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Purpose: To investigate the role of different multi-organ omics-based prediction models
for pre-treatment prediction of Adaptive Radiotherapy (ART) eligibility in patients with
nasopharyngeal carcinoma (NPC).

Methods and Materials: Pre-treatment contrast-enhanced computed tomographic and
magnetic resonance images, radiotherapy dose and contour data of 135 NPC patients
treated at Hong Kong Queen Elizabeth Hospital were retrospectively analyzed for
extraction of multi-omics features, namely Radiomics (R), Morphology (M), Dosiomics
(D), and Contouromics (C), from a total of eight organ structures. During model
development, patient cohort was divided into a training set and a hold-out test set in a
ratio of 7 to 3 via 20 iterations. Four single-omics models (R, M, D, C) and four multi-omics
models (RD, RC, RM, RMDC) were developed on the training data using Ridge and Multi-
Kernel Learning (MKL) algorithm, respectively, under 10-fold cross validation, and
evaluated on hold-out test data using average area under the receiver-operator-
characteristics curve (AUC). The best-performing single-omics model was first
determined by comparing the AUC distribution across the 20 iterations among the four
single-omics models using two-sided student t-test, which was then retrained using MKL
algorithm for a fair comparison with the four multi-omics models.

Results: The R model significantly outperformed all other three single-omics models (all
p-value<0.0001), achieving an average AUC of 0.942 (95%CI: 0.938-0.946) and 0.918
(95%CI: 0.903-0.933) in training and hold-out test set, respectively. When trained with
MKL, the R model (R_MKL) yielded an increased AUC of 0.984 (95%CI: 0.981-0.988) and
0.927 (95%CI: 0.905-0.948) in training and hold-out test set respectively, while
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demonstrating no significant difference as compared to all studied multi-omics models in
the hold-out test sets. Intriguingly, Radiomic features accounted for the majority of the final
selected features, ranging from 64% to 94%, in all the studied multi-omics models.

Conclusions: Among all the studied models, the Radiomic model was found to play a
dominant role for ART eligibility in NPC patients, and Radiomic features accounted for the
largest proportion of features in all the multi-omics models.
Keywords: nasopharyngeal carcinoma, adaptive radiotherapy, radiomics, dosiomics, multiomics approach
INTRODUCTION

Nasopharyngeal carcinoma (NPC) presents immediate
proximity to a variety of surrounding critical healthy organs
such as spinal cord and brainstem within an intricated nose-
pharynx ministry, dysfunction of which can incur catastrophic
complications. At present, concurrent chemo-radiotherapy
(CCRT) is a standard-of-care remedy for advanced NPC
patients; adoption of Intensity-modulated Radiotherapy
(IMRT) allows for highly conformal and precise dose delivery
to the treatment targets, meanwhile protecting the adjacent
healthy tissues. Notably, the success of treatment relies on an
assumption that the patient anatomy remains throughout the 6-7
weeks of IMRT course. In response to treatment perturbations,
however, tumors and surrounding healthy organs may exhibit
significant morphometric volume and/or geometric alterations,
which may jointly alter patient anatomy and jeopardize the
efficacy of the original treatment plan (1–3). The issue of these
variabilities can be more detrimental in the IMRT era, where
slight anatomic deviations may deleteriously lead to significant
dosimetric consequences due to the sharp dose falloff beyond the
target lesions. Confronted with this, Adaptive Radiotherapy
(ART), a modification of the original treatment plan, has been
introduced to compensate for these patient-specific variations.
The dosimetric and clinical benefits of ART for NPC patients
have been well-documented in the literature (1–7).

Notwithstanding, ART generally involves re-imaging, re-
segmentations of tumor and organs-at-risk (OARs), and re-
planning, requiring a highly specialized multidisciplinary team.
This labor-intensive and time-consuming nature of ART
procedures preclude the feasibility of routine ART practice on
a patient basis in clinic. In light of this, tremendous effort has
been constantly made to evaluate the underlying morphometric
and geometric variations of patient anatomy amid the
radiotherapy course, in the hope of streamlining clinical
implementation of ART (8–20).

Radiation dose has long been regarded as a prime attribute for
morphometric volume change of tumors, neck lesions and
bilateral parotid glands throughout the treatment course. Bahl
et al. (8) prospectively analyzed volumetric alterations in 20 NPC
patients between pre-treatment computed tomography (CT) and
mid-treatment CT at the 17th fraction. They reported
approximately 30% shrinkage of high-risk gross-tumor-volume
(GTV), which was accompanied with a significantly increased
median dose of 7.2-7.7 Gy to and reduced volume of bilateral
2

parotid glands. Another prospective study by Cheng et al. (9)
demonstrated that the anatomic tissue shrinkage was dependent
on radiation dose received. They analyzed repeated planning CT
and magnetic resonance images (MRI) at 30-Gy and 50-Gy
intervals and reported that the shrinkage of both primary NPC
tumor and nodal lesions against pre-treatment baselines were
higher when 50-Gy was delivered (13% and 29%, respectively)
than that when 30-Gy was given (9% and 16%, respectively) and
a similar trend was also observed for bilateral parotid glands.
Further evidence was also observed by Hu et al. (10) who
analyzed 40 re-planned NPC patients and confirmed the
significant shrinkage of 35% in clinical-target-volume, and by
Murat et al. (11) who reported a median reduction of 27% and
43% in primary and nodal GTV, respectively, in 48 re-planned
head-and-neck cancer patients.

Notably, volumetric shrinkages of these organ structures are
often accompanied with geometric shifts of internal structures
(12, 13) and/or body contour modification (14, 15), which may
in concert contribute to an elevated risk of ill-fitted
immobilization cast during daily setup (14, 15) and/or
detrimental consequences following treatment [e.g., overdosing
to OARs (7, 16, 17), underdosing to targets (7, 12)], triggering the
demand for ART. In view of this, research community has
introduced numerous criteria as ART triggers (11, 12, 18–20),
mainly on dosimetric aspects. Nevertheless, most of these factors
require close monitoring throughout the radiotherapy course for
each patient, pre-treatment prediction of ART eligibility is
greatly demanding. Further, these factors are deficient in
capturing inter-patient disparity in intrinsic biologic response
of tissue upon receiving treatment perturbation.

Until more recently, emerging Radiomics has opened up
opportunities for divulging concealed biologic traits and
genetic association of tumor and organ structures (21–23).
There is mounting evidence in the literature showing the
power of Radiomics in predicting treatment response on the
ground of volume shrinkage in various cancer diseases (24–29),
which has laid great foundation for Radiomics prediction of ART
demand in cancer patients. Ramella et al. performed radiomic
analysis on pre-treatment CT images of replanned non-small cell
lung cancer patients and generated a radiomic signature for
prediction of tumor shrinkage during chemo-radiotherapy,
yielding an Area Under the Receiver Characteristics Curves
(AUC) of 0.82 (27). For the first time, Yu et al. generated
several radiomic models for ART eligibility in NPC patients
using tumoral radiomic features from multi-parametric pre-
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treatment MRI, achieving AUCs ranging from 0.75 to 0.93 (15).
It is worth noting that ART eligibility is multifactorial in nature.
Joint response of multiple organ structures upon treatment
perturbations, treatment aggressiveness, and pre-treatment
geometric and morphologic condition of patient anatomy, may
all come into play for triggering ART.

Therefore, it is pertinent to investigate the role of these
attributes, in the form of -omics features, from multiple
relevant organ structures within head-and-neck regions using
pre-treatment CT, MRI, contours, and three-dimensional dose
map for prediction of ART eligibility in NPC patients, which
constituted the main objective of this present study. The success
of this study may provide the community with valuable insights
into developing ART screening strategies in future, particularly
in view of the soaring demand of ART in this vulnerable
subgroup of cancer sufferers in the IMRT era.
METHODS AND MATERIALS

Patient Data
This study is a retrospective analysis of 261 NPC patients who
received radiotherapy at Hong Kong Queen Elizabeth Hospital
between 2012 and 2015. Patient informed consent was waived
due to the retrospective nature of this study. Patients were
included if they (1) were diagnosed with biopsy-proven
primary NPC without presence of distant metastasis and co-
existing tumors of other types at presentation (2), underwent
curative concurrent chemo-RT (CCRT) or CCRT plus adjuvant
chemotherapy (AC), and (3) were treated with Helical
Tomotherapy. Patients were excluded if they (1) received
induction chemotherapy before CCRT treatment, or (2)
received RT-alone without concurrent chemotherapy, or (3)
did not receive injection of contrast agent for obtaining
Frontiers in Oncology | www.frontiersin.org 3
planning contrast-enhanced CT (CECT) images or planning
contrast-enhanced T1-w (CET1-w) MR images, or (4) did not
have complete set of clinical/image data. The binary status of
whether or not an individual patient has undergone ART
treatment during their main course of RT at the discretion of
radiation oncologist was chosen as the clinical endpoint for this
study. Patients were labelled as 1 if he/she has received ART
treatment, otherwise were labelled as 0.

Image Acquisition
All the enrolled patients underwent pre-treatment planning
CECT and MRI scans, which were retrospectively retrieved in
Digital Imaging and Communications in Medicine (DICOM)
format, archived using Picture Archiving and Communication
System (PACs). Details of imaging parameters can be found in
Supplementary A1.

Volume-of-Interest (VOI) Definition
There were a total of 8 different VOIs of organ structures
involved in this study, including gross-tumor-volume of
primary NPC tumor (GTVnp) and metastatic lymph nodes
(GTVn), ipsi-lateral parotid gland (IpsiPG), contra-lateral
parotid gland (ContraPG), brainstem (BS), spinal cord (SC),
high-dose and low-dose regions of nodal planning target volume
(PTVn_high_dose for the PTVn with the prescribed dose level of
70-Gy, PTVn_low_dose for the PTVn with the prescribed dose
level of 60-Gy, respectively). Figure 1 illustrates location of each
VOI involved in this study.

GTVnp was manually delineated on axial CT slices after
registration with planning MR images, and GTVn was delineated
on CECT images by an experienced radiation oncologist
specializing in head-and-neck cancers with accreditations, in
accordance with International Consensus Guidelines for the CT-
based delineation of neck levels (30). To determine whether each
FIGURE 1 | Illustration of the eight VOIs involved in this study.
January 2022 | Volume 11 | Article 792024
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of the segmented parotid glands (PG) belongs to IpsiPG or
ContraPG for each patient, the minimum geometric distance
between a particular voxel point on the PG volume and all voxel
points on the GTVnp surface was first determined. This
procedure was repeated for another voxel point on the PG
volume until the minimum distances between each of all the
voxel points on the PG volume and the GTVnp surface were
determined. Lastly, a median value of these calculated minimum
distances was obtained to determine the overall proximity of that
PG to the GTVnp for each patient. The PG with smaller median
value of the minimum distances was denoted as IpsiPG,
otherwise it was denoted as ContraPG. All segmentations were
carried out using Varian ARIA and Eclipse treatment planning
system v13 (Varian Medical Systems Inc, Palo Alto, CA).

Multi-Omics Feature Extraction
Radiomics (R) and Morphology (M)
Prior to radiomic feature extraction, a series of image
preprocessing steps were performed on CECT and MR images
according to well-recognized recommendations from the Image
Biomarker Standardisation Initiative (IBSI) guidelines (31),
using our in-house developed Python-based (v3.7.3) platform.
Details of the image preprocessing procedures can be found in
Supplementary A2.

In this study, 4 different VOIs of organ structures (GTVnp,
GTVn, IpsiPG and ContraPG) were involved in radiomic feature
calculations. Extraction of radiomic features was performed using
the publicly available SimpleITK (v1.2.4) and PyRadiomics (v2.2.0)
packages embedded in our platform in accordance with the IBSI
guidelines (31). Radiomic features can be generally divided into
three major families: morphologic features, first-order statistics,
and texture features which can be further categorized into Gray
Level Difference Matrix (GLDM), Gray Level Cooccurrence Matrix
(GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level
Size Zone Matrix (GLSZM), Neighboring Gray Tone Difference
Matrix (NGTDM) classes. Radiomic feature calculations were
performed on CECT, CET1-w and T2-w MR images, with and
without being filtered by Laplacian of Gaussian (LoG) filter (kernel
size: 1-mm, 3-mm, 6-mm) and wavelet filters (HHH, HLL, LHL,
LLH, LHH, HLH, HHL, LLL). In this study, morphologic features
of all the 4 VOIs were separated from the radiomic feature set,
resulting in a total of 6,348 radiomic features for each studied VOI.
A total of 14 morphologic features, including elongation, flatness,
least axis length, major axis length, minor axis length, maximum
2D diameter column, maximum 2D diameter row, maximum 2D
diameter slice, maximum 3D diameter, mesh volume, sphericity,
surface area, surface volume ratio, voxel volume, for each of the 4
VOIs (i.e., GTVnp, GTVn, IpsiPG, and ContraPG) were combined
to form a set of 56 features. Detailed definitions of the radiomic and
morphologic features can be found on the Pyradiomics
documentation (https://pyradiomics.readthedocs.io/en/latest/
features.html).

Dosiomics (D)
All the 8 different VOIs of organ structures were employed for
dosiomic feature calculation using RT dose data. Conventional
dose-volume histogram (DVH) does not contain information on
Frontiers in Oncology | www.frontiersin.org 4
spatial dose distribution within irradiated organs. By contrast,
dosiomics is capable of characterizing spatial pattern of local
radiation dose distributions within the 8 studied VOIs. It has
been extensively studied in various predictive modelling for
cancer prognosis and treatment responses (32, 33). In this
study, dosiomic features of DVH curve points for the 8 VOIs
were calculated based on the method adopted by Gabryś et al.
(34), examples include but not limited to maximum dose,
minimum dose, mean dose, volume of the VOI receiving at
least certain dose levels, and minimum dose received by certain
volume of the VOI. Besides, spatial dose distribution within each
studied VOI was extracted to comprehensively depict the
heterogeneity of deposited dose, such as dose gradients along
the three imaging axes (x-, y- and z-directions). The definitions
of these features were described in a previous publication by
Buettner et al. (35). Further, the three-dimensional (3D) dose
distribution within each studied VOI was transformed into a 3D
image, such that radiomics-alike dosiomics features were
subsequently calculated using the PyRadiomics package;
examples include first-order dose statistics, GLDM, GLCM,
GLRLM, GLSZM and NGTDM. A total of 1608 dosiomic
features were extracted from the 8 VOIs in this study.

Contouromics (C)
In this work, we extracted features that depict complex geometric
relationships between 4 pairs of VOIs of organ structures (GTVnp
and IpsiPG, GTVnp and ContraPG, GTVnp and SC, and
PTVn_low_dose and SC), on the ground that the
implementation of ART is triggered by change of geometric
relationship of different internal organs within head and neck
regions. These features were extracted from the RT contour data.
For the first time, they were termed as “Contouromics” in this
study. For each of the VOI pairs, a series of contouromic features
were calculated from a distance descriptor overlap-volume
histogram (OVH), as adopted in a previous publication (36); for
instance, the maximum and minimum distances between SC and
PTVn_low_dose during the treatment planning stage were
calculated as the distances on the OVH at zero and full volume,
respectively. In this study, the calculation of OVHwas implemented
using the algorithm employed in a previous publication (37).
Besides, an angle descriptor projection-overlap-volume (POV),
defined as one VOI that overlaps with the parallel projection of
another VOI at specific projection angle, was used for further
divulging potential contouromic features from the VOI pairs. A
total of 132 contouromic features were extracted from the 4 pairs of
VOIs in this study. Table 1 summarizes the sources of VOIs
involved in calculation of the four types of -omics features studied.

Determination of Optimal Feature
Selection (FS) Algorithms for Each
-Omics Dataset
Feature dimensionality reduction is considered essential in
machine learning when it comes to minimizing the risk of
model overfitting. Although there are a multitude of
unsupervised and supervised FS algorithms currently available
for assessing redundancy and outcome relevance of the studied
features, an optimal combination of both kinds of FS algorithms
January 2022 | Volume 11 | Article 792024
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remains unclear. In this study, a total of 6 unsupervised and 4
supervised FS algorithms that have been commonly adopted in
machine learning were studied (38) and are publicly available
(https://jundongl.github.io/scikit-feature/algorithms.html),
giving rise to a resultant amount of 24 FS combinations
(Supplementary Figure S1).

A proper selection of FS combination for a particular feature set
is crucial to ensure that the final selected features of a prediction
model are of high discriminability (i.e., high score of Area Under the
Receiver Operating Characteristics Curve, AUC score) and high
reproducibility under multiple train/test splits of the dataset (i.e.,
high feature output stability score). To this end, we adopted a
strategic workflow (Supplementary Figure S2) to calculate both
scores and determined the optimal FS combination using a decision
graph (Supplementary Figure S3) for a particular -omics dataset.
More details can be found in Supplementary A3.

Development and Evaluation of ART
Prediction Models
In this study, a total of 4 single-omics models (R, M, D, C) and 4
multi-omics models (RM from R+M, RD fromR+D, RC fromR+C,
RMDC from R+M+D+C) were developed using the corresponding
-omics features from multiple VOIs of organ structures.

Figure 2 shows a schematic diagram for model development.
The patient cohort was divided into a training dataset and a hold-
out test dataset in a ratio of 7 to 3 via 20 iterations. The optimal
supervised FS algorithm was applied only to the training dataset of
each iteration to maintain clinical relevance of the remnant features.
The optimal unsupervised FS algorithmwas subsequently applied to
remove highly redundant features, leading to a reduced feature set
of K features. Development of prediction models was conducted
with the initial K features using the Ridge algorithm (for single-
omics model) or Multi-Kernel Learning (MKL) algorithm (for
multi-omics model) via a 10-fold cross-validation (CV) within the
training set to mitigate the risk of model overfitting. Evaluation of
model discriminability, in aspects of AUC, was performed on the
hold-out test set of each iteration. The model development process
was repeated on (K-1) features after removing the feature of the
lowest ranking of frequency of occurrence across the 20 iterations
until one feature remained in the feature set. An optimal prediction
model was finally determined when the average AUC on the hold-
out test datasets reached its maximum.

With regard to the model training algorithm, Ridge classifier
was adopted for generation of the 4 single-omics models. It is a
Frontiers in Oncology | www.frontiersin.org 5
typical statistical approach for resolving bias-variance trade-off
with the use of a linear function; the principles and advantages of
Ridge algorithm have been well-documented (39). On the other
hand, MKL algorithm was applied for development of multi-
omics models in this study. Unlike single-omics features,
different types of multi-omics data may contain distinctly
different data representations. Ridge algorithm is deficient in
capturing the difference in representations of multi-omics data
and non-linear relationship between predictors and prediction
outcome. Therefore, MKL was adopted in this study with an
attempt to divulging complementary (non-linear) relationship
between different types of -omics features and prediction
outcomes. Specifically, two types of kernels (Gaussian and
Polynomial) with a range of kernel parameters were applied.
Each kernel was embedded into the feature space of a given
multi-omics feature set for subsequent multi-omics fusion.
Supplementary Figure S4 illuminates the multi-omics fusion
framework in our study. More details of the MKL algorithms can
be found in Supplementary A4 and a previous publication (40).

Model Comparison and Statistical Analysis
For single-omics models, discriminability of the final radiomic
model (R), in terms of distribution of the AUC scores across the
20 iterations, was compared against the other 3 single-omics
models (M, D, and C) in both training and hold-out test datasets.
For multi-omics models, discriminability of the final RMDC
model was compared against the other 3 multi-omics models
(RM, RD, and RC) in both training and hold-out test datasets.
Further, we also compared the best-performing single-omics
model against all the 4 studied multi-omics models (RM, RD,
RC, and RMDC). With this regard, the selected single-omics
model was firstly re-trained using MKL algorithm for achieving a
fair comparison with multi-omics models.

Statistical estimates of model discriminability in terms of
average AUC, its standard deviation (STD) and 95% confident
interval (95%CI) across the 20 iterations for all the studied
prediction models were reported in this study. Two-sided
paired student t-test was employed for the abovementioned
comparisons. On the other hand, Chi-square test was
employed to assess statistical difference of categorical patient
clinical factors between patients who received ART and those
who did not, while two-sided student t-test was applied for
continuous clinical factors. A p-value of ≤ 0.05 was considered
statistically significant.
TABLE 1 | Summarizes the sources of VOIs involved in calculation of the four types of -omics features studied.

Radiomics (R) Morphology (M) Dosiomics (D) Contouromics (C)

CECT-GTVnp GTVnp GTVnp PTVn_low_dose-SC
CECT-GTVn GTVn GTVn GTVnp-IpsiPG
CECT-IpsiPG IpsiPG IpsiPG GTVnp-ContraPG
CECT-ContraPG ContraPG ContraPG GTVnp-SC
CET1w-GTVnp BS
CET1w-IpsiPG SC
CET1w-ContraPG PTVn_high_dose
T2w-GTVnp PTVn_low_dose
T2w-IpsiPG
T2w-ContraPG
January 2022 | Volume
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FIGURE 2 | Shows a schematic diagram for model development. T, Training set; H, Hold-out test set; FS, feature selection; MKL, Multi-Kernel Learning; CV, Cross-
Validation; AUC, Area Under the Receiver Operating Characteristics Curves.
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RESULTS

Patient Characteristics
A total of 135 NPC patients (35 experienced ART, approximately
26%) were finally considered eligible for this study. Table 2
summarizes major characteristics of the patients. There were no
statistically significant differences in the studied clinical factors
between patients who experienced ART and those who did not.

Optimal FS Combination Determination
and Model Development
Optimal combinations of FS algorithms for the 4 single-omics
datasets (R, M, D, C) and the 4 multi-omics datasets (RM, RD,
RC, RMDC) were determined using the decision graphs
(Supplementary Figures S5A–H) and were summarized in
Supplementary Table S1.

Supplementary Figures S6A–D and S7A–D illustrate the
change of average AUC scores (and its STD shown in shadow)
in both training and hold-out test sets against varying number of
features for the 4 single-omics models and the 4 multi-omics
models, respectively. Final models were determined when the
average AUC scores on the hold-out test sets reached its maximum.
Frontiers in Oncology | www.frontiersin.org 7
Table 3 summarizes the total number and distribution of the
selected features in the final models. Interestingly, it can be
observed that radiomic features are dominant in all the four
multi-omics models, compared to M, C, and D features.

Model Comparison
Figures 3A, B indicates box-whisker plots of the average AUC
distributions for the final single-omics models, and Figures 3C, D
for the multi-omics models and the Radiomic models trained by
using MKL algorithms, in training and hold-out test sets. A
summary of the statistical estimates of model performance is
provided in Tables 4A, B.

From Figures 3A, B and Table 4A, it can be seen that the
Radiomic model (R) significantly outperformed all other studied
single-omics models (p-value < 0.0001), achieving an average
AUC of 0.942 (STD: 0.009, 95%CI: 0.938-0.946) in the training
set and 0.918 (STD: 0.034, 95%CI: 0.903-0.933) in the hold-out set.

The Dosiomic model (D) was the second best single-omics
model with an average AUC of 0.895 (STD: 0.018, 95%CI: 0.887-
0.903) in the training set and 0.811 (STD: 0.029, 95%CI: 0.798-
0.824) in the hold-out set. This was followed by the Morphologic
model (M) which yielded an average AUC of 0.740 (STD: 0.032,
TABLE 2 | Patient clinical characteristics.

Clinical factor Data/p-value

Age p-value = 0.142
Average, Range 54 27 - 81
Gender p-value = 0.348
Male (no.,%) 101 75
Female (no.,%) 34 25
WHO Histologic subtype* p-value = 0.544
Type-1 (no., %) 4 3
Type-2 (no., %) 3 2
Type-3 (no., %) 128 95
T-Stage p-value = 0.133
T1 (no., %) 9 7
T2 (no., %) 9 7
T3 (no., %) 94 70
T4 (no., %) 23 17
N-Stage p-value = 0.146
N0 (no., %) 1 1
N1 (no., %) 22 16
N2 (no., %) 98 73
N3 (no., %) 14 10
Overall stage (7th AJCC) p-value = 0.077
Stage-I (no., %) 1 1
Stage-II (no., %) 7 5
Stage-III (no., %) 92 68
Stage-IVA (no., %) 23 17
Stage-IVB (no., %) 12 9
Initial size of primary tumor (mm3) p-value = 0.341
Average, range 43,482 4,537 - 184,333
Initial size of nodal lesion (mm3) p-value = 0.202
Average, range 31,078 501 - 330,143
Initial total tumor burden
(primary + nodal lesion) (mm3)

p-value = 0.153

Average, range 74,560 7,886 - 438,998
Pre-treatment body weight (kg) p-value = 0.265
Average, range 63 37-102
January 2022 | Volume 11
*WHO histologic subtype of NPC: Type 1: Keratinizing squamous cell carcinoma; Type 2: Non-keratinizing differentiated carcinoma; Type 3: Non-keratinizing undifferentiated carcinoma.
AJCC, American Joint Committee on Cancer.
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95%CI: 0.726-0.754) in the training set and 0.643 (STD: 0.078,
95%CI: 0.608-0.677) in the hold-out set, while the Contouromic
model (C) was the most underperforming model, producing an
average AUC of 0.664 (STD: 0.052, 95%CI: 0.641-0.687) in the
training set and 0.550 (STD: 0.082, 95%CI: 0.514-0.586) in the
hold-out test set.

From Figures 3C, D and Table 4B, it can be observed that the
RMDCmodel had the highest AUC of 0.997 (STD: 0.003, 95%CI:
0.995-0.998) in the training set and 0.943 (STD: 0.029, 95%CI:
0.931-0.956) in the hold-out set, compared to other types of
multi-omics models. While it statistically outperformed the other
Frontiers in Oncology | www.frontiersin.org 8
three studied multi-omics models (RM, RD, and RC) in the
training set, it did not reach the statistical significant level in the
hold-out test set.

Notably, when the R model was re-trained using MKL
algorithm (referred to as R_MKL model), the average AUC
boosted to 0.984 (STD: 0.008, 95%CI: 0.981-0.988) in the
training set and 0.927 (STD: 0.050, 95%CI: 0.905-0.948) in the
hold-out set. The development and performance of the R_MKL
model can be seen in Supplementary Figure S7E, Figures 3C, D
and Table 4B. Surprisingly, further comparisons between the
R_MKL model and all the 4 studied multi-omics models
A

C

B

D

FIGURE 3 | (A–D) Box-whisker plots of the average AUC distribution for the final single-omics models in training set (A) and hold-out test set (B), and for the multi-
omics models and the Radiomic models trained by using MKL algorithms in training (C) and hold-out test set (D).
TABLE 3 | A summary of total number and distribution of selected features in the final models.

Number of Final Selected Features

Total R M C D

Radiomics (R) 11 11 * * *
Morphology (M) 9 * 9 * *
Contouromics (C) 10 * * 10 *
Dosiomics (D) 18 * * * 18
Radiomics (R_MKL) 23 23 * * *
RM 33 31 2 * *
RC 28 27 * 1 *
RD 38 30 * * 8
RDCM 55 36 3 9 7
January 2
022 | Volume 11 | Article 7
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indicated that there were no significant differences in model
discriminability between R_MKL and all other multi-omics
models in the hold-out test set (Figure 3D and Table 4B).
DISCUSSION

ART aims to compensate for patient-specific anatomic variations
in NPC patients between fractions, while routine ART
implementation on patient basis would undoubtedly pose
immense burden to clinic. Previously, we were the first to
demonstrate the capability of tumoral Radiomics from pre-
treatment MRI for prediction of ART eligibility in NPC
patients (15). In this study, we investigated a variety of single-
omics and multi-omics models from multi-modal images, with
an eye towards identifying their roles in predicting ART
eligibility in NPC and providing insights into development of
ART eligibility screening strategy in NPC in the long run. In this
discussion, we attempted to highlight key findings of our study,
scrutinize possible underlying reasons, and provide research
community with potential directions in the future.

Results of our study showed that the R model significantly
outperformed all other studied single-omics models (i.e., M, C and
D models, all p-value < 0.0001), achieving an average AUC of 0.942
(STD: 0.009, 95%CI: 0.938-0.946) in the training set and 0.918
(STD: 0.034, 95%CI: 0.903-0.933) in the hold-out test set
(Figures 3A, B and Table 4A). Among the studied multi-omics
models, the RMDC had the highest average AUC in both cohorts
(Figures 3C, D and Table 4B), however, its difference to the other
three models (RM, RD and RC) did not reach the level of statistical
significance in the hold-out test sets (Table 4B). Surprisingly, there
was no statistical difference between the R_MKL and all the studied
multi-omics models in the hold-out set (Table 4B). In other words,
addition of other types of -omics features into a radiomic model did
not demonstrate statistically significant improvement in model
performance, suggesting the dominant role of Radiomic features
Frontiers in Oncology | www.frontiersin.org 9
in prediction of multifactorial ART eligibility in NPC. Besides,
Radiomic features accounted for majority of the final selected
features, ranging from 64% to 94%, in all the studied multi-omics
models (Table 3). We speculated that the dominant role of
Radiomics found in this study could partially be explained by
both the unique nature of Radiomics and the multi-factorial
nature of the ART eligibility.

First, the outstanding predictability of Radiomics in this study
may largely lie in its unique capability in unraveling intrinsic tissue
property regarding response to treatment perturbations, which can
be tissue-type dependent and patient-specific. There is mounting
evidence in the literature showing the power of Radiomics in
predicting treatment response in various cancer diseases (24–29).
For instance, Hou et al. investigated CECT-based biomarkers for
prediction of therapeutic response to chemo-radiotherapy in
esophageal carcinoma and reported the discriminability of their
model in AUC ranging from 0.686 to 0.727 (24). Wang et al.
developed a radiomic signature combining features from multi-
modal MR imaging sequences for prediction of early treatment
response to induction chemotherapy in NPC patients, achieving an
AUC of 0.822 (25). Piao et al. devised a MR-based radiomic model
to distinguish sensitive and resistant tumors in NPC patients
following induction chemotherapy, yielding an AUC of 0.905
(26). In these studies, the tumor response was defined in
accordance with the Response Evaluation Criteria in Solid
Tumors (RECIST) via quantitative assessment of tumor
shrinkage, which follows the same line of thought as in this
present study. Apart from this, Ramella et al. performed radiomic
analysis of pre-treatment CT images of replanned non-small-cell
lung cancer patients and generated a radiomic signature for
prediction of tumor shrinkage during chemo-radiotherapy,
yielding an AUC of 0.82 (27). Yu et al. analyzed tumoral
radiomic features from multi-parametric pre-treatment MRI of
NPC patients and developed several prediction models for ART
eligibility, achieving AUC ranging from 0.750 to 0.930 (15). All the
above evidence indicates the outstanding capability of Radiomics in
TABLE 4(A-B) | A summary of statistical estimates on performance of single-omics models (4A), multi-omics models and the Radiomic model trained by using MKL
algorithm (4B).

Table 4A Training Set Hold-out test set

Avg. AUC STD 95% CI p-value Avg. AUC STD 95% CI p-value

Single-omics Model
Radiomics (R) 0.94 0.01 (0.938,0.946) Ref 0.92 0.03 (0.903,0.933) Ref
Morphology (M) 0.74 0.03 (0.726,0.754) <0.0001* 0.64 0.08 (0.608,0.677) <0.0001*
Contouromics (C) 0.664 0.052 (0.641,0.687) <0.0001* 0.55 0.082 (0.514,0.586) <0.0001*
Dosiomics (D) 0.9 0.02 (0.887,0.903) <0.0001* 0.81 0.03 (0.798,0.824) <0.0001*

Table 4B Training Set Hold-out test set

Avg. AUC STD 95% CI p-value Avg. AUC STD 95% CI p-value

Multi-omics Model
RM 0.99 0.01 (0.983,0.989) <0.0001* 0.47 0.93 0.04 (0.916,0.952) 0.36 0.62
RD 0.99 0 (0.990,0.994) <0.01* <0.001* 0.93 0.03 (0.920,0.947) 0.37 0.64
RC 0.99 0.01 (0.984,0.989) <0.0001* 0.42 0.93 0.04 (0.909,0.941) 0.14 0.92
RMDC 1 0 (0.995,0.998) Ref <0.0001* 0.94 0.03 (0.931,0.956) Ref 0.21
Radiomic Model (trained by MKL)
R_MKL 0.98 0.01 (0.981,0.988) <0.0001* Ref 0.93 0.05 (0.905,0.948) 0.21 Ref
January 2
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The symbol (*) represents meeting the level of statistical significance (p < 0.05).
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divulging patient-specific intrinsic tissue biologic characteristics for
discerning respondent and non-respondent cancer patients upon
treatment perturbations, laying great foundation for predicting
patient-specific anatomic variations for ART eligibility for NPC in
this study.

By contrast, Dosimoics mainly characterizes aggressiveness of a
specific treatment plan by capturing dose statistics from the entire
three-dimensional dose distribution map within each of the studied
organ structures, while it appears to convey little information on
tissue responsiveness upon treatment perturbations. To a degree,
this may shed some light on the well-recognized phenomenon
where the same-staged patients experienced a diverse range of
treatment outcome/response following identical treatment (same
degree of treatment aggressiveness). Herein, we emphasize that
results of our study do not deny the potential of Dosiomics in
predicting treatment response. Indeed, it is worth noting that the D
model was the second best-performing model in this study, giving
rise to an average AUC of 0.895 (STD: 0.018, 95%CI: 0.887-0.903) in
the training set and 0.811 (STD: 0.029, 95%CI: 0.798-0.824) in the
hold-out test set (Figures 3A, B and Table 4A). This result appears
in agreement with most of the previous studies investigating
triggering factors for ART in NPC (8–20), where radiation dose
deposited was regarded as a prime factor for morphologic volume
shrinkage of targets and OARs during the RT course, which may in
turn incur intolerable dosimetric deviations from initial treatment
plan and hence trigger ART implementation. For instance, Cheng
et al. (9) analyzed repeated planning CT andMR scans at 30 and 50-
Gy intervals. They reported that the shrinkage of both primary
tumor and nodal lesions were higher when 50-Gy was delivered
(13% and 29%, respectively) than that when 30-Gy was given (9%
and 16%, respectively) and similar trend was also observed for
bilateral parotid glands, which jointly led to significant increase in
doses to numerous critical OARs, triggering implementation of
ART. In this regard, several research groups have also suggested to
incorporate dosimetric deviations in targets and/or OARs (such as
parotid glands) as part of the ART regimen (12, 18–20). Of note,
although Dosiomics has recently been studied for prediction of
toxicity (32, 34, 41–43) and prognosis (33, 44) in cancer patients, its
potential in treatment response prediction, in particular on the basis
of the RECIST criteria, has not been reported. Future studies in this
aspect are recommended to confirm its capability in this regard.

On the other hand, Morphologic and Contouromic features
merely depict initial morphometric characteristics and geometric
relationship between organs, respectively. They share commonality
in their distinct disparity against Radiomics in that they both carry
little or no underlying biologic information of the studied organ
structures. This may in part explain the fair-to-poor predictive
performance of the M and C models in our study, yielding an AUC
of 0.643 (STD: 0.078, 95%CI: 0.608-0.677) and 0.550 (STD: 0.082,
95%CI: 0.514-0.582) in the hold-out test set, respectively
(Figures 3A, B and Table 4A).

In addition, the multifactorial nature of ART eligibility in the
context of NPC disease may further elucidate why Radiomics plays
a dominant role in this study, irrespective of additional types of
-omics features. ART eligibility in NPC depends on multiple
organs located in a confined space of head-and-neck regions.
Frontiers in Oncology | www.frontiersin.org 10
GTVnp, GTVn and bilateral parotid glands are all bulky organ
structures within the nose-pharynx ministry, responsiveness of
these structures upon treatment perturbations jointly determines
the degree of patient-specific alternations in anatomy, hence
affecting the demand for ART. Given the unique superiority of
Radiomics in unravelling intrinsic tissue biologic response, we
inferred that the role of Radiomics could become increasingly
important when more organ structures come into play in
contributing to the studied outcome (i.e., the ART eligibility),
compared with other types of -omics features. This may, to some
extent, provide an insight into our findings that Radiomic features
accounted for the largest proportion of the final selected features in
all the studied multi-omics models (Table 3); and that the multi-
organ-based R model performed far better than other single-omics
models (all p-value < 0.0001) (Table 4A); and that incorporating
Morphologic and/or Dosiomic and/or Contouromic features into
the radiomic model did not demonstrate statistically significant
improvement in the hold-out test set (Table 4B) (all p-value >
0.05). Herein, we highlight that findings of this study may provide
research community with valuable insights into development of
pre-treatment stratification strategies for ART eligibility in NPC
patients, potentially facilitating clinical implementation of ART in
the future.

Although there exists a lack of studies on revealing multi-omics
in prediction of multi-organ triggering outcome, results from a few
studies in the literature may worth our attention. Sheikh et al.
investigated radiomics and dosimetric features from bilateral
parotid and submandibular glands (i.e., four separated organ
structures) for predicting xerostomia, and reported that addition
of dosimetric and clinical factors into a joint-CT-MR radiomic
model did not lead to statistically significant improvement in model
performance (45), which appears to be in line with our current
findings. By contrast, Jiang et al. reported superior model
performance when using both radiomic and dosimetric features
from five lung sub-regions for predicting radiation pneumonitis
than when using radiomic features alone (46), which may appear
contradictive to our findings. However, it should be noted that the
features in their studies were essentially derived from a single organ
– the same lung tissue, rather than individual separated organ
structures as in this current work. Further, unlike the present work,
only CT-based radiomics was adopted in their study, which may
lead to a relatively weaker predictive power than as if it were
developed from multi-modal images that capture complementary
tissue characteristics. Notwithstanding, this presents an interesting
area to be explored and a close scrutinization of different types of
features in prediction of a multi-organ contributing outcome is
highly warranted in the future to further affirm the role of radiomics
in context.

This study has several limitations. First, our models were
developed and validated in a small-sized single cohort of NPC
patients who received CCRT under Tomotherapy machine. While
we believe such a homogeneous dataset is advantageous for model
building, findings of our study require further validation in a large
multi-cohort study. However, it is worth noting that the goal of this
study was to assess the role of different omics-based prediction
models for ART eligibility in NPC, instead of developing a
January 2022 | Volume 11 | Article 792024
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generalizable model for clinical adoption. Thus, results of this study
still deserve great attention in the community. Second, this study
employed a large number of features for model building, which may
lead to model overfitting in a small-sized cohort. In this regard, we
deployed a strategic approach of determining optimal FS
combinations that were used for feature dimensionality reduction
prior to model development. The remnant feature sets were of high
outcome relevance and low feature redundancy, and only 10 to 33
and 37 to 55 features were input to the modelling algorithms for
developing single-omics and multi-omics models, respectively.
CONCLUSION

Comparisons among all the studied models indicated that the
Radiomic model was found to play a dominant role for ART
eligibility in NPC patients; and Radiomic features accounted for
the largest proportion of features in all the four multi-omics models,
suggesting its governing power in ART eligibility prediction.
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30. Grégoire V, Levendag P, Ang KK, Bernier J, Braaksma M, Budach V, et al. CT-
Based Delineation of Lymph Node Levels and Related CTVs in the Node-Negative
Neck: DAHANCA, EORTC, GORTEC, NCIC, RTOG Consensus Guidelines.
Radiother Oncol (2003) 69(3):227–36. doi: 10.1016/j.radonc.2003.09.011

31. Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte
A, et al. The Image Biomarker Standardization Initiative: Standardized
Quantitative Radiomics for High-Throughput Image-Based Phenotyping.
Radiology (2020) 295(2):328–38. doi: 10.1148/radiol.2020191145

32. Lee SH, Han P, Hales RK, Voong KR, Noro K, Sugiyama S, et al. Multi-View
Radiomics and Dosiomics Analysis With Machine Learning for Predicting
Acute-Phase Weight Loss in Lung Cancer Patients Treated With
Radiotherapy. Phys Med Biol (2020) 65(19):195015. doi: 10.1088/1361-6560/
ab8531

33. Wu A, Li Y, Qi M, Lu X, Jia Q, Guo F, et al. Dosiomics Improves Prediction of
Locoregional Recurrence for Intensity Modulated Radiotherapy Treated Head
and Neck Cancer Cases. Oral Oncol (2020) 104:104625. doi: 10.1016/
j.oraloncology.2020.104625
Frontiers in Oncology | www.frontiersin.org 12
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