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What this study adds

Both short- and long-term exposure to PM2.5 has been related 
to adverse health outcomes. However, the biological pathways 
underlying these health effects are largely unknown. We iden-
tified several unique serum metabolomic pathways associated 
with acute and chronic PM2.5 exposure. Major pathways asso-
ciated with acute PM2.5 exposure included amino acid, energy, 
and lipid metabolism. Major pathways associated with chronic 
PM2.5 exposure included pro-inflammatory and anti-inflamma-
tory pathways. Seven unique metabolites were identified with 
level-1 evidence.
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Introduction
Fine particulate matter (PM2.5) air pollution is a complex mix-
ture of liquid and solid particulates with a diameter of 2.5 
micrometers or less and can penetrate deeply into the respi-
ratory tract. PM2.5 has been linked to a myriad of negative 
health outcomes in humans including but not limited to respi-
ratory diseases, cardiovascular diseases, neurological and 
mental health issues, adverse reproductive and pregnancy out-
comes, and mortality.1–6 To better understand the underlying 
pathways between PM2.5 and these health outcomes, several 
studies have used both targeted and untargeted methods to 
investigate potential alterations in the human metabolome.7–17 
Metabolomics is a relatively new field that focuses on global 
detection and relative quantification of small molecules, both 
endogenous and exogenous, in human tissues and fluids 
and evaluates how changes in these molecules are related to 
changes in exposures and disease states. Using metabolomics, 
several studies have observed alterations in pro-inflammatory 
and oxidative stress pathways when people are exposed to 
PM2.5.

7,9,10,12–14,17,18 While they have yielded important findings, 
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Background: Both acute and chronic exposure to fine particulate matter (PM2.5) have been linked to negative health outcomes. 
Studies have used metabolomics to describe the biological pathways linking PM2.5 with disease but have focused on a single expo-
sure window. We compared alterations in the serum metabolome following various short- and long-term PM2.5 exposures.
Methods: Participants were women undergoing in vitro fertilization at a New England fertility clinic (n = 200). Women provided 
their residential address and provided a blood sample during controlled ovarian stimulation. PM2.5 exposure was estimated in 
the 1, 2, and 3 days, 2 weeks, and 3 months prior to blood collection using a validated spatiotemporal model. We utilized liquid 
chromatography with high-resolution mass spectrometry. We used generalized linear models to test for associations between 
metabolomic features and PM2.5 exposures after adjusting for potential confounders. Significant features (P < 0.005) were used 
for pathway analysis and metabolite identification.
Results: We identified 17 pathways related to amino acid, lipid, energy, and nutrient metabolism that were solely associated with 
acute PM2.5 exposure. Fifteen pathways, mostly, pro-inflammatory, anti-inflammatory, amino acid, and energy metabolism, were solely 
associated with long-term PM2.5 exposure. Seven pathways were associated with the majority of exposure windows and were mostly 
related to anti-inflammatory and lipid metabolism. Among the significant features, we confirmed seven metabolites with level-1 evidence.
Conclusions: We identified serum metabolites and metabolic pathways uniquely associated with acute versus chronic PM2.5 exposure. 
These different biologic pathways may help explain differences in disease states when investigating different lengths of PM2.5 exposure.

Key Words: amino acid metabolism, anti-inflammatory, energy metabolism, lipid metabolism, PM2.5, pro-inflammatory, untargeted 
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these studies are limited by the use of a singular time window 
for exposure to PM2.5.

There are several downsides to focusing solely on one time 
window of PM2.5 exposure. Chiefly, several studies examining 
the health effects of PM2.5 exposure have demonstrated that both 
short- and long-term exposure to PM2.5 are important but long-
term exposure may elicit a greater or different response than 
short-term exposure. In studies of Medicare patients in New 
England, both acute (1–2 days) and chronic (1–7 years) mea-
sures of PM2.5 exposure were associated with increased hospital 
admissions and mortality but the effect estimates for chronic 
PM2.5 exposure were of greater magnitude than the acute expo-
sures.19,20 Recently, the same logic has also held true in studies 
examining adverse pregnancy outcomes, specifically preterm 
birth. Among a cohort of pregnancies in China, daily exposure 
to PM2.5 in the one to six days prior to delivery and chronic 
exposure to PM2.5 throughout pregnancy were both associated 
with an increased risk of preterm birth; however, the magni-
tude of association gradually increased as the moving average of 
PM2.5 exposure expanded from one to 37 weeks prior to birth 
and the greatest effect estimate was observed for chronic expo-
sure during the entire pregnancy.21 While both acute and chronic 
exposures may influence risk of preterm birth, the underlying 
biological mechanisms may differ. Several pathways have been 
proposed to underlie the association between both acute and 
chronic PM2.5 exposure and preterm birth including heightened 
oxidative stress, inflammation, and endocrine disruption.22

To our knowledge, there has only been one previous study that 
examined differences in the human metabolome during different 
windows of PM2.5 exposure. Among 197 Belgian mother-infant 
pairs, Martens et al. used targeted metabolomics to measure 37 
oxylipins in neonatal cord blood plasma samples and related 
these to in utero PM2.5 exposures. Alterations in metabolites 
derived from the lipoxygenase pathway were only observed 
when examining total PM2.5 exposure during pregnancy or sec-
ond-trimester PM2.5 exposure (but not first or third-trimester 
exposures).23 Martens et al., hypothesized that this difference 
may be due in part to the thinning barrier between the maternal 
and fetal blood supplies with increasing gestational age and with 
the increasing fetal capillaries size until week ten of gestation.23 
These results support the hypothesis that the timing and dura-
tion of PM2.5 exposures are important to consider, particularly 
for outcomes that may have critical windows of susceptibility 
and both short- and long-term exposure-response relationships.

To expand on the limited literature, our study sought to inves-
tigate the similarities and differences in how varying durations 
of PM2.5 exposure may alter the serum metabolome. Specifically, 
we explored three acute, one intermediate, and one longer-term 
time window of PM2.5 exposure and their association with 
metabolic features and metabolomic pathways identified using 
untargeted metabolomics. Untargeted metabolomics allows for 
a greater examination of the metabolome rather than target-
ing a single pathway or class of metabolites. Understanding the 
changes in the metabolome across exposure windows may offer 
novel insight into how acute and chronic exposure to PM2.5 may 
lead to different disease states in humans and could lead to bio-
markers for specific durations of exposure.

Materials and methods

Study population

The women included in our analysis were participants in the 
Environment and Reproductive Health (EARTH) study.24 
Briefly, the EARTH study was a prospective cohort that enrolled 
couples seeking infertility evaluation and treatment at the 
Massachusetts General Hospital (MGH) Fertility Center. The 
goal of the study was to evaluate how environmental and dietary 
factors influence fertility. Upon enrollment, women completed 
questionnaires on demographics, medical history, environmental 

exposures, diet, lifestyle, and reproductive health. Participants’ 
height and weight were also measured via study staff to calcu-
late body mass index (BMI; kg/m2). Women provided their res-
idential address, initially for reimbursement purposes, but later 
these were used for geocoding and linking to environmental 
exposure data. The EARTH study was approved by the Human 
Studies Institutional Review Boards of MGH and the Harvard 
T.H. Chan School of Public Health (IRB No. 1999P008167). All 
study participants signed an informed consent after the study 
procedures were explained by research study staff.

In 2019, we randomly selected 200 women using a ran-
dom number generator (from the 345 women with complete 
air pollution data who underwent a fresh, autologous assisted 
reproductive technology (ART) cycle between 2005 and 2015)25 
for inclusion in a metabolomics sub-study. All of these women 
provided a non-fasting blood sample during controlled ovula-
tion stimulation, between 2005 and 2015, which was used for 
metabolomic profiling. The blood samples were collected via 
venipuncture during a routine morning appointment (between 
7 am and 10 am). Approximately 6-ml of blood was collected 
from each participant. Serum was centrifuged, aliquoted, and 
stored at −20°C initially before being transferred to Harvard for 
storage at −80°C.

Air pollution measures

We estimated individual ambient PM2.5 exposure by linking 
women’s geocoded residential address at enrollment to a spatio-
temporal model of PM2.5 exposure at a 1 km2 spatial resolution.26 
The validated hybrid model of ground-level PM2.5 concentra-
tions used satellite-derived aerosol optical depth measurements, 
land use (e.g., measures of population density, elevation, traffic, 
percentages of land use, normalized difference vegetation index 
(NDVI), and point and source pollutant emissions), meteoro-
logical (e.g., air temperature, wind speed, daily visibility, sea-
land pressure, and relative humidity) variables, and temporally 
resolved data on planetary boundary layer to estimate expo-
sure.26 All data used for the PM2.5 model were publicly available 
and obtained from a variety of sources including satellites (aero-
sol optical depth data), the US Environmental Protection Agency 
(EPA) (monitoring data), the US Geological Survey National 
land Cover dataset (spatial data), the National Climatic Data 
Center (meteorological data), Moderate Resolution Imaging 
Spectroradiometer (MODIS) satellite NDVI (NDVI data), and 
the National Oceanic and Atmospheric Administration (plan-
etary boundary layer). We derived daily estimated ambient 
PM2.5 concentrations starting three months prior to the date of 
blood collection. Air pollution exposures per day were averaged 
across the following windows: one day, two days, three days, 
two weeks, and three months prior to blood collection to exam-
ine short-term (one-three days), intermediate (two weeks), and 
longer-term (three months) exposures to PM2.5.

High-resolution metabolomics

Using established standard protocols,11–13 samples were treated 
with two volumes of acetonitrile and were centrifuged. Samples 
were analyzed in triplicate. Prepared samples were analyzed via 
liquid chromatography with high-resolution mass spectrom-
etry (LC-HRMS) (Dionex Ultimate 3000 RSLCnano; Thermo 
Orbitrap Fusion; Thermo Fisher Scientific, Waltham, MA). We 
utilized two column types, C18 hydrophobic reversed-phase 
chromatography (C18 Neg) with negative electrospray ioniza-
tion (ESI) and hydrophilic interaction liquid chromatography 
(HILIC) with positive ESI. In the C18 column, analyte separation 
was achieved using water, acetonitrile, and 10 mM ammonium 
acetate during the mobile phase with the following gradient elu-
tion: initial one minute period, 60% water, 35% acetonitrile, 
and 5% ammonium acetate, followed by a linear increase to 
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0% water, 95% acetonitrile, and 5% ammonium acetate at 
three minutes and held for the remaining two minutes. In the 
HILIC column, analyte separation was achieved using water, 
acetonitrile, and 2% formic acid during the mobile phase with 
the following gradient elution: initial one-and-a-half-minute 
period, 22.5% water, 75% acetonitrile, and 2.5% formic acid, 
followed by a linear increase to 75% water, 22.5% acetonitrile 
and 2.5% formic acid at 4 minutes and a final hold of 1 min-
ute. The mobile phase flow rate was 0.35 mL/min for the first 
minute and was increased to 0.4 mL/min for the final four min-
utes for both columns. In the C18 column, the gradient elution 
started at 60% aqueous condition could miss metabolites sep-
arated between 100% and 60% aqueous. However, the HILIC 
column is generally better for the detection of these metabolites. 
We applied to columns to maximize metabolomic coverage.27–29 
The sheath gas and auxiliary gas were set at 30 (arbitrary units) 
and 5 (arbitrary units) for the negative ESI, respectively. For the 
positive ESI, the sheath gas and the auxiliary gas were set at 
45 (arbitrary units) and 25 (arbitrary units), respectively. The 
spray voltage was −3.0 kV for the negative ESI and 3.5 kV for 
the positive ESI. To ensure quality control and standardiza-
tion, two controlled pooled reference plasma samples, NIST 
195030 and pooled human plasma (Equitech Bio, Kerrville, TX), 
were included at the beginning and end of each batch. Using 
ProteoWizard, raw data were converted to.mzML files.31 Files 
were further abstracted using R package apLCMS modified by 
xMSanalyzer.32,33 We defined unique features (detected signals) 
using mass-to-charge ratio (m/z), retention time, and ion inten-
sity. Features are unique metabolomic signals that have been 
detected but have not been identified by their chemical name. 
Features detected in less than 10% of samples were removed. 
Additionally, serum samples with a median coefficient of varia-
tion (CV) >30% and a Pearson correlation <0.7 among the tech-
nical replicates were not included in the analysis. We excluded 
these features because they had a low reproducibility across 
the replicates. Average intensity of the remaining features was 
log-transformed to allow for further analysis.

Statistical analysis

We followed the standard workflow for an untargeted metabo-
lomics study (Supplemental Figure 1; http://links.lww.com/EE/
A174). We used generalized linear models to evaluate the asso-
ciation between each metabolomic feature and PM2.5 exposure 
window. Models were fit using the following equation:

Y PM2 5 Temp Age BMI

Education
ji 1j ik 2j ik 3j i 4j i

5j i

= + + + +

+ +

α β β β β

β β

.

66j i ijSmoking e+

In these models, Yji was the natural log of the intensity for fea-
ture j and participant i. PM2.5ik was woman i’s exposure to PM2.5 
averaged over exposure window k. Similarly, Tempik was woman 
i’s exposure to ambient temperature over exposure window k. 
Daily ambient temperatures were derived from the Parameter-
elevation Regressions on Independent Slopes Model (PRISM)34 
and were averaged over the same windows as PM2.5 exposure. 
Finally, these models also included the woman’s age (Agei), body 
mass index (BMIi), education (Educationi), and smoking sta-
tus (Smokingi). The (summand) Eij denotes the residual normal 
error. Covariates were selected based on a priori knowledge and 
biological relevance. We included ambient temperature and not 
season because these two variables were correlated and given 
changes in climate and weather, ambient temperature may be a 
better measure of time spent indoors and is more directly linked 
to fuel usage (for heating and cooling). Separate models were 
used for the HILIC [positive] and C18 [negative] columns. We 
identified significant features at increasingly stringent levels of 
statistical significance (P value: <0.05, <0.005, and <0.0005) 
which allowed us to select the most stringent significance level 

with interpretable results. Given the high number of statistical 
tests, we also corrected these raw p-values for multiple compar-
isons using the Benjamini–Hochberg false discovery rate (FDR) 
procedure at two thresholds (q-value: <0.20 and <0.05). In most 
cases, features with P < 0.005 were used. Analyses were con-
ducted in R (v. 4.0.3, R Foundation for Statistical Computing, 
Vienna, Austria).

Metabolic pathway enrichment analysis and metabolite 
annotation

Pathway analysis was completed using Mummichog (v. 
1.0.10) in Python (Python Software Foundation, Wilmington, 
DE) which has been described and validated elsewhere.35 
Briefly Mummichog is an innovative bioinformatic tool that 
computes biological pathways from a feature list using m/z 
and retention time without prior metabolite identification. 
Mummichog computes an adjusted P value for each path-
way by resampling the reference input file using a gamma 
distribution.35 We utilized a reference file for each technical 
column (C18 [negative] and HILIC [positive]) with the file 
consisting of features with a raw P value <0.005. Features 
with a raw P value <0.0005 and corrected q-values could 
not be used due to the lack of significant metabolites in the 
shorter-term exposure windows. We examined pathways 
with P values <0.05 in any of the five exposure windows and 
compared the significance and number of matched metabo-
lites in each pathway. In this analysis, pathways could have 
the same number of overlapping features but different path-
way P value because of the different number of significant 
underlying features in the reference files (e.g., C18 [Negative] 
1-day: six significant features versus 3-months: 36 signifi-
cant features). Heat maps were used to visually compare the 
pathways across each time window. A P value <0.05 was uti-
lized for the pathway analysis since Mummichog computes 
an adjusted p-value and we utilized a stringent criterion for 
significant features (P < 0.005) so there was limited need to 
be more conservative than traditional statistical norms.

For metabolite confirmation, we selected the features that 
were significantly associated with any of the PM2.5 exposure 
windows (P < 0.005). We examined extracted ion chromatog-
raphy for retention time, isotope patterns, and peak quality. 
Significant features with high-quality peaks were then compared 
to authentic standards from our laboratory that were analyzed 
with the same methods (level-1 evidence).36 Significant features 
were matched to authentic standards by comparing the m/z, 
retention time, and ion dissociation. For each identified metab-
olite, we used the Human Metabolome Database to determine 
their chemical superclass and class.

Results

Sample characteristics

The average age of women in our study was 34.8 years (stan-
dard deviation [SD]: 3.9) and the majority were white (86%;  
n = 171) (Supplemental Table 1; http://links.lww.com/EE/
A174). Ninety-two percent had at least a college degree  
(n = 183) and 40% of the participants had an unexplained initial 
infertility diagnosis (n = 79). Demographic and clinical charac-
teristics were similar between all eligible participants and those 
included in the metabolomics sub-study (Supplemental Table 1; 
http://links.lww.com/EE/A174).

The average 1-day PM2.5 exposure was 8.7 µg/m3 (SD: 4.0) 
while the average 3-month PM2.5 exposure was 9.0 µg/m3 (SD: 
1.9) (Supplemental Table 2; http://links.lww.com/EE/A174). 
The correlation between 1-day and 2-day PM2.5 exposures was 
0.89 while the correlation between 1-day and 3-month PM2.5 
exposures was 0.26. Similar trends were observed across the 
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exposure windows with windows closer together in time having 
higher correlations compared to windows further apart.

Significant features (P < 0.005)

We detected 10,803 and 12,968 unique features using the C18 
[negative] and HILIC [positive] columns respectively (Table 1). 
Using the 1-day exposure window, 28 and 68 features were sig-
nificantly associated (P value <0.005) with the 1-day exposure 
window using the C18 [negative] and HILIC [positive] columns, 
respectively. In contrast, 136 and 267 features were significantly 
associated (P value <0.005) with the 3-month exposure window 
using the C18 [negative] and HILIC [positive] columns, respec-
tively. Additionally, when using the corrected q-values (<0.05), 
no features were significantly associated with the 1-day expo-
sure window but 21 and 83 features were significantly associ-
ated with the 3-month exposure window in the C18 [negative] 
and HILIC [positive] columns, respectively. In general, as the 
exposure window lengthened the number of significant features 
increased and this trend held across the various levels of statis-
tical significance.

In total 267 and 484 unique features were significantly 
associated with at least one of the exposure windows in the 
C18 [negative] and HILIC [positive] columns, respectively 
(Figure  1). In the C18 column, the largest overlap of signif-
icant features occurred between the 2-week and 3-month 
exposure windows (n = 31) and the 2-day and 3-day exposure 
windows (n = 24). In the HILIC column, the largest overlaps 
again occurred between the 2-week and 3-month exposure 
windows (n = 46) and the 2-day and 3-day exposure windows 
(n = 26). Only four significant features were associated with 
all five exposure windows and all of these were detected in the 
HILIC [positive] column.

Metabolic pathways

Using the C18 [negative] significant features (P < 0.005), 
26 significant pathways were identified that were associated 
with one or more PM2.5 exposure windows. On the metabo-
lite level, amino acids and inflammatory pathways had the 
most features identified using Mummichog across the exposure 
windows (Figure  2). In some instances, features identified by 
Mummichog were found in several pathways and this occurred 
in the 2-day, 3-day, 2-week, and 3-month exposure windows. 
Nine of the 26 pathways - D4&E4-neuroprostanes formation, 
hexose phosphorylation, nitrogen metabolism, parathio degra-
dation, phosphatidylinositol phosphate metabolism, putative 
anti-inflammatory metabolites formed from eicosapentaenoic 
acid, tryptophan metabolism, valine, leucine, and isoleucine 
degradation, and xenobiotics metabolism were only associated 
with an acute exposure window (1–3 days prior to blood sam-
ple) but not the intermediate- or long-term exposure window 
(Table 2). An additional nine pathways including amino sugars 
metabolism, ascorbate and aldarate metabolism, beta-alanine 

metabolism, CoA catabolism, electron transport chain, gluta-
mate metabolism glutathione metabolism, glycine, serine, ala-
nine, and threonine metabolism, and histidine metabolism were 
only associated with the intermediate or long-term exposure 
windows but not the acute exposure windows. Four pathways 
were commonly altered across all or most (four out of five) 
exposure windows including arachidonic acid metabolism, argi-
nine and proline metabolism, aspartate and asparagine metabo-
lism, and leukotriene metabolism.

Using the HILIC [positive] significant features (P value 
<0.005), 20 pathways were significantly associated with one 
or more PM2.5 exposure windows. In contrast to the findings 
from the C18 [negative] column, the categories of the metab-
olomic pathways related to the acute and long-term exposure 
to PM2.5 in the HILIC [positive] column were strikingly differ-
ent (Figure 3). Across the five exposure windows, lipid metab-
olism pathways generally had the highest number of features 
identified using Mummichog. In contrast, features involved in 
inflammatory pathways were most prominent in the 2-week 
and 3-month exposure windows. Features involved with amino 
acid metabolism pathways were uniquely associated with acute 
exposures. Generally, fewer features identified by Mummichog 
occurred across pathways. Nine pathways—carnitine shuttle, de 
novo fatty acid biosynthesis, di-unsaturated fatty acid beta-ox-
idation, fatty acid activation, fatty acid metabolism, histidine 
metabolism, mono-unsaturated fatty acid beta-oxidation, tryp-
tophan metabolism, and vitamin E metabolism—were associ-
ated with at least one of the acute exposure windows but not 
the intermediate or long-term exposure windows (Table 3). Six 
pathways—arachidonic acid metabolism, leukotriene metab-
olism, nucleotide sugar metabolism, prostaglandin formation 
from arachidonate, putative anti-inflammatory metabolites—
formed from eicosapentaenoic acid, and vitamin A (retinol) 
metabolism were associated with intermediate and long-term 
exposure windows but not the acute exposure windows. Three 
pathways, D4&E4-neuroprostanes formation, linoleate metab-
olism, and omega-3 fatty acid metabolism, were associated 
across all or most (four out of five) exposure windows in the 
HILIC [positive] column. Across both technical columns, tryp-
tophan metabolism pathways were consistently associated with 
acute exposure to PM2.5.

Metabolite identification

Using level-1 evidence, we identified seven unique metabolites 
that were significantly (P value <0.005) associated with various 
exposure windows. In the C18 [negative] column, one metabo-
lite was associated with only the short-term exposure windows 
(glutamic acid) (Table  4). Glutamic acid was only associated 
with the 3-day exposure window. One metabolite, in the C18 
[negative] column, was only associated with the intermedi-
ate- and long-term exposure (hypoxanthine). Three metabo-
lites in the C18 [negative] column were associated with both 
the short- (e.g., 3-day) and intermediate- (e.g., 2-week) -term 

Table 1.

Number of significant metabolomic features associated with different PM2.5 exposure windows among 200 women in the EARTH 
study from 2005 to 2015 in the Northeast United States.

Exposure Window

C18 [Negative] (n = 10,803) HILIC [Positive] (n = 12,968)

Raw P values Corrected Q values Raw P values Corrected Q values

<0.005 <0.20 <0.05 <0.005 <0.20 <0.05

1 day 28 0 0 68 0 0
2 days 56 0 0 74 2 0
3 days 74 0 0 100 2 1
2 weeks 85 14 5 163 36 12
3 months 136 37 21 267 209 83
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exposure windows (N-Acetyl-serine, N-Methyl-aspartic acid, 
and O-Acetyl-serine).

In the HILIC [positive] column, two identified metabolites, 
Bis(2-Ethylhexyl)Phthalate (DEHP) and Retinoic acid, were 
associated with both the intermediate- and long-term exposure 
window. Across the seven unique metabolites we identified, the 
most common superclass was organic acids and derivates (n = 4;  
57.1%) (Supplemental Table 3; http://links.lww.com/EE/
A174).

Discussion

Key findings

In this metabolomics study among women undergoing infertil-
ity treatment, shorter- versus longer-term PM2.5 exposure win-
dows were largely associated with unique alterations in specific 
metabolites and metabolomic pathways while fewer pathways 
were common across all exposure windows. We identified 17 
pathways solely associated with acute exposure to PM2.5 and 
15 pathways solely associated with the chronic exposure to 
PM2.5. Only seven pathways were found to be commonly altered 
across the majority (four out of five) of exposure time windows. 
Furthermore, we were able to identify seven unique metabo-
lites associated with PM2.5 exposures of varying duration, using 
level-1 evidence, several of which were involved in the observed 
pathways.

We identified 17 pathways (eight in C18 [negative], eight in 
HILIC [positive], and one overlapping pathway) associated with 
acute (e.g., 1-3 day) exposure to PM2.5, including many metab-
olites involved in amino acid metabolism, lipid metabolism, 
energy and nutrient metabolism, and free radical formation. 
Several studies have also identified many of these same pathways 
when studying acute exposure to air pollution.9,11,13,15 For amino 
acid metabolism, several studies have observed an association 
between acute PM2.5 exposure and tryptophan metabolism9,15 
which we also observed. In addition to tryptophan, we also 
found alterations with histidine metabolism, and valine, leu-
cine, and isoleucine degradation. Under normal circumstances, 
these amino acids and their metabolism are involved in numer-
ous responses including immune response, cell signaling, and 
hormone formation.37–40 However, some of these amino acids 
have both antioxidant and pro-inflammatory metabolites and 
depending on which metabolites are upregulated, there could 
be serious consequences for the human body.41,42 Thus, acute 
PM2.5 exposure is concerning due to the potential damage from 
oxidative stress through these pathways. In addition to amino 
acid metabolism, six lipid metabolism pathways were associated 

with acute exposure to PM2.5. Of these six lipid metabolism 
pathways, only three, carnitine shuttle, de novo fatty acid bio-
synthesis, and fatty acid activation, have previously been linked 
to acute exposure to PM2.5.

11 These pathways may be activated 
after acute exposure to PM2.5 as a means for the body to expend 
energy to repair itself from oxidative stress induced by short-
term PM2.5exposure. Finally, several anti-inflammatory path-
ways were associated with acute exposure to PM2.5 including 
vitamin E metabolism and putative anti-inflammatory metab-
olites formed from eicosapentaenoic acid. Activation of these 
pathways is likely the body’s immediate defensive response to 
short-term PM2.5 exposure-creating antioxidants that will help 
the body combat an increase in oxidative stress.

We also observed 15 pathways (nine in C18 [negative] and 
six in HILIC [positive]) associated with intermediate- or lon-
ger-term exposure to PM2.5, which in our study was defined as 
average exposure over the past 2-weeks or 3-months. These 15 
pathways included several pro-inflammatory pathways, energy 
pathways, and anti-inflammatory pathways. Among the pro-in-
flammatory pathways, both leukotriene metabolism and prosta-
glandin formation from arachidonic acid have been previously 
observed in relation to long-term exposure to air pollution.16,17 
Interestingly, we also observed a relationship between long-term 
exposure to PM2.5 and arachidonic acid metabolism. Previously, 
this pathway has only been associated with short-term expo-
sures to air pollution.9 These three pathways together indicate 
a large and likely sustained pro-inflammatory response with 
chronic PM2.5 exposure. Unlike previous long-term exposure 
window studies, we observed a relationship between vitamin  
A metabolism and putative anti-inflammatory metabolites from 
eicosapentaenoic acid. Interestingly, the putative anti-inflamma-
tory pathway was associated with the acute exposure window 
in the C18 [negative] column whereas it was associated with 
the long-term exposure in the HILIC [positive] column. We also 
observed an association between long-term PM2.5 exposure and 
ascorbate and aldarate metabolism, another anti-inflammatory 
pathway, that has been previously identified by others.16 These 
three anti-inflammatory pathways taken together may be the 
body’s attempt to compensate for the sustained inflammatory 
response from the upregulated pro-inflammatory pathways in an 
attempt to maintain homeostasis. We again observed a relation-
ship between PM2.5 exposure and energy metabolism pathways 
as well as amino acid metabolism pathways. Both the electron 
transport chain and the nucleotide sugar metabolism pathways 
were associated with long-term exposure to PM2.5; however, 
neither of these pathways have previously been associated with 
long-term PM2.5 exposure. The increased need for energy may 
be due in part to fuel cellular efforts to repair damages from 

Figure 1.  Number of significant features associated with each PM2.5 exposure window among 200 women in the EARTH study from 2005 to 2015 in the 
Northeast United States using the C18 [Negative] and HILIC [Positive] technical columns.

http://links.lww.com/EE/A174
http://links.lww.com/EE/A174
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oxidative stress. With regards to amino acid metabolism, we 
observed three pathways associated with long-term exposure, 
beta-alanine metabolism, glycine, serine, alanine, and threonine- 
and histidine metabolism. All three of these amino acid path-
ways have previously been associated with long-term exposure 
to PM2.5.

16,17 Additionally, histidine metabolism was associated 
with long-term exposure to PM2.5 in the C18 [negative] column 
but was associated with acute exposure to PM2.5 in the HILIC 
[positive] column.

Across the five PM2.5 exposure windows, we observed seven 
pathways (four in C18 [negative] and three in HILIC [posi-
tive]) that were associated with at least four of the five expo-
sure windows. Similar to the pathways associated with only 
the acute or long-term exposure, we again observed associa-
tions with anti-inflammatory pathways and lipid metabolism. 
Interestingly, studies of both acute-12,15 and long-term16 exposure 
to PM2.5 have observed alterations in the arginine and proline 

metabolism and aspartate and asparagine metabolism which 
adds credence to our finding of these pathways being associ-
ated with PM2.5 exposures of varying duration. We observed 
two lipid metabolism pathways, omega-3 fatty acid metabolism 
and linoleate metabolism associated across several windows 
of PM2.5 exposure. Thus far omega-3 fatty acid metabolism 
has only been associated with acute exposure to PM2.5

12 while 
linoleate metabolism has only been associated with long-term 
exposure to PM2.5.

16,17,43 Lastly, we observed several inflamma-
tory pathways that were associated with at least four of the 
five exposure windows including arachidonic acid metabolism, 
D4&E4-neuroprostanes formation, leukotriene metabolism, 
and prostaglandin formation from arachidonate. Three of these 
pathways, arachidonic acid, leukotriene, and prostaglandin 
formation, were only associated with the long-term exposure 
window in the HILIC [positive] column but in the C18 [nega-
tive] column these three pathways were commonly dysregulated 

Figure 2.  Number of features linked to pathways using Mummichog and classification of pathways modified by PM2.5 Exposure in the C18 [Negative] Column 
among 200 women in the EARTH study from 2005 to 2015 in the Northeast United States. Each pie chart represents a single exposure window with the total 
number of features that matched to known metabolites in pathways identified using Mummichog. The colors for the pie charts represent the type of pathway 
a feature was found to be a part of, with some features being identified as a metabolite present in several pathways (denoted by the black color). Because of 
this, the total number of features will not add to the total number of matched features in Table 2. The numbers in the pie chart denote the number of features 
found in each type of pathway.
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across several PM2.5 exposure windows. In contrast, the D4&E4 
pathway was associated with acute PM2.5 exposure in C18 [neg-
ative] column but was associated with several PM2.5 windows in 
the HILIC [positive] column.

Overall, we were able to identify seven unique metabolites 
using level-1 evidence. Similar to the pathway analysis, we 
observed differences in metabolites by PM2.5 duration of expo-
sure. In the short-term windows, we identified one metabolite, 
glutamic acid. Glutamic acid is involved in several metabolo-
mic pathways that were commonly altered with short-term 
PM2.5 exposure including arachidonic acid metabolism, argi-
nine and proline metabolism, aspartate metabolism, and the 
urea cycle. We identified three metabolites, DEHP, retinoic acid, 
and hypoxanthine associated with both the intermediate- and 
long-term PM2.5 exposure windows. Retinoic acid is a part of 
vitamin A metabolism which is a pathway we observed being 

associated with long-term exposure to PM2.5. There were three 
metabolites commonly associated with 3-day and 2-week aver-
age exposure to PM2.5, N-Acetyl-serine, N-Methyl-aspartic acid, 
and O-Acetyl-Serine. N-Acetyl-serine, N-Methyl-aspartic acid, 
and O-Acetyl-serine are all types of amino acids derivatives and 
offer credence to our finding of amino acid pathways related to 
PM2.5 exposure. N-Methyl-aspartic acid is needed for normal 
synaptic transmission and plasticity but when overstimulated 
can be excitotoxic.44 The degree to which these metabolites can 
be used as biomarkers of short and long-term exposure to PM2.5 
warrants further study.

Clinical and policy implications

We observed that exposure to PM2.5 of varying durations (from 
days to several months) led to different alterations in the serum 

Figure 3.  Number of features linked to pathways using Mummichog and classification of pathways modified by PM2.5 Exposure in the HILIC [Positive] Column 
among 200 women in the EARTH study from 2005 to 2015 in the Northeast United States. Each pie chart represents a single exposure window with the total 
number of features that matched to known metabolites in pathways identified using Mummichog. The colors for the pie charts represent the type of pathway 
a feature was found to be a part of, with some features being identified as a metabolite present in several pathways (denoted by the black color). Because of 
this, the total number of features will not add to the total number of matched features in Table 3. The numbers in the pie chart denote the number of features 
found in each type of pathway.



Hood et al.  •  Environmental Epidemiology (2022) 6:e191	 www.environmentalepidemiology.com

9

T
a

b
le

 3
.

P
at

hw
ay

s 
(f

ea
tu

re
s 

w
it

h 
P

 v
al

ue
s 

<
0.

00
5)

 a
ss

o
ci

at
ed

 w
it

h 
d

iff
er

en
t 

ex
p

o
su

re
 w

in
d

o
w

s 
o

f 
P

M
2.

5 
am

o
ng

 2
00

 w
o

m
en

 in
 t

he
 E

A
R

T
H

 s
tu

d
y 

fr
o

m
 2

00
5 

to
 2

01
5 

in
 t

he
 N

o
rt

he
as

t 
U

ni
te

d
 S

ta
te

s 
us

in
g

 t
he

 H
IL

IC
 [

P
o

si
ti

ve
] 

te
ch

ni
ca

l c
o

lu
m

n.

 

Pa
th

w
ay

 
 

Ov
er

la
p

P 
va

lu
e

 

Cl
as

si
fic

at
io

n 
Si

ze
 

1D
2D

3D
2W

3M
1D

2D
3D

2W
3M

 
Nu

m
be

r o
f S

ig
ni

fic
an

t F
ea

tu
re

s
68

74
10

0
16

3
26

7
 

 
 

 
 

Ac
ut

e 
On

ly 
(n

=
9)

M
on

o-
un

sa
tu

ra
te

d 
fa

tty
 a

ci
d 

be
ta

-o
xid

at
io

n
Li

pi
d

2
2

0
0

0
0

 
 

 
 

 

Vi
ta

m
in

 E
 m

et
ab

ol
is

m
Vi

ta
m

in
22

2
0

0
2

3
 

 
 

 
 

Tr
yp

to
ph

an
 m

et
ab

ol
is

m
Am

in
o 

ac
id

10
7

4
2

2
1

5
 

 
 

 
 

Hi
st

id
in

e 
m

et
ab

ol
is

m
Am

in
o 

ac
id

34
0

2
2

1
0

 
 

 
 

 
De

 n
ov

o 
fa

tty
 a

ci
d 

bi
os

yn
th

es
is

Li
pi

d
34

0
4

4
2

2
 

 
 

 
 

Fa
tty

 a
ci

d 
ac

tiv
at

io
n

Li
pi

d
34

1
4

4
1

2
 

 
 

 
 

Fa
tty

 A
ci

d 
M

et
ab

ol
is

m
Li

pi
d

23
0

2
2

2
2

 
 

 
 

 
Ca

rn
iti

ne
 s

hu
ttl

e
Li

pi
d

33
1

1
4

0
1

 
 

 
 

 
Di

-u
ns

at
ur

at
ed

 fa
tty

 a
ci

d 
be

ta
-o

xid
at

io
n

Li
pi

d
5

3
1

1
0

0
 

 
 

 
 

Lo
ng

-t
er

m
 O

nl
y 

(n
=

6)
Pu

ta
tiv

e 
an

ti-
In

fla
m

m
at

or
y 

m
et

ab
ol

ite
s 

fo
rm

at
io

n 
fro

m
 e

ic
os

ap
en

ta
en

oi
c 

ac
id

 
An

ti-
In

fla
m

m
at

or
y

7
0

0
0

3
2

 
 

 
 

 
Ar

ac
hi

do
ni

c 
ac

id
 m

et
ab

ol
is

m
In

fla
m

m
at

or
y

36
1

1
2

13
11

 
 

 
 

 
Pr

os
ta

gl
an

di
n 

fo
rm

at
io

n 
fro

m
 a

ra
ch

id
on

at
e

In
fla

m
m

at
or

y
27

0
1

1
13

9
 

 
 

 
 

Le
uk

ot
rie

ne
 m

et
ab

ol
is

m
In

fla
m

m
at

or
y

30
0

0
0

9
7

 
 

 
 

 
Vi

ta
m

in
 A

 (r
et

in
ol

) m
et

ab
ol

is
m

Vi
ta

m
in

26
0

1
1

5
8

 
 

 
 

 
Nu

cl
eo

tid
e 

Su
ga

r M
et

ab
ol

is
m

En
er

gy
1

0
0

0
0

1
 

 
 

 
 

Ac
ut

e 
& 

Lo
ng

-t
er

m
 (n

=
5)

Pr
os

ta
gl

an
di

n 
fo

rm
at

io
n 

fro
m

 d
ih

om
o 

ga
m

a-
lin

ol
ei

c 
ac

id
In

fla
m

m
at

or
y

3
1

0
0

2
2

 
 

 
 

 
C2

1-
st

er
oi

d 
ho

rm
on

e 
bi

os
yn

th
es

is
 a

nd
 m

et
ab

ol
is

m
Ho

rm
on

e
78

1
4

7
5

10
 

 
 

 
 

Om
eg

a-
3 

fa
tty

 a
ci

d 
m

et
ab

ol
is

m
Li

pi
d

13
2

2
2

3
2

 
 

 
 

 
D4

&E
4-

ne
ur

op
ro

st
an

es
 fo

rm
at

io
n

Fr
ee

 ra
di

ca
l

4
1

0
1

2
2

 
 

 
 

 
Li

no
le

at
e 

m
et

ab
ol

is
m

Li
pi

d
46

1
3

5
9

12
 

 
 

 
 

P 
va

lu
e

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

0.
0

0.
00

62
5

0.
01

25
0.

02
5

0.
05

>
0.

05



Hood et al.  •  Environmental Epidemiology (2022) 6:e191	 Environmental Epidemiology

10

metabolome of reproductive-aged women. The different alter-
ations in the serum metabolome may explain the different 
health effects that have been observed when comparing acute 
versus long-term exposure to PM2.5. Our results may be partic-
ularly relevant for perinatal studies focused on pregnancy loss 
or pre-term birth where air pollution has been shown to have 
both acute and long-term adverse impacts and the biological 
mechanisms are largely unknown.6,21,45–47 Until further evidence 
is available, our results support the hypothesis that air pollution 
largely acts on different biological pathways when encountered 
acutely versus chronically and this may have important implica-
tions for future studies when determining the most biologically 
relevant time window to focus on. Additionally, to identify sen-
sitive biomarkers of air pollution exposure, metabolomics can 
be a powerful hypothesis-generating tool. In this analysis, we 
highlight the specific metabolic features and pathways that are 
linked to short-term or long-term, or both, exposure windows, 
which can contribute to follow-up biomarker development 
studies.

Strengths and Limitations

Our study has several important limitations. First, this study uti-
lized data collected from women residing in the Northeastern 
US who were undergoing infertility treatment which poten-
tially limits the generalizability of our findings. The majority of 
our women were also white and of high socioeconomic status, 
which is typical of studies focusing on infertility clinic popula-
tions, but may limit the applicability of our findings to other 
race/ethnicities and socioeconomic status. Nevertheless, the 
results were consistent with many existing air pollution and 
metabolomic applications conducted in population-based and 
highly selected populations. Second, our exposure measure only 
captured ambient exposure to PM2.5 and did not capture indoor 
air pollution and occupational exposure to PM2.5. Because we 
were unable to include these exposures in our measure, wom-
en’s personal exposure to PM2.5 is likely misclassified. However, 
we have no reason to believe that this misclassification would 
be differential, thus the likely consequence is that our results 
are biased towards the null. In addition, PM2.5 exposure in this 
population is generally low in comparison to other regions of 
the world and therefore may not be generalizable to reproduc-
tive-aged women who live in areas with high exposure to PM2.5. 
Third, we were unable to separate the effect of the length of 
the time window and the effect of acute versus chronic PM2.5 
exposure on the serum metabolome. The shorter time win-
dows (1-, 2- and 3-day) could be subject to greater noise and 
variation when compared to the longer time windows (2-week 
and 3-month). In our results, we observed that as the length of 
time window declined, the number of significant features also 
decreased. Future studies using personal monitors would be 
the ideal way to address this limitation; however, conducting a 

study like this in a large representative sample remains expen-
sive and challenging. Fourth, we utilized average PM2.5 exposure 
windows which could mask potentially important temporal 
variations. For example, in a 3-month exposure window, PM2.5 
could rapidly rise and fall and this would be recorded as the 
same average as a 3-month exposure window that had a steady 
amount of PM2.5. By not accounting for these temporal vari-
ations, we could have missed out on identifying important 
effects on the serum metabolome. While we examined a range 
of acute and chronic exposure windows that were defined a 
priori, there could be other critical time windows of exposure 
that were not investigated in our study. Future studies should 
consider the advantages and disadvantages of using averaged 
air pollution exposure windows versus other methods that may 
account for temporal variation in air pollution exposure and 
select critical time windows using a more data-driven approach. 
Fifth, because Mummichog relies on the number of significant 
features to determine P values for each pathway, it is possible 
that some pathways with the same number of overlapping fea-
tures were significant in one time window and not in another 
(for example, phosphatidylinositol phosphate metabolism in the 
C18 [neg] column). Additionally, because we are testing multi-
ple pathways, it is possible that some of the metabolomic path-
ways were associated with time windows by chance. Because 
of these concerns, our pathway analysis results should be inter-
preted with caution and will need to be confirmed by additional 
studies. Sixth, because we utilized non-fasting blood samples, 
dietary factors could have influenced our results. However, it is 
unlikely that diet and PM2.5 exposure were related, which means 
that diet is unlikely to be a confounder. Additionally, we utilized 
a comprehensive metabolomic workflow that has been success-
ful in analyzing non-fasting samples. In addition, we observed 
similar metabolomic alterations to other air pollution studies 
using fasting blood samples12 which may indicate that diet had 
a minimal impact on our results. Future studies should consider 
the potential difference in results that non-fasting and fasting 
blood samples could provide with regard to metabolomic anal-
yses. Next, we attempted to adjust for the false positive rate. 
However, due to a lack of interpretable data for the short-term 
exposures, we were unable to use the most stringent, FDR cor-
rected q-values. Therefore, our results should be carefully inter-
preted and will need to be confirmed by additional studies with 
larger samples sizes. Finally, the samples used in this analysis 
were stored for a long period of time at −80oC prior to analysis, 
which could have negatively impacted the quality of the sample. 
However, a review of studies investigating pre-analytic factors, 
found samples under this condition did not have any significant 
negative impacts on quality after 30 months of storage48; lon-
ger storage times have not been investigated so the impact on 
sample quality remains a question and should be investigated 
in future studies. Our study does have several strengths. We 
utilized a validated measure of ambient exposure to PM2.5 and 

Table 4.

Significant (P < 0.005) metabolites identified using level 1 evidence and associated with different exposure windows of PM2.5 among 
200 women in the EARTH study from 2005 to 2015 in the Northeast United States using the C18 [Negative] and HILIC [Positive] 
technical columns.

 Metabolites ESI 1D 2D 3D 2W 3M

Acute Glutamic acid -         

Long Bis(2-ethylhexyl)phthalate +      

Hypoxanthine -         

Retinoic acid +      

Acute & long N-acetyl-serine -        

N-methyl-aspartic acid -        

O-acetyl-serine -        
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used a standard protocol for metabolomics analysis including 
laboratory standards to confirm metabolite identification with 
level-1 evidence using these same protocols. Lastly, due to the 
prospective nature of the EARTH Study, we were able to adjust 
for several potential confounders including age, smoking status, 
education, and BMI.

Conclusion
In our study of reproductive-aged women, we found that short 
versus long-term exposure to ambient PM2.5 had differential 
impacts on the serum metabolome as many specific metabo-
lites and metabolic pathways were only associated in the acute 
window or the long-term window, with very few being com-
monly altered across all time windows examined. Differences 
in pathways activated by PM2.5 exposure windows may 
explain how differences in health outcomes arise depending on 
the exposure windows utilized. Researchers should be aware 
that PM2.5 exposures of differing duration may lead to differ-
ent biological responses in the human metabolome and should 
take this into consideration when planning and studying the 
health effects of PM2.5.
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