination with non-LPS ligands such as

peptidoglycans [23], while LPS by itself is ineffective as a

stimulator of IL-1b release. A second signal, such as MDP or

ATP, is required, and this would induce activation of caspase-1

followed by IL-1b processing and release [39]. However, this

model is derived from data in THP-1 cells [23] and in primary

mouse macrophages [31], and it is inconsistent with many studies

showing abundant production and release of IL-1b from blood

monocytes by TLR ligands such as purified LPS, lipopeptides, and

lipoteichoic acid, as well as cytokines such as TNFa and IL-1 itself

[40,41]. In addition, several studies reported that synthetic

products, which exclude contamination with NLRP1 or NLRP3

ligands, stimulate IL-1b release [42,43].

These apparent discrepancies have been resolved by a study from

our group showing that synthesis and release of IL-1b differ between

human monocytes and macrophages. Monocytes have constitutive-

ly activated caspase-1, leading to release of active IL-1b after a

single stimulation event with bacterial ligands such as LPS, whereas

macrophages (and THP-1 cells) need two distinct stimuli: one

stimulus induces transcription and translation, and a second

stimulus is needed for caspase-1 activation with subsequent IL-1b
processing and secretion [44] (Figure 2). Although caspase-1 is

constitutively activated in human monocytes, that is still dependent

on inflammasome components, as the inhibition of ASC by siRNA

results in a significant reduction of both caspase-1 activation and

processing of IL-1b [44]. A crucial functional aspect in relation to

the constitutive inflammasome activation in monocytes relates to

the release of endogenous ATP by monocytes. Endogenous ATP

from monocytes can in turn activate the NLRP3 inflammasome and

induce IL-1b secretion through P2X7. In contrast, macrophages

completely lack the capacity to release ATP [45].

Consistent with the failure of in vitro–differentiated macrophages

to release IL-1b is the long known defect in IL-1b synthesis of the

alveolar macrophages. Wewers and colleagues proposed a post-

transcriptional defect in freshly obtained alveolar macrophages

[46]. Recently, they reported differences in pyrin expression

between monocytes and macrophages, and suggested that pyrin

induces IL-1b release [47]. Monocytes from patients with FMF who

have mutations in pyrin release more IL-1b upon stimulation than

cells from control subjects, suggesting a failure to suppress the

activation of caspase-1 [10].

These data imply a paradigm shift in our understanding of the

inflammasome. The demonstration of a role for ASC and NLRP3

in the constitutive activation of caspase-1, independent of

stimulation by TLRs or inflammasome ligands, uncouples

caspase-1 activation from pathogen-associated molecular pattern

(PAMP) recognition in human primary monocytes. This new

model, in which the inflammasome components ASC and NLRP3

form a protein platform responsible for the constitutive activation

of caspase-1, explains why IL-1b induction in monocytes by a very

diverse panel of stimuli (including TLR ligands) is caspase-1

dependent, although these stimuli need not themselves be involved

in inflammasome activation. In addition, a role of ASC and

NLRP3 in caspase-1 activation in the monocyte, independently of

‘‘classical’’ inflammasome stimuli, explains the resistance to

experimental endotoxemia in ASC2/2 and NLRP-32/2 mice

[48,49]. In contrast, macrophages need two signals in order to

produce IL-1b, in a model close to the current concept in the

literature: one signal is mediated by TLRs to induce gene

transcription, and a second signal to induce inflammasome

activation for the processing of IL-1b.

The single (TLR ligand only) stimulation in monocytes

compared with the double (TLR ligand/ATP) stimulation in

macrophages (Figure 2) likely represents an adaptation of each cell

type to their respective environments. Circulating monocytes

function in the surveillance of an essentially pathogen-free

environment, so they must respond promptly to any danger signal

(especially of microbial origin). On the other hand, macrophages

are confined to an environment (e.g., alveolar space, mucosal

surfaces) in which they are constantly exposed to (colonizing)

microbial stimuli. An easily inducible response of macrophages to

release IL-1b for each encounter with such exogenous stimuli

would result in chronic deleterious inflammatory reactions. Thus,

repeated bouts of inflammation are likely reduced by the

requirement of a second stimulus for the activation of the

inflammasome and release of active IL-1b. Such second stimuli

would be available at sites of infection, trauma, or necrosis where
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ATP levels are elevated and can trigger the P2X7 receptor [50]. In

addition, second signals can come from the cathelicidin-derived

peptide LL37 from infiltrating neutrophils [51], or the release of

bacterial toxins [25]. One situation in which caspase-1 activa-

tion seems to be constitutively activated also in macrophages is

represented by the absence of the autophagy gene ATG16L1,

although the precise mechanism responsible for this effect is not yet

elucidated [52]. However, the association of ATG16L1 polymor-

phisms with Crohn’s disease makes this aspect potentially important

for the pathophysiology of this important disease [53,54].

Figure 2. Diagram representing the differential caspase-1/IL-1b activation pathways in monocytes and macrophages. Caspase-1 is
constitutively activated in monocytes, and these cells release mature IL-1b after single stimulation with TLR ligands. IL-1b secretion is induced by
endogenously-released ATP. In contrast, macrophages need a double stimulation: one stimulus (TLR-ligands) induces transcription, and a second
stimulus (ATP) induces IL-1b secretion.
doi:10.1371/journal.ppat.1000661.g002
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The Role of Caspase-1 and the Inflammasome in
Antimicrobial Host Defense

Due to their role in the processing of IL-1b and IL-18, caspase-1

and the inflammasome components are bound to have important

roles in the host defense against pathogenic microorganisms. In vitro

studies have shown that Bacillus anthracis toxin activates IL-1b through

the Nalp1b inflammasome in the mouse [55]. Similarly, NLRP3

activation of caspase-1 has been linked to a variety of microorganisms

ranging from the bacteria Listeria monocytogenes [56,57] and Staphylo-

coccus aureus [58] to viruses such as influenza, adenoviruses, and

Sendai virus [59]. The interaction of NLRC4 with microorganisms

was probably one of the best characterized, demonstrating the

involvement of NLRC4 (independently of ASC) in the activation of

caspase-1 by Salmonella typhimurium [35,36,48], Legionella pneumophila

[60], Pseudomonas aeruginosa [61,62], and Shigella flexneri [63].

In vivo experimental models of infection have also demonstrated

that the lack of caspase-1 in knock-out mice leads to an increased

susceptibility to a variety of infections, including those with F.

tularensis [64], L. pneumophila [65], Shigella [63], Salmonella [66,67],

and P. aeruginosa [62] (Table 1). What all of these infections have in

common is that caspase-1 activity, and thus IL-1b production, is

dependent on the assembly of an inflammasome complex [20],

although they may differ in their specific inflammasome compo-

nents. Experimental infections with some of these pathogens have

been also investigated in knock-out mice lacking components of the

inflammasome. In this respect, ASC-deficient mice have been

shown to be more susceptible to infections with some bacteria

(Francisella and Staphylococcus) [64,68], as well as to influenza viruses

[69], demonstrating its importance in host defense mechanisms. As

in some models ASC2/2 mice are clearly more susceptible to

infections than NLRP32/2 mice (e.g., influenza [69]), one may

suggest a more important role for ASC in antimicrobial defense.

Alternatively, the partial redundancy between different NLRs may

explain the more pronounced phenotype of ASC knock-out mice

compared to single NLR-deficient mice.

Inflammasome-Independent IL-1b Activation

Despite the importance of inflammasome activation in certain

experimental models of inflammation, certain in vivo infection

models in mice deficient in inflammasome components show

intriguing results that question the importance of the inflamma-

some (Table 1). One category of results shows that although

IL-1b is definitely important for inflammatory reactions in

antimicrobial defense, components of the inflammasome or even

caspase-1 can be dispensable. In models of sterile inflammation

induced by turpentine, IL-1b2/2 mice are protected against

inflammation, while caspase-12/2 mice are not [70,71]. This is

in clear contrast with LPS models in which caspase-12/2

mice are protected (Table 1) [72,73]. It appears therefore that

caspase-1 and inflammasome activation is important in some, but

not all, types of IL-1b-driven inflammation [74]. Furthermore,

caspase-1 seems not to be involved in the host defense against

certain types of microorganisms such as Chlamydia trachomatis

[75,76], although IL-1b is involved in the inflammatory responses

induced by these microorganisms [77]. These data argue for

inflammasome-independent activation of IL-1b in certain infec-

tious processes.

An interesting case regarding the involvement of the inflamma-

some in host defense is represented by the fungal pathogen Candida

albicans. IL-1 plays an important role for the host defense and

survival of mice during disseminated candidiasis [75,85]. Surpris-

ingly, caspase-1-deficient mice have been reported to have a

normal resistance to disseminated candidiasis [78], suggesting

activation of IL-1b by alternative mechanisms (see below).

However, NLRP32/2 and ASC2/2 mice have been reported

to be more susceptible to both systemic [79] and mucosal [80]

Candida infections, opening the intriguing possibility of biological

functions of inflammasome components that are not related to

caspase-1 activation. Indeed, an earlier study on the function of

ASC has reported its interaction with NF-kB and an influence on

gene transcription [81]. Whether ASC or NLRP3 have underes-

timated roles that are independent of inflammasome activation

remains to be studied. These studies have shown a role of

inflammasome components in experimental models of Candida

infection in mice, and in line with this the activation of IL-1b in

human monocytes is dependent on caspase-1. However, in

contrast to mouse macrophages, caspase-1 is constitutively

activated in human monocytes and thus does not need fungal

recognition by the NLRs in the inflammasome [82].

Table 1. Susceptibility to In Vivo Experimental Models of Infection in Mice Deficient in IL-1b, IL-18, or Inflammasome Components.

IL-1b2/2 IL-182/2 Caspase-12/2 NLRP32/2 ASC2/2 NLRC42/2

Endotoxemia Normal [74] Lower [95,96] Lower [72,73] Lower [49] Lower [48,49] ND

Turpentine Lower [71,74] ND Normal [70] ND ND ND

E. coli Normal [97] Normal [97] Higher [98]; Lower [97] ND ND ND

Shigella Higher [99] Higher [99] Higher [99] ND ND ND

Salmonella Higher [66] Higher [66] Higher [66] Normal [67] Normal [67] Normal [67]

C. albicans Higher [77,87] Higher [100] Normal [78]; Higher [80] Higher [79,80] ND ND

S. aureus Higher [68] Higher [101] ND ND Higher [68] ND

C. trachomatis ND Normal [102] Normal [76,102] ND ND ND

Listeria Normal [103] Lower [104] Higher [105] ND ND ND

Francisella ND ND Higher [64] ND Higher [64] ND

Legionella ND ND Higher [106] ND ND Higher [60,106]

Influenza Higher [69] Lower [107]; Higher [108] Higher [69] Normal [69] Higher [69] ND

Lower (susceptibility): increased survival of the knock-out mice in the experimental model.
Higher (susceptibility): decreased survival of the knock-out mice in the experimental model.
ND, not done.
doi:10.1371/journal.ppat.1000661.t001
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Alternative Mechanisms of IL-1b Processing

Shortly after the discovery of IL-1b, when it was apparent that

cleavage of the pro-cytokine is needed for activation, a question

arose as to whether other enzymes apart from caspase-1 would

also be capable of processing pro-IL-1b. Indeed, subsequent

studies have identified neutrophil- and macrophage-derived serine

proteases such as proteinase-3 (PR3), elastase, and cathepsin-G as

enzymes that can process pro-IL-1b into 21-kDa active fragments

[7,83]. Similarly, processing of pro-IL-18 by PR3 can also lead to

active fragments [84]. The crucial role played by neutrophil-

dependent, inflammasome-independent activation of pro-IL-1b
has been elegantly confirmed recently by the group of Greten and

colleagues [85] (Figure 3).

The inflammasome-independent activation of pro-IL-1b in

situations when neutrophils are the major cell population in the

inflammatory infiltrate can explain many of the apparently

puzzling observations reviewed above. It is the neutrophils that

form the backbone of the inflammatory infiltrates during

disseminated candidiasis [86], and this explains the dependency

of host defense against Candida on IL-1b [87], most likely activated

by neutrophil-derived PR3, rather than caspase-1 [78]. Similarly,

inflammatory infiltrates during arthritis consist of both macro-

phages and neutrophils. Indeed, we have observed a minimal role

of caspase-1 during the acute inflammation of arthritis that is

characterized by an overwhelming neutrophil infiltrate. In this

phase of the inflammation, serine proteases such as PR3 played a

more important role [88]. In contrast, during the chronic phase of

inflammation when macrophages are the main component of the

infiltrate, caspase-1 seems to have a more significant effect [88].

Neutrophil-derived serine proteases are not the only alternative

mechanism of activation of pro-IL-1b. One very interesting

phenomenon has recently been reported during infection with C.

albicans, in which a fungus-derived protease can lead to processing

and activation of host-derived pro-IL-1b and thus activation of the

immune system [89]. This may represent an indirect pathway of

Candida recognition by the innate immune system (Figure 3),

reminiscent of the detection of the fungus Beauveria bassiana in

Drosophila through maturation of the protease Persephone by a

fungal-derived enzyme, leading to Toll activation [90]. Consider-

ing the production of a vast array of proteases by practically all

pathogenic microorganisms, it is to be expected that similar IL-1b
activation pathways are active during other infections.

Conclusions and Perspectives: IL-1b Processing
beyond the Inflammasomes

A wealth of information regarding the mechanisms of pathogen

recognition and activation of innate immunity has been accumu-

lated during the last few years, and has contributed greatly to a

better understanding of the host defense against pathogenic

microorganisms. One of the most exciting areas of advancement

was represented by the description of the inflammasomes and the

mechanisms that lead to the processing and activation of cytokines

of the IL-1 family.

There is no doubt that these discoveries have contributed to

a better understanding of inflammatory processes. Beautifully

designed studies have also shown that caspase-1-dependent

mechanisms of IL-1b and IL-18 activation have important

consequences during inflammation. However, as this review has

tried to bring to light, the role played by the inflammasomes

should not deter the acknowledgement of other mechanisms

leading to IL-1b processing that may be just as important.

As shown above, inflammasome activation is not the same in all

cell types, and caspase-1 activation is not the only mechanism

leading to the processing of pro-IL-1b into active fragments.

Neutrophil-derived serine proteases and pathogen-released en-

zymes can also process and activate IL-1b, and these processes

have important effects during inflammation and infection. Further

characterization of these alternative mechanisms can lead to the

Figure 3. Inflammasome-independent processing of pro-IL-1b. In addition to caspase-1-dependent activation, pro-IL-1b can also be
processed by neutrophil-derived serine proteases, or pathogen-derived proteases.
doi:10.1371/journal.ppat.1000661.g003
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design of improved therapeutic strategies. In this respect, any

inflammatory condition in which neutrophils are involved (e.g.,

rheumatoid arthritis, Crohn’s disease, or gout) is unlikely to

respond to caspase-1 inhibition alone, and a combination of

caspase-1 and PR3 inactivation may be necessary. Beneficial

therapeutic effects of the IL-1 receptor antagonist (IL-1Ra,

anakinra) have often been presented as proof-of-principle for a

role of the inflammasome in certain clinical conditions such as

gout [91,92], in which neutrophils play a crucial role [93]. This

assumption is clearly too preliminary: IL-1Ra will block the effects

of IL-1b irrespective of the mechanisms that led to its activation,

apart from the fact that IL-1a effects are also blocked.

A similar generalization based on IL-1Ra effects is currently the

dogma regarding the pathophysiology of autoinflammatory

syndromes: many of the autoinflammatory syndromes are

considered defects of inflammasome activation. While this is likely

the case for some diseases, for example CAPS, in which NLRP3

mutations are the cause of the disease [94], this relation is much

less clear in other autoinflammatory disorders. It is better to

consider the disorders in which anakinra is active as ‘‘IL-1Ra

responsive diseases’’ or perhaps ‘‘IL-1 related diseases’’ instead of

immediately considering them ‘‘inflammasome-related diseases’’.

While caspase-1 is an obvious candidate to be investigated,

neglecting to investigate other IL-1b-activating mechanisms (or

IL-1a secretion) would be an oversight.

To conclude, the description of the inflammasomes has taught

us a lot, but we should not fall in the trap of our own success.

Caspase-1 activation is just one of the mechanisms of activation of

one of the two active IL-1 molecules, and it is unlikely that an

entire class of PAMP recognition receptors (the NLR receptors)

have evolved only to be devoted to a single immunological

function. While acknowledging the importance of the inflamma-

somes for our understanding of inflammatory reactions, we should

consider in our endeavors the alternative pathways of IL-1b/IL-18

activation, and also actively examine alternative roles of the NLR

class of receptors.
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