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Abstract: Cathepsin X is a lysosomal peptidase that is involved in tumour progression and represents
a potential target for therapeutic interventions. In addition, it regulates important functions of
immune cells and is implicated in the modulation of tumour cell–immune cell crosstalk. Selective
cathepsin X inhibitors have been proposed as prospective antitumour agents to prevent cancer
progression; however, their impact on the antitumour immune response has been overlooked.
Previous studies indicate that the migration and adhesion of T cells and dendritic cells are affected
by diminished cathepsin X activity. Meanwhile, the influence of cathepsin X inhibition on natural
killer (NK) cell function has not yet been explored. Here, we examined the localization patterns of
cathepsin X and the role of its inhibitors on the cytotoxicity of cell line NK-92, which is used for
adoptive cellular immunotherapy in cancer patients. NK-92 cells depend on lymphocyte function-
associated antigen 1 (LFA-1) to form stable immunoconjugates with target cells, providing, in this
way, optimal cytotoxicity. Since LFA-1 is a substrate for cathepsin X activity in other types of cells,
we hypothesized that cathepsin X could disturb the formation of NK-92 immunoconjugates. Thus,
we employed cathepsin X reversible and irreversible inhibitors and evaluated their effects on the
NK-92 cell interactions with target cells and on the NK-92 cell cytotoxicity. We show that cathepsin X
inhibition does not impair stable conjugate formation or the lytic activity of NK-92 cells. Similarly,
the conjugate formation between Jurkat T cells and target cells was not affected by cathepsin X
activity. Unlike in previous migration and adhesion studies on T cells, in NK-92 cells cathepsin X was
not co-localized with LFA-1 at the plasma membrane but was, rather, redistributed to the cytotoxic
granules and secreted during degranulation.
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1. Introduction

Since their discovery in the 1950s, lysosomes have been associated with key cellular
homeostatic mechanisms, including, but not limited to, the degradation and recycling of
extracellular and intracellular material. Importantly, lysosomes are dynamic organelles,
capable of integrating and responding to various signals by sensing cellular energy sta-
tus, nutrient levels, growth factor signalling, membrane damage and activation of the
immune system. Perturbations in lysosomal function are, therefore, reflected in altered
signalling pathways that support the development and progression of many diseases,
including neurodegeneration, autoimmune disorders and cancer [1,2]. Lysosomes are rich
in hydrolases and contain a group of 11 peptidases termed cysteine cathepsins, that are
implicated in the regulation of several immune cell functions, from activation of innate
immune cells by Toll-like receptor signalling [3,4], cytokine secretion [5,6], phagocytosis [7],
to the priming of adaptive immune cells by antigen processing and presentation [8] and by
providing optimal cytotoxicity to effector lymphocytes [9]. Cysteine cathepsin expression
is upregulated in wide variety of tumours. Numerous genetic and pharmacological studies
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have observed that inhibition of cathepsin activity could decrease cancer progression, thus
establishing cysteine cathepsins as promising therapeutic targets [10,11]. Preclinical data
support the use of cathepsin inhibitors to combat cancer, however, few reports indicate that
inhibition of cysteine cathepsins would not only affect their tumour-promoting functions,
but could also elicit alterations in the antitumour immune response.

Normally, cathepsin X is predominantly expressed in the cells of immune system, espe-
cially of myeloid lineage [12,13]. Cathepsin X overexpression was demonstrated in several
cancers, including prostate [14], gastric [15], hepatocellular [16], breast [17] and colorectal
cancer [18], where it fuels tumour growth by conferring resistance to apoptosis through
interaction with RPLP0 [19] and insulin growth factor like 1 receptor [20], by promoting
invasion through interaction with integrin receptors ανβ3 and ανβ5 [21,22] and by the
cleavage of tumour suppressor protein profilin-1 [23], as well as by enabling the epithelial-
to-mesenchymal transition [24]. Recently, it was shown that cathepsin X influences the
reciprocal interactions between tumour cells and tumour promoting myeloid-derived sup-
pressor cells (MDSC). Pharmacological tools for counterbalancing excessive proteolytic
activity in tumour tissue might therefore have unexpected consequences for the function
of immune cells [25]. Furthermore, the leukocyte specific β2 integrin receptors can be se-
quentially trimmed at C-terminus by cathepsin X, which modulates their association with
adaptor proteins (talin, α-actinin) and fine-tunes their affinity for extracellular ligands [26].
Accordingly, cathepsin X inhibition was shown to reduce β2 integrin-dependent adhesion
and phagocytosis of macrophages by interaction with macrophage antigen-1 (CD11b/CF18,
Mac-1) [27], and to prevent adhesion-dependent maturation of dendritic cells [28]. On the
other hand, the overexpression of cathepsin X in T lymphocytes increased their migration
and the formation of prolonged extensions [29,30].

During immunological synapse formation, cytotoxic cells use β2 integrin adhesion
molecule, lymphocyte function-associated antigen 1 (LFA-1), to anchor to the target cell
membrane and to enhance cytotoxic cell activation [31,32]. LFA-1 neutralizing antibodies
or inhibitors could block activation signals, thus reducing the adhesion and cytotoxicity of
natural killer (NK) cells [33]. It is not yet clear whether cathepsin X could also fine-tune the
affinity of LFA-1 during immunological synapse formation and if cathepsin X inhibition
could influence the killing potential of cytotoxic cells. This information would be of great
importance in underlining the effect of cathepsin X inhibitors on the ability of cytotoxic
cells to engage their targets and to assess their potential in chemo- and immunomodulatory
cancer therapies.

Genetically engineered NK-92 cells are becoming important tool in cancer immunother-
apy, providing off-the-shelf cell preparations for targeted tumour cell elimination [34].
Clonally expanded NK cell lymphoma cells, NK-92, have several advantages over blood
preparations of primary NK cells or engineered T cells, and have been demonstrated safe
for use in cancer patients [35,36]. Notably, NK cells are superior to cytotoxic T cells in
targeting dedifferentiated cancer stem cells [37] and have potent antileukemia activity [38].
In this study, we aimed to elucidate whether the loss of cathepsin X activity, on account
of pharmacological inhibition, influences the affinity of LFA-1 in NK-92 cells, and con-
sequently impacts their conjugation with target cells. By using imaging flow cytometry,
we investigated the formation of immunological synapses, as well as cytotoxicity in the
presence of selective cathepsin X inhibitors. Since the previous studies have revealed
the importance of intact cathepsin X activity for regulation of CD4+ T cell migration and
adhesion, we also tested the relevance of cathepsin X for immunological synapse stability
of CD4+ T cells. Our results did not confirm the involvement of cathepsin X in LFA-1
mediated regulation of immune synapse. However, by investigating cellular compartmen-
talization of cathepsin X in NK-92 cells, we demonstrate that cathepsin X preferentially
colocalizes with perforin during cytotoxic granule release and is, thus, transferred to the
target cells.
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2. Results
2.1. Regulation of Cathepsin X Expression and Activity in Activated NK-92 Cells

First, to simulate different activation states of NK cells, NK-92 cells were treated with
interleukin 2 (IL-2), with IL-2 plus phorbol myristate acetate/ionomycin (PMA/IONO;
which initiate NK-92 cell activation in the absence of target cells) or with IONO alone
(which promotes NK cell anergy). Cell lysates were then analysed for the intracellular
activity and protein levels of cathepsin X [39]. Only the activation with a combination of
PMA/IONO resulted in a significant decrease of cathepsin X activity and protein levels
(Figure 1a). Cathepsin X mRNA transcripts, on the other hand, remained unchanged
(Figure 1b). Of note, due to significant increase in cathepsin X activity after 24 h treatment
with IONO, we also performed cytotoxicity assay on IONO-treated NK-92 cells with
or without selective cathepsin X inhibitor Z9, and while there was significant reduction
of cytotoxicity due to IONO treatment, there was no difference due to the inhibition of
cathepsin X (Supplementary Figure S1).
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Figure 1. The relative protein levels (a), activity (b) and mRNA expression (c) of mature form of
cathepsin X in NK-92 cells. NK-92 cells were either left unstimulated or were stimulated with IL-2,
IL-2 plus PMA/IONO or IONO. After indicated time points, cell lysates were prepared to be assayed
by Western blot, kinetic assay or by qPCR. The values were normalized to unstimulated cells at time
0 h. The figures represent mean ± SD of three independent biological replicates. (*)—statistically
significant difference in comparison with the control.

2.2. Cathepsin X Is Secreted upon Stimulation

Since transcriptional downregulation was not the reason for the lower cathepsin X ac-
tivity in activated NK-92 cells, we tested the NK-92 cell-conditioned media for the presence
of cathepsin X. Cathepsin X was found only in the cell culture media of PMA/IONO-
activated NK-92 cells (Figure 2a). Moreover, the majority of cathepsin X was secreted
within 3 h of NK cell activation (Figure 2b), leading us to suspect that cathepsin X secretion
is coupled to the cytotoxic granule exocytosis during rapid degranulation of NK cells.
Indeed, analysis of cathepsin X localization in non-activated (Figure 3a, control; CTR) vs.
activated NK-92 (Figure 3b, stimulated cells; STIM) cells revealed that the discrete areas
of high cathepsin X intensity were larger in STIM than in CTR cells, thus indicating re-
localization of cathepsin X after NK-92 cell activation. As shown, high cathepsin X intensity
is locally distributed in areas as indicated by yellow arrows on the images of CTR and
STIM cells on Figure 3. Of note, the mean fluorescence intensity was comparable between
the two groups.
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conjugates were selected based on the concomitant expression of perforin (NK-92-specific) 

Figure 2. Only activated NK-92 cells secrete cathepsin X. NK-92 cells were seeded in SFM and treated
with vehicle (CTR), IL-2, IL-2 plus PMA/IONO or IONO. After the indicated time points, the cell-
culture supernatants were collected, concentrated with ultrafiltration and assayed for the presence of
cathepsin X by Western blot. Only PMA/IONO-activated NK-92 cells abundantly secreted cathepsin
X during 24 h incubation (a) and the majority of cathepsin X was secreted in the first 3 h after
stimulation (b).
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Figure 3. The localization of cathepsin X in NK-92 cells after PMA/IONO activation. NK-92 cells, (a) unstimulated (CTR)
or (b) PMA/IONO stimulated (STIM), were stained for the imaging of intracellular cathepsin X expression by Amnis.
(c) Post-imaging analysis in IDEAS software was used to quantify the cell area of high cathepsin X intensity. The images are
representative of two independent experiments.
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2.3. Cathepsin X Localization during NK-92 Cell Degranulation

To show that cathepsin X is preferentially concentrated in cytotoxic granules of NK-92
cells during lytic attack on targets, we incubated NK-92 cells with CMAC-labelled K-562
cells. After fixation, the cells were stained for perforin and cathepsin X. The immunoconju-
gates were selected based on the concomitant expression of perforin (NK-92-specific) and
CMAC dye (K-562). Using IDEAS software, we created a combined mask out of individual
cathepsin X and perforin masks and a CMAC dilated mask (Figure 4, Ch07 area in red). In
this way, we isolated the specific area of cell conjugates, where perforin entered the target
cell, for the assessment of co-localization of cathepsin X and perforin with bright detail
similarity R3 feature. Colocalization of cathepsin X with perforin at the interface of the two
cells was detected in ~50% of NK-92/K-562 conjugates (Figure 4, area in red).
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Figure 4. Cathepsin X is released to target cells together with perforin from NK-92 cells during
cytolytic attack (a). Gating strategy used to isolate the positive events (NK-92 immunoconjugates)
and to determine proportion of cells in which cathepsin X co-localizes with perforin (b).

2.4. Cathepsin X Vesicular Distribution and Co-Localization with LFA-1

Next, we assessed the co-localization of cathepsin X with early endosomal antigen
1 (EEA1), lysosomal-associated membrane protein 1 (LAMP1), perforin and interferon
gamma (IFN-γ) in NK-92 cells (Figure 5). As expected, the proportion of cells where
cathepsin X co-localized with perforin was similar to those where cathepsin X co-localized
with LAMP1 (~20%). However, in the majority of cells (~60%) cathepsin X co-localized with
the early endosomal marker EEA1. About 20% of cells also displayed the IFN-γ/cathepsin
X colocalization.
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Figure 5. Co-localization of cathepsin X with cytotoxic granule marker perforin (a), lysosomal marker
LAMP1 (b), endosomal marker EEA1 (c) and cytokine IFNγ (d) in NK-92 cells. The images are
representative of the two independent experiments. (e) % of cells with cathepsin X co-localization.

In addition, we performed immunocytochemical staining of cathepsin X and integrin
receptor β2 chain in NK-92/K-562 immunoconjugates. Post-imaging analysis revealed
that immunoconjugates could be divided into three categories, based on predominant
cathepsin X distribution (Figure 6a): “NK-92-high”, “NK-92/K-562 combined” or “K-562-
high”. These categories presumably correspond to different degranulation stages of NK-92
cells. First, NK-92 cells engage their targets, and polarize cathepsin X towards interface. In
the second stage, cathepsin X is being transferred to the target cells, leading to cathepsin X
depletion from NK-92 cells after degranulation. For each of these categories, we determined
the area of immunoconjugates, where cathepsin X signal co-localized with β2 chain (marked
with yellow arrows on Figure 6a) and plotted the size distribution of co-localization area,
in order to calculate proportion of cells with significant catX/β2 chain co-localization
area (arbitrary set at >10; Figure 6a) and median area value (Figure 6b). Co-localization of
cathepsin X and β2 chain was observed in a large proportion (53%) of immunoconjugates
of the second category (NK-92/K-562) and, to a significantly smaller degree, in the first
and third categories, with 34% and 24% of immunoconjugates, respectively. On the other
hand, the proportion of immunoconjugates with co-localization area between cathepsin X
and β2 chain >10 was highest at the first stage of degranulation (in cathepsin X enriched
NK-92 cells), and gradually decreased after cathepsin X was redistributed to the target
cells (Figure 6a). The overall median co-localization area value was two-fold lower for
the cathepsin X-enriched K-562 category in comparison to the other two (Figure 6b). It is
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evident from our previous measurements (Figure 5) that not all cathepsin X co-localizes
with perforin in LAMP-1 positive granules. Here, we demonstrate that cathepsin X co-
localizes also with integrin β2 chain. However, their interaction depends on the stage of
target cell killing and is significantly reduced after the majority of cathepsin X has been
re-distributed to target cells.
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localization. (a). Furthermore, the degree of cathepsin X and β2 co-localization was compared between
these three groups. by comparing the size of co-localization area (b) and median area value (c). * p < 0.05.

Previous studies showed the possibility that secreted cathepsin X mediates biologic
effects in the bystander cells [40]. To test this option, K-562 target cells were pre-incubated
with one of the following: the fresh medium, the conditioned medium, that was obtained
from non-activated or activated NK-92 cells, and the medium containing recombinant
human cathepsin X, all of which contained either DMSO or Z9. After 24 h, the viability and
proliferation of K-562 cells was measured (Supplementary Figure S2a,b). Apart from the
slight increase in K-562 proliferation in the presence of the NK-92-conditioned medium,
there was no difference between DMSO or Z9-treated samples. In a separate set of ex-
periments, fresh NK-92 cells were added to the pre-conditioned K-562 cells, however, no
difference in cytotoxicity was observed regardless of K-562 pre-treatment (Supplementary
Figure S2c). Therefore, cathepsin X does not change the NK cell cytotoxicity or viability and
proliferation of target cell and the exact role of cathepsin X accumulation and its subsequent
secretion from cytotoxic granules requires further investigations.

2.5. Cathepsin X Inhibition Does Not Perturb Formation of Stable Immunoconjugates

Cathepsin X was shown to interfere with LFA-1 signalling pathway and to alter its
adhesion to the ligand intercellular adhesion molecule 1 (ICAM-1). By disturbing LFA-1
affinity, cathepsin X could hamper interactions of NK cells with cancer cells. Therefore, we
first asked whether cathepsin X contributes to the formation of stable immunoconjugates
between IL-2 dependent NK cell line NK-92 and erythroleukemia line K-562. Cathepsin X-
specific reversible inhibitor Z9, developed by our group [41], was used to block cathepsin X
activity in NK-92 cells. To prevent excessive cytolysis, which would impede quantification
of immunoconjugates, K-562 cells were only briefly brought in contact with NK-92 cells. The



Int. J. Mol. Sci. 2021, 22, 13495 8 of 17

proportion of captured immunoconjugates formed between NK92 and K-562 is relatively
low, thus we imaged at least 100,000 cells in each experiment. The proportions of such
conjugates formed between DMSO-treated and Z9-treated NK-92 cells with K-562 cells
were 0.68% ± 0.11% and 0.63% ± 0.22%, respectively, as depicted in Figure 7.
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Previous work demonstrated the association between cathepsin X and LFA-1 in Jurkat
cells. Therefore, we tested our hypothesis on alternative model, consisting of Jurkat non-
cytotoxic T cell line interacting with SEE-coated Raji B cell line, to simulate immunological
synapse during antigen presentation instead of target cell killing. The activation of Jurkat
cells upon contact with the SEE-coated Raji cells was confirmed by measuring CD69
expression and the appropriate controls were used to confirm that there was negligible
unspecific binding between Jurkat and Raji cells (Supplementary Figure S3a). First, we
tested wild-type Jurkat cells, and found no significant difference between DMSO and
cathepsin X inhibitor pre-treated Jurkat cells in the formation of stable conjugates with Raji
cells (Figure 8a). Here, the same irreversible cathepsin X inhibitor AMS36 was used as in
the study by Jevnikar et al., where the addition of AMS36 reduced association of talin with
β2 integrin chain in Jurkat cells and prevented conversion of active LFA-1 to high affinity
conformation [26]. Next, we transfected Jurkat cells with pcDNA3/cathepsin X, since it
was previously shown that cathepsin X overexpression enhances migration and elongated
tube formation in Jurkat cells and that both processes could be inhibited by AMS36 [29,30].
Cathepsin X upregulation in Jurkat cells after transfection was demonstrated by Western
blot (Supplementary Figure S3b). However, cathepsin X-transfected cells did not differ
from mock-transfected cells in their ability to form stable conjugates, neither after addition
of AMS36 nor of broad-spectrum cysteine cathepsin inhibitor E64-d (Figure 8b), thus
excluding the involvement of cathepsin X, or any other cysteine cathepsin, in maintaining
immunoconjugate stability. Of note, we also incubated primary CD4+ T cells with SEE-
loaded Raji cells for the imaging of immunoconjugates on Amnis, and, again, no difference
was detected between DMSO- and AMS36-treated primary T cells (data not shown).

2.6. Cathepsin X Inhibition Does Not Perturb NK-92 Cell Lytic Activity

Finally, we considered the possibility that cathepsin X could be involved in NK cell
cytotoxicity. NK-92 cells were treated with cathepsin X inhibitor Z9 and their cytotoxicity
was evaluated in a killing assay against K-562 target cell line. The inhibition of cathepsin X
by Z9 did not significantly impact NK-92 cytotoxicity (Figure 9) and neither did inhibition
with AMS36 or E64-d (Supplementary Figure S4a). Of note, we demonstrated the reduction
of cathepsin X activity in whole cell lysates after the cells were incubated with AMS36 for
2 h or 24 h (~30%; Supplementary Figure S4b). Z9 is reversible inhibitor and thus reduction
of cathepsin X activity cannot be observed in kinetic assay. Nevertheless, it was previously
shown that Z9 could permeate the cells [41].
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Figure 9. The effect of cathepsin X inhibition on NK-92 cell cytotoxicity. NK-92 cells were pre-
incubated with DMSO or Z9 and brought into contact with CFSE-labelled K-562 target cells to initiate
killing. Afterwards, the cells were collected, stained with viability dye 7-AAD and analysed by flow
cytometry. The NK-92 cell cytotoxicity was determined by calculating the fraction of CFSE+/7-AAD+
events relative to all CFSE+ target cells, which was plotted against different effector to target cell
ratios, to obtain the killing curves (left). From killing curves of three independent experiments, the
lytic activity was calculated and normalized to DMSO control for comparison of relative change in
cytotoxic activity of DMSO- vs Z9-treated NK-92 cells (right). The results represent the mean ± SD
of the three independent experiments.

3. Discussion

The integrin receptor LFA-1 mediates cell-cell interaction and firm adhesion of leuko-
cytes, including the initiation of the conjugate formation between NK cell and its target.
In addition, LFA-1 is required for the polarization of the lytic granules towards target
cells, thus affecting NK cell cytotoxicity [42,43]. LFA-1 adhesiveness is regulated by the
integration of various signals that are transduced from the “outside–in” as well as from
the “inside–out”. LFA-1 is a heterodimer of αL subunit, which defines ligand-binding
specificity, and β2 subunit. The β2 chain is particularly important for LFA-1 connection
to the cytoskeleton and for transmission of conformational changes that fine tune the
binding affinity for the ligand ICAM-1, ranging from the bent, low affinity, to the extended,
closed and open conformation with intermediate and high affinity, respectively [44,45].
It was shown that cathepsin X sequentially cleaves four C-terminal amino acids from β2
cytoplasmic tail, thus modulating its affinity for the binding of adaptor proteins [26,46].
Our goal was to explore the impact of cathepsin X activity on LFA-1 mediated functions of
NK cell immune synapse.
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Cysteine cathepsins are considered as important targets in anti-cancer therapy, since
their increased activity drives pathologic processes that are associated with tumour growth,
invasion and immune cell dysfunction. Small molecule synthetic inhibitors of the more
studied cathepsins B, S and K have already entered clinical trials [11]. For cathepsin X,
the recently developed triazole-based reversible inhibitor showed promising anti-tumour
activity in vitro [41] and in vivo (Mitrović et al., publication in preparation) and could be
used in addition to irreversible inhibitors, like AMS36. However, besides their impact on
tumour progression, several studies have highlighted possible impact of cysteine peptidase
inhibitors on different immune cell subsets. For example, the inhibition of cathepsins
influenced the development of osteoclasts from immunosuppressive myeloid-derived
suppressor cells, which could contribute to bone metastases [47]. In contrast, the inhibition
of cathepsin S was shown to convert regulatory T lymphocytes from immunosuppressive
to immunostimulatory cells [48] and inhibition of cathepsin L enhanced cytotoxicity of
CD8+ T cells in the co-culture model of tumour cells and myeloid-derived suppressor
cells [25]. With this in mind, we investigated whether the inhibition of cathepsin X activity
in cytotoxic cells influences LFA-1 affinity modulation, and thus effects formation of sta-
ble immunological synapse and cytotoxic activity of NK-92 cells. Importantly, our data
showed that cathepsin X inhibition has no impact on the formation of stable immunoconju-
gates between NK-92 cells and target cells, nor did cathepsin X inhibition change NK-92
cell cytotoxicity against the target cells. These findings were corroborated by imaging
flow cytometry analysis of cathepsin X subcellular localization in resting and activated
NK-92 cells.

We demonstrated that the cathepsin X inhibitor AMS36 reduced cathepsin X activity
in NK-92 cells by~30%. In our previous study, the 25% reduction of cathepsin X levels
in CD4+ T cells was sufficient to reduce LFA-1 affinity by 26% resulting in lower CD4+ T
cell spreading on SDF-1/ICAM-1 coated surface [26]. However, it was demonstrated that
LFA-1 activation and affinity regulation is dependent on the type of the activating stimulus
and differs between chemokine or T-cell-receptor-stimulated cells [49]. Furthermore, the
interaction of cytotoxic cells with target cells is much more complex than the interaction
with ligand-coated surfaces. Cytotoxic cells receive numerous activating and inhibitory
signals through a wide variety of receptors, which act in synergy to enhance individual
signalling pathways [42]. It is possible that the co-stimulation through other receptors
enhances LFA-1 affinity, in spite of cathepsin X inhibition. In addition, the interactions
between integrin receptors and cytoskeleton are not regulated only through proteolytic
cleavage but could be modified by phosphorylation of tyrosine/serine residues in the cyto-
plasmic domains of α and β subunits. Indeed, phosphorylation of Ser745 and Thr758 was
shown to be important for affinity control of LFA-1 in T-cell adhesion to ICAM-1 [50–52].
The involvement of other adhesion receptors might also partially compensate for the loss
of LFA-1 adhesiveness [53,54].

On the other hand, our data highlight another important function cathepsin X may
play in NK cells, i.e., the involvement in degranulation and cell cytotoxicity. We demon-
strated that cathepsin X is secreted from activated NK-92 cells during cell degranulation.
We confirmed the presence of cathepsin X in cytotoxic granules of NK-92 cells by co-
localization of cathepsin X with perforin and showed their entry to the target cell by using
imaging flow cytometry. While NK-92 cells transfer majority of cathepsin X to target
cells, only a fraction of cathepsin X is secreted associated with perforin. Large portion of
cathepsin X is present in EEA1+ and IFNγ+ vesicles as well. In human primary NK cells
IFNγ was shown to be trafficked and secreted independently of perforin [55], which could
explain alternative route for cathepsin X entry into target cells. Even though the addition
of exogenous cathepsin X didn’t have detrimental effects on target cell fitness, we cannot
exclude alternative roles of secreted cathepsin X.

In the previous studies, partial loss of cathepsin X activity due to inhibition or siRNA
silencing had significant impact on LFA-1 mediated signalling and influenced integrin-
dependent homotypic aggregation, migration, and cytoskeletal rearrangement of CD4+
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T cells [30]. Additionally, cathepsin X was shown to translocate to the peri-membranous
region of activated CD4+ T cells to co-localize with LFA-1 [30] and activate it. Here, we
show that cathepsin X transiently co-localizes with integrin β2 chain during degranulation
of NK92 cells and is preferentially redistributed to target cells. Neither of cathepsin X
inhibitors used in this study affected LFA-1 dependent synapse stability and target cell
lysis by NK-92 cells, which are both sensitive to alterations in LFA-1 affinity. Altogether,
our data suggest that cathepsin X inhibition, potentially used in anticancer therapy, is
not detrimental to the NK cell cytolytic activity and would not impair immune synapse
formation, nor the cytotoxic activity of NK cells. That said, additional studies to identify
role of cathepsin X in cytotoxic granules could be of further interest.

4. Materials and Methods
4.1. Cell Lines

The NK-92, K-562, Jurkat and Raji cell lines were all obtained from ATCC (Manassas,
VA, USA) and were maintained in complete advanced RPMI 1640 medium (Gibco, Waltham,
MA, USA). Medium was supplemented with either 12.5% foetal bovine serum (FBS)
and 12.5% horse serum (Gibco, Waltham, MA, USA) for NK-92 or 10% FBS for K-562,
Jurkat and Raji cells. Complete media also contained 2mM L-glutamine and 100 U/mL
penicillin, 0.1 mg/mL streptomycin (Sigma-Aldrich, St. Louis, MO, USA). To sustain
proliferation of interleukin (IL)-2-dependent NK-92 cells, 200 U/mL of recombinant human
IL-2 (Bachem, Bubendorf, Switzerland) was added periodically to the culture. In order to
activate maximal lytic activity, NK-92 cells were incubated overnight with 1000 U/mL IL-2
before cytotoxicity experiments.

4.2. Cell Lysate Preparation for Measuring Cathepsin X Activity, mRNA Expression and
Protein Levels

Cells were stimulated with 1000 U/mL IL-2, 50 ng/mL PMA (Sigma-Aldrich, St.
Louis, MO, USA) and/or 0.5 µM ionomycin (Sigma-Aldrich, St. Louis, MO, USA) or
DMSO (Sigma-Aldrich, St. Louis, MO, USA) vehicle. After indicated time points, cells
were harvested, washed with PBS and lysed in RIPA buffer [150 mM NaCl, 50 mM Tris, 1%
Nonidet P-40, 0.5% Na-deoxycholate, 0.1% Na-dodecyl sulfate (SDS), 0.004% Na-azide, pH
8.0] for protein expression analysis by Western blot or in buffer for measuring cathepsin
X activity [50 mM Na-acetate, 1 mM EDTA, 0.1 M NaCl, 0.25% Triton X-100, pH 5.5].
Whole cell lysates were stored at −80 ◦C, freeze thawed and centrifuged at 16,000× g for
15 min at 4 ◦C. Protein concentration in collected supernatants was determined with a
DC-Protein Assay kit (Bio-Rad Laboratories, Hercules, CA, USA). For RNA isolation, cells
were pelleted and stored in 1 mL RiboZol (VWR Chemicals, Radnor, PA, USA) at −80 ◦C
until further processing.

4.3. Kinetic Assay

For evaluating cathepsin X activity, cell lysates were diluted to 0.125 mg/mL protein
concentration in 100 mM acetate buffer pH 5.5 [15 mM acetic acid, 84.8 mM Na-acetate,
0.1% PEG 8000] with 5 mM L-cysteine and 1.5 mM EDTA. 50 uL of lysates were pipetted in
duplicates to the wells of the black microtiter plate (Nunclon Delta Surface; Thermo Fisher
Scientific, Waltham, MA, USA) and incubated at 37 ◦C for 10 min. Immediately, 50 µL
of fluorogenic substrate Abz-FEK(Dnp)-OH [56] at 5.9 µM final concentration was added
and its degradation was monitored continuously at 320 ± 5 nm excitation and 420 ± 5 nm
emission with a spectrophotometer Tecan Safire (Tecan, Männedorf, Switzerland). Kinetic
measurements were analysed by Magellan™ [57] software and data, expressed in RFU/sec,
were normalised to the control sample at 0 h.

4.4. Western Blotting

Fifteen micrograms of proteins from whole cell lysates were denatured by addition of
SDS-page buffer, heated for 10 min and resolved by SDS-PAGE on 12% Tris-glycine gels and
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then transferred to nitrocellulose membrane using iBlot (Thermo Fisher Scientific, Waltham,
MA, USA). The membranes were blocked in 5% non-fat dried milk in Tris buffered saline
with 0.05% Tween-20 and probed with goat anti-cathepsin X (1/1000; AF934; R and D
Systems, Minneapolis, MN, USA) and rabbit anti-β-actin (1/3000; A2066; Sigma-Aldrich,
St. Louis, MO, USA) antibodies. After washing, secondary HRP-conjugated anti-goat
(1/3000; sc-2354; Santa Cruz Biotechnology, Dallas, TX, USA) and anti-rabbit (1/5000;
111-035-045; Jackson ImmunoResearch, West Grove, PA, USA) antibodies were added and
protein bands were visualized with Super Signal West Dura Extended Duration Substrate
(Thermo Fisher Scientific, Waltham, MA, USA) and recorded with G:Box imager (Syngene,
Bengaluru, Karnataka, India). The band intensities were quantified using the Gene Tools
software [58] and normalised to control sample at 0 h.

4.5. RNA Isolation and Quantitative Real-Time PCR Analysis

Total RNA was extracted from NK-92 cells with phenol/chloroform, followed by
cleaning step with 5Prime Phase Lock Gel (Quantabio, Beverly, MA, US) and ethanol pre-
cipitation. One microgram of total RNA was reverse transcribed using oligo(dT)18 primers
with RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher Scientific, Waltham, MA,
USA) according to the manufacturer’s instructions. Two-step qPCR reactions were per-
formed in triplicates using Maxima SYBR Green/ROX qPCR Master Mix 2X (Thermo
Fisher Scientific, Waltham, MA, USA) by adding 1.0 ng cDNA at 10 µL volume and were
run with LightCycler 480 (Roche Diagnostics, Basel, Switzerland) at following conditions:
10 min at 95 ◦C, followed by 40 cycles at 95 ◦C for 15 sec and at 60 ◦C for 1 min. Primers
were designed with NCBI Primer-BLAST (accessed on 19 February 2020)-Table 1, validated
by melting curve analysis and reaction efficiencies were confirmed to be within 90% to
110%. GAPDH was selected as the optimal reference gene by NormFinder [59]. Data were
calculated according to the guidelines by Taylor et al. [60].

Table 1. Primer pair sequences for qPCR.

Gene Primer Pair Sequence (5′→ 3′)

CtsZ F
R

TGAACCATGGGGCGAGAGAG
AGTGCTCCTCGATGGCAAGG

GAPDH F
R

TGCACCACCAACTGCTTAGC
TGGCATGGACTGTGGTCATG

4.6. Collection of Concentrated Cell CULTURE Media

For detection of cathepsin X secretion in cell culture media, NK-92 cells were treated
in serum-free medium (SFM) and collected after the indicated time points. Supernatants
were removed following 10-min centrifugation at 4 ◦C, 2500 rpm and concentrated by
using Amicon’s Centricon Centrifugal Filter Units (Merck Millipore, Burlington, MA, USA).
Equal aliquots of supernatants were prepared for Western blotting, as described above.

4.7. Imaging Flow Cytometry for Co-Localization Analysis

For the inspection of subcellular localization of cathepsin X in NK-92, cells were
fixed with 4% paraformaldehyde (Sigma-Aldrich, St. Louis, MO, USA) for 20 min at
room temperature, washed with PBS buffer containing 1% bovine serum albumin (BSA;
Sigma-Aldrich, St. Louis, MO, USA) and permeabilized for 5 min with 0.5% Tween-20
(Sigma-Aldrich, St. Louis, MO, USA) in PBS. Cells were washed and a blocking solution
of 4% donkey serum (Sigma-Aldrich, St. Louis, MO, USA) in PBS was added for 30 min
before proceeding to immunolabeling with the following primary antibodies: rabbit anti-
LAMP1 (1/200; SAB3500285; Sigma-Aldrich, St. Louis, MO, USA), rabbit anti-EEA1 (1/400;
C45B10; Cell Signalling Technologies, Danvers, MA, USA), mouse anti-perforin (1/400;
dG9; BioLegend, San Diego, CA, USA), mouse anti-interferon γ (IFN-γ) (1/400; 4S.B3;
BioLegend, San Diego, CA, USA), mouse anti-CD18 (1/100; TS1/18; Invitrogen, Waltham,



Int. J. Mol. Sci. 2021, 22, 13495 13 of 17

MA, USA) and goat-anti cathepsin X (1/100; AF934; R and D Systems, Minneapolis, MN,
USA). After 45-min incubation at 4 ◦C, the primary antibodies were washed and substituted
with solutions containing donkey -anti-goat Alexa Fluor 647, -anti-mouse or -anti-rabbit
Alexa Fluor 488 secondary antibodies (1/1000; Invitrogen, Waltham, MA, USA) for 30 min
at room temperature. Finally, the samples were resuspended in PBS and 10.000 images
of NK-92 cells were captured on Amnis ImageStream Mk II (Luminex, Austin, TX, USA)
imaging flow cytometer. Data were analysed with the IDEAS software [61].

Colocalization of cathepsin X with perforin NK-92/K-562 immunoconjugate was also
imaged on Amnis. For image analysis, CMAC target cell mask was combined with perforin
and cathepsin X mask to define the area at the interface of NK-92/K-562 immunoconjugate,
where perforin enters the target cells (Ch07, red mask). The mask was then used to gate
the immunoconjugates, in which cathepsin X colocalized with perforin (Ch01, red mask).
Similarly, the intensity masks were set for each fluorescence channel and the bright detail
similarity feature was used to define the proportion of cells, where cathepsin X colocalized
with the each of the following markers: EEA1/LAMP1/perforin/IFNγ.

4.8. Immunoconjugate Stability Assay

Immunoconjugate stability of NK-92/K-562 and Jurkat/Raji cells was assessed ac-
cording to the modified procedure, reported by Na et al. [62] Raji cells were washed with
serum-free medium and incubated with 2 µg/mL staphylococcal enterotoxin E (SEE; Toxin
Technologies, Sarasota, FL, USA) for 45 min. During last 15 min CellTracker Orange
(CMTMR; Invitrogen, Waltham, MA, USA) was added to final concentration of 5 µM,
then labelling reaction was terminated by addition of complete medium. Jurkat cells were
pre-incubated either with DMSO (vehicle control; Sigma-Aldrich, St. Louis, MO, USA)
or cathepsin X inhibitor AMS36 (10 µM) for 2 h prior to labelling with CellTracker Blue
(CMAC; Invitrogen, Waltham, MA, USA) as described above for Raji cells. 2 × 105/200 uL
of each cell type was aliquoted in flow tubes and samples were briefly spun at 200× g for
1 min to allow immunoconjugate formation between SEE-loaded Raji cells and antigen-
sensing Jurkat cells. After 15-min incubation at 37 ◦C, 5% CO2, cells were washed with
PBS, mixed well in order to detach unspecific binding between cells, and analysed by
flow cytometry (Attune NxT; Thermo Fisher Scientific, Waltham, MA, USA). Proportion of
immunoconjugates (CMTMR+CMAC+ events) was determined with FlowJo software [63].
In the case of NK-92/K-562 conjugates, cells were first labelled with CMAC and CFSE,
respectively. NK-92 cells were pre-incubated either with DMSO or cathepsin X inhibitor
Z9 (10 µM) for 2 h. Next, they were joined with K-562 target cells in 1:1 ratio, briefly cen-
trifuged, and allowed to interact for 5 min before fixation with 4% paraformaldehyde. The
cells were then washed in PBS and 100.000 events were recorded by imaging flow cytome-
try (Amnis ImageStream Mk II; Luminex, Ashland, OR, USA). Immunoconjugates between
NK-92 and K-562 cells were visualized and quantified with IDEAS analysis software [61].

After imaging, the proportion of immunoconjugates was evaluated by first gating
the doublets that contain one of each CFSE+ K-562 and CMAC+ NK-92 cell, and then by
confirming the close proximity of the two interacting cells. This was done by identifying
the intersection area, consisting of CFSE and CMAC masks, which were dilated by three
pixels. Next, the bright detail similarity R3 feature was used, in order to compare the small
bright image detail of the two images (i.e., CFSE and CMAC) and to determine the degree
of co-localization of these two signals in the pre-defined intersection area.

4.9. Transient Transfection

The pcDNA3/cathepsin X plasmid was prepared as described in Jevnikar et al. [30],
transformed and propagated in E. coli and purified using GenElute Miniprep Kit (Sigma-
Aldrich, St. Louis, MO, USA). Jurkat cells were seeded in 24-well plates at 2× 105 cells/500 µL
medium without antibiotic. Lipofection was performed the next day using Lipofectamine
2000 (Invitrogen, Waltham, MA, USA) according to the manufacturer´s instructions. Briefly,
18 µg of DNA plasmid in 300 uL medium without antibiotic was mixed with an equal
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amount of medium containing 12 uL Lipofectamine and incubated for 20 min at room
temperature. Transfection medium was added to the cells dropwise and cells were placed
on an orbital shaker for 15 min. Six hours post transfection the transfection medium was
replaced with complete medium. After 24 h cells were aliquoted and cell lysates were
collected for evaluation of transfection efficiency by Western blotting or they were used in
immunoconjugate stability assay.

4.10. Cytotoxicity Assay

Cytotoxicity of NK-92 cells was evaluated by measuring lysis of target cells K-562.
Briefly, K-562 were labelled with 0.2 µM CFSE (Invitrogen, Waltham, MA, USA) for 10 min
and were added to effector cells in 96-well U-bottom plates, spun for 1 min at 200× g
and incubated for 2.5 h. Afterwards, the samples were collected, stained on ice with
7-AAD (Sigma-Aldrich, St. Louis, MO, USA) for 10 min and analysed by flow cytometry.
Proportion of CFSE+/7-AAD+ events was determined for each effector cell/target cell ratio
(E:T) and lytic activity (LU) was determined as described in [64].

4.11. Statistics

Statistical calculations were performed in GraphPad Prism [65] using one-way ANOVA
or Student’s t-test.
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25. Jakoš, T.; Pišlar, A.; Fonović, U.P.; Švajger, U.; Kos, J. Cysteine Cathepsins L and X Differentially Modulate Interactions between
Myeloid-Derived Suppressor Cells and Tumor Cells. Cancer Immunol. Immunother. 2020, 69, 1869–1880. [CrossRef]

26. Jevnikar, Z.; Obermajer, N.; Doljak, B.; Turk, S.; Gobec, S.; Svajger, U.; Hailfinger, S.; Thome, M.; Kos, J. Cathepsin X Cleavage of
the 2 Integrin Regulates Talin-Binding and LFA-1 Affinity in T Cells. J. Leukoc. Biol. 2011, 90, 99–109. [CrossRef]

27. Obermajer, N.; Premzl, A.; Zavašnik Bergant, T.; Turk, B.; Kos, J. Carboxypeptidase Cathepsin X Mediates B2-Integrin-Dependent
Adhesion of Differentiated U-937 Cells. Exp. Cell Res. 2006, 312, 2515–2527. [CrossRef] [PubMed]

28. Obermajer, N.; Svajger, U.; Bogyo, M.; Jeras, M.; Kos, J. Maturation of Dendritic Cells Depends on Proteolytic Cleavage by
Cathepsin {X}. J. Leukoc. Biol. 2008, 84, 1306–1315. [CrossRef] [PubMed]

29. Obermajer, N.; Jevnikar, Z.; Doljak, B.; Sadaghiani, A.M.; Bogyo, M.; Kos, J. Cathepsin X-Mediated B2 Integrin Activation Results
in Nanotube Outgrowth. Cell. Mol. Life Sci. 2009, 66, 1126–1134. [CrossRef]

30. Jevnikar, Z.; Obermajer, N.; Bogyo, M.; Kos, J. The Role of Cathepsin X in the Migration and Invasiveness of T Lymphocytes. J.
Cell Sci. 2008, 121, 2652–2661. [CrossRef]

31. Mace, E.M.; Monkley, S.J.; Critchley, D.R.; Takei, F. A Dual Role for Talin in NK Cell Cytotoxicity: Activation of LFA-1-Mediated
Cell Adhesion and Polarization of NK Cells. J. Immunol. 2009, 182, 948–956. [CrossRef]

http://doi.org/10.4049/jimmunol.181.1.690
http://www.ncbi.nlm.nih.gov/pubmed/18566436
http://doi.org/10.1096/fj.13-232272
http://doi.org/10.1172/JCI1158
http://doi.org/10.2174/0929866521666140403124146
http://doi.org/10.1038/nrc4027
http://www.ncbi.nlm.nih.gov/pubmed/26597527
http://doi.org/10.1016/j.tips.2017.06.003
http://doi.org/10.1186/s12974-017-0874-x
http://www.ncbi.nlm.nih.gov/pubmed/28486971
http://doi.org/10.1016/j.yexcr.2004.12.006
http://doi.org/10.1002/pros.20046
http://doi.org/10.1002/path.1820
http://www.ncbi.nlm.nih.gov/pubmed/16025436
http://doi.org/10.1371/journal.pone.0024967
http://doi.org/10.1177/172460080802300305
http://doi.org/10.1186/1471-2407-14-259
http://www.ncbi.nlm.nih.gov/pubmed/24725597
http://doi.org/10.1016/j.prp.2014.09.005
http://doi.org/10.1515/hsz-2012-0209
http://doi.org/10.1074/jbc.M513439200
http://www.ncbi.nlm.nih.gov/pubmed/17065156
http://doi.org/10.1016/j.ajpath.2011.12.031
http://doi.org/10.1371/journal.pone.0053918
http://doi.org/10.1016/j.ejcb.2017.04.003
http://doi.org/10.1007/s00262-020-02592-x
http://doi.org/10.1189/jlb.1110622
http://doi.org/10.1016/j.yexcr.2006.04.019
http://www.ncbi.nlm.nih.gov/pubmed/16774752
http://doi.org/10.1189/jlb.0508285
http://www.ncbi.nlm.nih.gov/pubmed/18701767
http://doi.org/10.1007/s00018-009-8829-8
http://doi.org/10.1242/jcs.023721
http://doi.org/10.4049/jimmunol.182.2.948


Int. J. Mol. Sci. 2021, 22, 13495 16 of 17

32. Barber, D.F.; Faure, M.; Long, E.O. LFA-1 Contributes an Early Signal for NK Cell Cytotoxicity. J. Immunol. 2004, 173, 3653–3659.
[CrossRef] [PubMed]

33. Weitz-Schmidt, G.; Chreng, S.; Riek, S. Allosteric LFA-1 Inhibitors Modulate Natural Killer Cell Function. Mol. Pharmacol. 2009,
75, 355–362. [CrossRef]

34. Zhang, C.; Oberoi, P.; Oelsner, S.; Waldmann, A.; Lindner, A.; Tonn, T.; Wels, W.S. Chimeric Antigen Receptor-Engineered NK-92
Cells: An Off-the-Shelf Cellular Therapeutic for Targeted Elimination of Cancer Cells and Induction of Protective Antitumor
Immunity. Front. Immunol. 2017, 8, 533. [CrossRef] [PubMed]

35. Klingemann, H.; Boissel, L.; Toneguzzo, F. Natural Killer Cells for Immunotherapy—Advantages of the NK-92 Cell Line over
Blood NK Cells. Front. Immunol. 2016, 7, 91. [CrossRef] [PubMed]

36. Tang, X.; Yang, L.; Li, Z.; Nalin, A.P.; Dai, H.; Xu, T.; Yin, J.; You, F.; Zhu, M.; Shen, W.; et al. First-in-Man Clinical Trial of CAR
NK-92 Cells: Safety Test of CD33-CAR NK-92 Cells in Patients with Relapsed and Refractory Acute Myeloid Leukemia. Am. J.
Cancer Res. 2018, 8, 1083–1089. [PubMed]

37. Jewett, A.; Kos, J.; Kaur, K.; Turnsek, T.L.; Breznik, B.; Senjor, E.; Wong, P.; Nguyen, K.Y.; Ko, M.-W. Multiple Defects of Natural
Killer Cells in Cancer Patients: Anarchy, Dysregulated Systemic Immunity, and Immunosuppression in Metastatic Cancer. Crit.
Rev. Immunol. 2020, 40, 93–133. [CrossRef] [PubMed]

38. Yan, Y.; Steinherz, P.; Klingemann, H.G.; Dennig, D.; Childs, B.H.; McGuirk, J.; O’Reilly, R.J. Antileukemia Activity of a Natural
Killer Cell Line against Human Leukemias. Clin. Cancer Res. 1998, 4, 2859–2868.

39. Romera-Cárdenas, G.; Thomas, L.M.; Lopez-Cobo, S.; García-Cuesta, E.M.; Long, E.O.; Reyburn, H.T. Ionomycin Treatment
Renders NK Cells Hyporesponsive. PLoS ONE 2016, 11, e0150998. [CrossRef]

40. Obermajer, N.; Repnik, U.; Jevnikar, Z.; Turk, B.; Kreft, M.; Kos, J. Cysteine Protease Cathepsin X Modulates Immune Response
via Activation of β 2 Integrins. Immunology 2008, 124, 76–88. [CrossRef]
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