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Abstract

More and more genome-wide association studies are being designed to uncover the full

genetic basis of common diseases. Nonetheless, the resulting loci are often insufficient to

fully recover the observed heritability. Epistasis, or gene-gene interaction, is one of many

hypotheses put forward to explain this missing heritability. In the present work, we propose

epiGWAS, a new approach for epistasis detection that identifies interactions between a tar-

get SNP and the rest of the genome. This contrasts with the classical strategy of epistasis

detection through exhaustive pairwise SNP testing. We draw inspiration from causal infer-

ence in randomized clinical trials, which allows us to take into account linkage disequilib-

rium. EpiGWAS encompasses several methods, which we compare to state-of-the-art

techniques for epistasis detection on simulated and real data. The promising results demon-

strate empirically the benefits of EpiGWAS to identify pairwise interactions.

Introduction

Decrease in sequencing cost has widened the scope of genome-wide association studies

(GWAS). Large cohorts are now built for an ever growing number of diseases. In common

ones, the disease risk depends on a large number of genes connected through complex interac-

tion networks. The classical approach and still widespread methodology in GWAS is to imple-

ment univariate association tests between each single nucleotide polymorphism (SNP) and the

phenotype of interest. Such an approach is limited for common diseases, where the interac-

tions between distant genes, or epistasis, need to be taken into account. For instance, several

epistatic mechanisms have been highlighted in the onset of Alzheimer’s disease [1]. Most nota-

bly, the interaction between the two genes BACE1 and APOE4 was found to be significant on

four distinct datasets. Moreover, at least two epistatic interactions were also reported for multi-

ple sclerosis [2, 3].

Several strategies [4, 5] have been developed for the detection of statistical epistasis. Many

of them consist in exhaustive SNP-SNP interaction testing, followed by corrections for multi-

ple hypothesis testing using procedures such as Bonferroni correction [6] or the Benjamini-

Hochberg [7] (BH) procedure. For all procedures, the correction comes at the cost of poor sta-

tistical power [8]. For high-order interactions, the loss in statistical power is aggravated by the

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0242927 November 30, 2020 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Slim L, Chatelain C, Azencott C-A, Vert J-

P (2020) Novel methods for epistasis detection in

genome-wide association studies. PLoS ONE

15(11): e0242927. https://doi.org/10.1371/journal.

pone.0242927

Editor: Jiang Gui, Dartmouth College, UNITED

STATES

Received: June 1, 2020

Accepted: November 11, 2020

Published: November 30, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0242927

Copyright: © 2020 Slim et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

information files.

Funding: This study makes use of data generated

by the Wellcome Trust Case-Control Consortium. A

https://orcid.org/0000-0002-5362-7750
https://orcid.org/0000-0001-9510-8441
https://doi.org/10.1371/journal.pone.0242927
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0242927&domain=pdf&date_stamp=2020-11-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0242927&domain=pdf&date_stamp=2020-11-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0242927&domain=pdf&date_stamp=2020-11-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0242927&domain=pdf&date_stamp=2020-11-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0242927&domain=pdf&date_stamp=2020-11-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0242927&domain=pdf&date_stamp=2020-11-30
https://doi.org/10.1371/journal.pone.0242927
https://doi.org/10.1371/journal.pone.0242927
https://doi.org/10.1371/journal.pone.0242927
http://creativecommons.org/licenses/by/4.0/


large number of SNP tuples to consider. Moreover, exhaustive testing for high-order interac-

tions is also accompanied by an increase in computational complexity. For increased speed,

the current state-of-the-art BOOST [9] and its GPU-derivative [10] add a preliminary screen-

ing to filter non-significant interactions. Another fast interaction search algorithm in the high-

dimensional setting is the xyz-algorithm [11].

By contrast, instead of constructing exhaustive models, we propose to focus on the interac-

tions that involve a given variant, that we refer to as the target in what follows. The target is a

formerly identified SNP that can be extracted from top hits in previous GWAS, causal genes,

or experiments. The main rationale behind this approach is to leverage the established depen-

dency between the target and the phenotype for a better detection of epistatic phenomena: a

lower number of interactions has to be studied with the additional guarantee that the target

affects the phenotype in question. In addition, focusing on interactions with a single variant

allows us to model the interaction of this variant with all other SNPs in the genome at once,

rather than pair of SNPs by pair of SNPs.

For the purpose of epistasis detection, the pure synergistic effects of the target with other var-

iants must be decoupled from the marginal effects of the target and the other variants. A failure

to address this issue can alter the results. One way to do so is to use an ℓ1-penalized regression

model [12] with both marginal effect and quadratic interaction terms. If only one target SNP is

investigated, generating as many quadratic interaction terms as remaining SNPs in the genome,

the number of coefficients in this regression is doubled compared to a linear model with only

marginal effects, rather than squared if all pairwise interaction terms were to be considered.

However, this is still too many in a high-dimensional context such as GWAS. To improve the

inference of the interaction coefficients, Bien et al. [13] introduced hierNET, a LASSO with

hierarchy constraints between marginal and interactions terms. However, this approach does

not scale to more than a hundred variables and is therefore inapplicable to GWAS data.

We turn instead towards methods developed in the context of randomized controlled trials,

which aim at detecting synergies between a treatment (rather than a target SNP) and a set of

covariates (rather than other SNPs) towards an outcome (rather than a phenotype). We draw

on this analogy to propose two families of methods for epistasis detection. First, modified out-

come approaches are inspired by the work of Tian et al. [14]. Here we construct a modified

phenotype from the phenotype and all SNPs, in such a way that the SNPs in epistasis with the

target form the support of a sparse linear regression between this modified phenotype and the

non-target SNPs. Second, outcome weighted learning approaches are inspired by the work of

Zhao et al. [15]. Here the SNPs in epistasis with the target form the support of a weighted

sparse linear regression between the phenotype and the non-target SNPs, with samples

weighted according to the phenotype and the target SNP.

A major difference between our setting and that of randomized controlled trials is the fact

that, where they assume that the treatment is independent from the covariates, we cannot

assume independence between the target SNP and the rest of the genome. Indeed, although

recombination can be expected to break down non-random associations between alleles at sev-

eral loci, such associations exist, and are referred to as linkage disequilibrium [16]. To account

for this dependence, we introduce the equivalent of propensity scores (that is to say, the proba-

bility of treatment given the covariates [17]) in the modified outcome and outcome weighted

learning approaches. In addition, the high dimensionality of the data leads us to use stability

selection [18, 19] to select the regularization parameter of the ℓ1-penalized regressions.

In summary, we develop a new framework to study epistasis by solely focusing on the syn-

ergies with a predetermined target. By proceeding this way, our methods improve the recovery

of interacting SNPs compared to standard methods like GBOOST or a LASSO with interaction

terms. We demonstrate the performance of our methods against both of them for several types
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of disease models. We also conduct a case study on a real GWAS dataset of type II diabetes to

demonstrate the scalability of our methods and to investigate the resulting differences between

them.

Materials and methods

Setting and notations

We jointly model genotypes and phenotypes as a triplet of random variables (X, A, Y) with dis-

tribution P, where Y is a discrete (e.g. in case-control studies) or continuous phenotype, X =

(X(1), � � �, X(p)) 2 {0, 1, 2}p represents a genotype with p SNPs, and A is the (p + 1)-th target

SNP of interest. The reason why we split the p + 1 SNPs into X and A is that our goal is to

detect interactions involving A and other SNPs in X. Several selection strategies are possible

for the anchor target A: eQTL SNPs for genes with proven effect on the phenotype Y, deleteri-

ous splicing variants, or among significant SNPs in previous GWAS. In classical GWAS, the

SNPs are identified on the basis of the significance of their main effects. A SNP with interac-

tion effects only can then be overlooked. To detect such SNPs, we can use association measures

such as distance correlation [20] and mutual information [21] which can better capture sec-

ond-order interaction effects. Alternatively, for the genotype X, we can choose the rest of the

genome (the whole genome except the target A) or a given set of SNPs. The SNP set may corre-

spond to a genomic region of interest e.g. gene, promoter region, or a pathway.

We restrict ourselves to a binary encoding of A in {−1, +1}, which allows us to study both

recessive and dominant phenotypes, depending on how we binarize the SNP represented in A.

For instance, to model dominant effects, we respectively map {0} and {1, 2} to {−1} and {+1}.

We also introduce a second binarized version of the target SNP A taking values in {0, 1} by let-

ting ~A ¼ ðAþ 1Þ=2. SNP binarization is a common procedure in GWAS in particular for the

study of epistasis. Prabhu and Pe’er [22] and Llinares-López [23] implement binarized geno-

types, while Achlioptas et al. [24] use locality-sensitive hashing (LSH) to transform the original

genotypes into binary vectors. The question is moot in doubled haploid organisms, where the

SNPs are homozygous only.

The target SNP A being symmetric and binary, it is always possible to decompose the geno-

type and phenotype relationship as:

Y ¼ mðXÞ þ dðXÞ � Aþ �; ð1Þ

where � is a zero mean random variable and,

mðXÞ ¼
1

2
E YjA ¼ þ1;Xð Þ þ E YjA ¼ � 1;Xð Þ½ � ;

dðXÞ ¼
1

2
E YjA ¼ þ1;Xð Þ � E YjA ¼ � 1;Xð Þ½ � :

8
>><

>>:

ð2Þ

If we further decompose δ(X) = δ0 + δ1(X) with Eðd1ðXÞÞ ¼ 0, then δ0 represents the main

effect of A, and δ1(X) the synergistic effects between A and all SNPs in X. In the context of

genomic data, we can interpret these synergies as pure epistatic effects: the main effects are

accounted for by μ(X) and δ0. Furthermore, if δ1(X) is sparse, meaning that it only depends on

a subset of elements of X, referred to as the support of δ1(X), then the SNPs in this support are

the ones interacting with A. In other words, searching for epistatic interactions between A and

SNPs in X amounts to searching for the support of δ.

A GWAS dataset is a set of n triplets (Xi, Ai, Yi)i=1,. . .,n, which we model as independent ran-

dom variables identically distributed according to P. To estimate the support of δ(X) from a
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GWAS dataset, we propose several models based on sparse regression. The common thread

between them is the use of propensity scores to estimate δ(X) and its support without estimat-

ing μ(X). We borrow the notion of propensity score from the causal inference literature, where

we are interested in estimating the effect of a treatment on individuals characterized by covari-

ates x. In that context, the propensity score e(x) is defined as the conditional probability of

being treated for an individual with covariates x. The propensity score can be used to compen-

sate the differences in covariates between the two groups in observational studies, where, by

contrast with randomized controlled trials, investigators have no control over the treatment

assignment [25]. In our case, by analogy, we define the propensity score e(x) for a configura-

tion of SNPs X = x as the probability that the target SNP A is equal to 1, i.e., e(x) = P(A = 1|X =

x). This score allows us to model linkage disequilibrium (LD) between A and other nearby

SNPs within X. Based on this notion of propensity score, the first family of methods we pro-

pose falls under the modified outcome banner [14]. In these models, an outcome that com-

bines the phenotype Y with the target SNP A and the propensity score e(X) is fit linearly to the

genomic covariates X. We propose several variants of this approach, which differ in their con-

trol of estimation errors. Our second proposal is a case-only method based on the framework

of outcome weighted learning [15]. In this model, which is a weighted binary classification

problem, the outcome is the target SNP A, the covariates are the rest of the genotype X, while

the phenotype Y and the propensity score e(X) are incorporated in the sample weights.

If not stated otherwise, the full data pipeline is written in the R language. The methods pre-

sented in this work are implemented in the R package epiGWAS, which is directly available

via CRAN. The source code can also be downloaded from the GitHub repository https://

github.com/EpiSlim/epiGWAS.

Modified outcome regression

Depending on the underlying target value and the binarization rule, only one of the two possi-

bilities A = +1 or A = −1 is observed for a given sample. In other words, as in randomized con-

trolled trials where, for each sample, either the treatment is applied or it is not, here, for any

given sample, we do not observe the phenotype associated with the same genotype except in A

which takes the other value. Hence δ(X) cannot be estimated directly from GWAS data using

Eq (2). The propensity score comes into play to circumvent this problem. By considering the

new binarized variable ~A ¼ ðAþ 1Þ=2 2 f0; 1g, we can indeed use the fact that

E½Y ~A jX� ¼ E½Y jX; ~A ¼ 1�eðXÞ ;

E½Yð1 � ~AÞ jX� ¼ E½Y jX; ~A ¼ 0�ð1 � eðXÞÞ ;

(

to rewrite Eq (2) as:

dðXÞ ¼
1

2
E ~Y jX
� �

; ð3Þ

where we define the modified outcome ~Y of an observation (X, A, Y) as:

~Y ¼ Y
~A

eðXÞ
�

1 � ~A
1 � eðXÞ

� �

: ð4Þ

Our definition of modified outcome in Eq (4) generalizes that of Tian et al. [14], where it is

defined as ~Y ¼ Y ~A; both definitions are equivalent in the specific situation considered by Tian

et al. [14] where A and X are independent, i.e., e(x) = 1/2 for all x. Our definition (4) remains
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valid even when A and X are not independent, and can therefore accommodate the diversity of

the LD landscape and of the broad range of minor allele frequencies.

Given Eq (3), we propose to estimate the support of δ from GWAS data by first transform-

ing them into genotype-modified outcome pairs ðXi;
~Y iÞi¼1;...;n, and then applying a sparse

least-squares regression model for support recovery. For that purpose, we use an elastic net lin-

ear regression model, combined with a stability selection procedure for support selection, as

subsequently discussed in this paper.

In practice, however, creating the modified outcome ~Y i from a triplet (Xi, Ai, Yi) using (4)

raises two issues: (i) the propensity score e(Xi) must be known, and (ii) when the propensity

score is close to 0 or 1, then the propensity score weighting may create numerical instability

and large variance in the estimation of δ. Similar problems arise in the causal inference litera-

ture, particularly for techniques based on inverse propensity score weighting techniques

(IPW) [25] and we consider four standard approaches to form modified outcomes with inverse

propensity score weights. They all start with an estimate êðXÞ of the true propensity score,

which we later explain.

• Modified outcomes are simply obtained by replacing e(Xi) by its estimate êðXiÞ in (4):

~Y i ¼ Yi

~Ai

êðXiÞ
�

1 � ~Ai

1 � êðXiÞ

� �

:

• Shifted modified outcomes are obtained by simply adding a small term ξ = 0.1 to the denom-

inators in order to limit the inverse propensity score weight of each individual to a maxi-

mum of 1/ξ:

~Y i ¼ Yi

~Ai

êðXiÞ þ x
�

1 � ~Ai

1 � êðXiÞ þ x

� �

:

• Normalized modified outcomes are obtained by scaling differently the inverse propensity

scores of individuals with ~A ¼ 0 and ~A ¼ 1, so that the total weights of individuals in each

group is the same. This normalization was shown to be beneficial empirically for the estima-

tion of average treatment effect in causal inference with IPW estimators [26]:

~Y i ¼ Yi w1

~Ai

êðXiÞ
� w0

1 � ~Ai

1 � êðXiÞ

� �

;

where, for t = 0, 1,

wt ¼
Xn

j¼1

t
~Aj

êðXjÞ
þ ð1 � tÞ

1 � ~Aj

1 � êðXjÞ

 !� 1

:

• Robust modified outcomes are also borrowed from the causal inference literature, and were

shown to have small large-sample variance when used for average treatment effect prediction

with IPW estimators [26]:

~Y i ¼ Yi w1 1 �
C1

êðXiÞ

� �
~Ai

êðXiÞ
� w0 1 �

C0

1 � êðXiÞ

� �
1 � ~Ai

1 � êðXiÞ

� �

;
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where, for t = 0, 1,

Ct ¼

Pn
j¼1

~Aj � êðXiÞ

têðXiÞþðt� 1Þð1� êðXiÞÞ

Pn
j¼1

~Aj � êðXiÞ

têðXiÞþð1� tÞð1� êðXiÞÞ

h i2
;

and

wt ¼
Xn

j¼1

t 1 �
C1

êðXiÞ

� � ~Aj

êðXjÞ
þ ð1 � tÞ 1 �

C0

1 � êðXiÞ

� �
1 � ~Aj

1 � êðXjÞ

 !� 1

:

Outcome weighted learning

Inspired by the outcome weighted learning (OWL) model of Zhao et al. [15], developed in the

context of randomized clinical trials, we now propose an alternative to the modified outcome

approach to estimate δ(X) and its support using a weighted binary classification formulation.

As with OWL, this formulation mathematically amounts to predicting A from X, where pre-

diction errors are weighted according to Y in the fitting process. In the original OWL proposal,

the goal is to determine an optimal individual treatment rule d� that predicts treatment A from

prognostic variables X so as to maximize the clinical outcome Y. In our context, this translates

to determining an optimal predictor d� that predicts target SNP A from genotype X, so as to

maximize Y (which is larger for cases than controls). We expect such a predictor to rely on the

SNPs that interact with A towards predicting the phenotype Y. We assume in this section that

Y only takes nonnegative values, e.g., Y 2 {0, 1} for a case-control study. To take into account

the dependency between A and X, we replace P(A) with P(A|X) in the original OWL definition

[15] and look for the following decision rule:

d� 2 argmin
d:f0;1;2gp!R

E
Y

PðAjXÞ
�ðAdðXÞÞ

� �

; ð5Þ

where ϕ is a non-increasing loss function such as the logistic loss:

8u 2 R ; �ðuÞ ¼ log ð1þ e� uÞ : ð6Þ

The reason to consider this formulation is that:

Lemma 1. The solution d� to (5), (6) is:

8x 2 f0; 1; 2gp
; d�ðxÞ ¼ ln

E½YjA ¼ þ1;X ¼ x�
E½YjA ¼ � 1;X ¼ x�

:

Proof. For any x 2 {0, 1, 2}p, we see from Eq (5) that d�(x) must minimize the function l : R!
R defined by

8u 2 R ; lðuÞ ¼ E
Y

PðAjX ¼ xÞ
�ðAuÞ jX ¼ x

� �

¼ �ðuÞE½Y jA ¼ 1;X ¼ x� þ �ð� uÞE½Y jA ¼ � 1;X ¼ x�:

This function is minimized when l0(u) = 0, that is, when �
0
ðuÞE½Y jA ¼ 1;X ¼ x� ¼

�
0
ð� uÞE½Y jA ¼ � 1;X ¼ x�; which is equivalent to:

E½Y jA ¼ 1;X ¼ x�
E½Y jA ¼ � 1;X ¼ x�

¼ eu:
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Lemma 1 clarifies how d� is related to δ as defined in Eq (2): while δ is half the difference

between the expected phenotype conditioned on the two alternative values of A, d� is the log-

ratio of the same two quantities. In particular, both functions have the same sign for any geno-

type X. Hence we propose to estimate d� and its support, as an approximation and alternative

to estimating δ and its support, in order to capture SNPs in epistasis with A.

For any given (X, A, Y), if we define the weight W = Y/P(A|X), we can interpret d� in Eq (5)

as a logistic regression classifier that predicts A from X, with errors weighted by W. Hence d�

and its support can be estimated from GWAS data by standard tools for weighted logistic

regression and support estimation. We use an elastic net logistic regression model, combined

with a stability selection procedure for model selection, detailed afterwards.

In the case of qualitative GWAS studies, we encode Y as 0 for controls and 1 for cases. The

sample weights W of controls thus become 0, resulting in a case-only approach for epistasis

detection. Tools such as PLINK [27] and INTERSNP [28] similarly implement case-only analy-

ses, which can be more powerful in practice than a joint case-control analysis [4, 29–31]. In the

case of PLINK and INTERSNP, additional hypotheses such as the independence of SNP–SNP

frequencies are nonetheless needed to ensure the validity of the statistical test. In our case, the

family of weights {Wi = 1/P(Ai|Xi)}i=1,� � �,n accounts for the dependency between the target A and

the genotype X. We can therefore forego such hypotheses on the data. We may even argue that

the controls are indirectly included in the regression model through P(A|X). It represents the

dependency pattern within the general population, which consists of both cases and controls.

Estimate of the propensity score

In causal inference, the estimation of propensity scores e(X) = P(A = 1|X) is often achieved

thanks to parametric models such as a logistic regression between A and X. Because of the risk

of overfitting in such an ultra high-dimensional setting, we turn instead towards hidden Mar-

kov models, which are commonly used in genetics to model linkage disequilibrium and were

initially developed for imputation [32]. In this model (see the S1 File), the hidden states repre-

sent contiguous clusters of phased haplotypes. The emission states correspond to SNPs.

Since the structural dependence is chromosome-wise, we only retain the SNPs located on

the same chromosome as the SNP A—which we denote here by XA—for the estimate of P(A|

X). Mathematically, this is equivalent to the independence of the SNPs A and XA from the

SNPs of other chromosomes.

The pathological cases P(A|XA)� 1 and P(A|XA)� 0 can be avoided by the removal of all

SNPs within a certain distance of A. In our implementation, we first perform an adjacency-

constrained hierarchical clustering of the SNPs located on the chromosome of the target A.

We fix the maximum correlation threshold at 0.5. To alleviate strong linkage disequilibrium,

we then discard all neighboring SNPs within a three-cluster window of SNP A. Such filtering is

sensible since we are looking for biological interactions between functionally-distinct regions.

The neighboring SNPs are not only removed for the estimation of the propensity score, but

also in the regression models searching for interactions.

After the filtering and the fitting of the unphased genotype model using fastPHASE, the last

remaining step is the application of the forward algorithm [33] to obtain an estimate of the

two potential observations (A = 1, XA) and (A = −1, XA). Bayes theorem then yields the desired

probability P(A|X) = P(A|XA) = P(A, XA)/(P(A = +1, XA) + P(A = −1, XA)).

Support estimation

In order to estimate the support of δ in the case of modified outcome regression (3),

and of d� in the case of OWL (5), we model both functions as linear models and estimate
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non-zero coefficients by elastic net regression [34] combined with stability selection

[18, 19].

More precisely, given a GWAS cohort (Xi, Ai, Yi)i=1,. . .,n, we first define empirical risks for a

candidate linear model x 7! γ> x for δ and d� as respectively

R1ðgÞ ¼
1

n

Xn

i¼1

ð~Y i � g
>XiÞ

2
; R2ðgÞ ¼

1

n

Xn

i¼1

Yi

PðAijXiÞ
�ðAig

>XiÞ :

For a given regularization parameter λ> 0 and empirical risk R = R1 or R = R2, we then define

the elastic net estimator:

ĝl 2 argmin
g

RðgÞ þ l ð1 � sÞkgk1 þ
1

2
skgk2

2

� �

;

where we fix s = 10−6 to give greater importance to the L1-penalization. Over a grid of values Λ
for the penalization parameter λ, we subsample N = 50 times without replacement over the

whole cohort. The size of the generated subsamples I1, � � �, IN is bn/2c. Each subsample I pro-

vides a different support for ĝl, which we denote ŜlðIÞ. For λ 2 Λ, the empirical frequency of

the variable Xk entering the support is then given by:

ôl

k ¼
1

N

XN

j¼1

1ðk 2 ŜlðIjÞÞ:

In the original stability selection procedure [18], the decision rule for including the variable k
in the final model is max

l2L
ôl

k � t. The parameter t is a predefined threshold. For noisy high-

dimensional data, the maximal empirical frequency along the stability path max
l2L

ôl

k may not

be sufficiently robust because of its reliance on a single noisy measure of ôl
k to derive the maxi-

mum. Instead, we used the area under the stability path,
R

l
ôl

k dl, as propsed by Haury et al.

[19]. The main intuition behind the better performance is the early entry of causal variables

into the LASSO path.

Finally, to determine the grid Λ, we use the R package glmnet [35]. We generate a log-

scaled grid of 200 values (λl)l=1,� � �,200 between λ1 = λmax and λ200 = λmax/100, where λmax is the

maximum λ leading to a non-zero model. To improve inference, we only retain the first half of

the path comprised between λ1 and λ100. The benefit of a thresholded regularization path is to

discard a large number of irrelevant covariates that enter the support for low values of λ.

Results

Simulations

Disease model. We simulate phenotypes using a logit model with the following structure:

logitðPðY ¼ 1j~A ¼ i;XÞÞ ¼ bT
i;VXV þ b

T
WXW þ XT

Z1
diag ðbZ1 ;Z2

ÞXZ2
;

where V, W, Z1 and Z2 are random subsets of {1, � � �, p}. The variables within the vector XV

interact with A. The variables in XW corresponds to marginal effects, while XZ1
and XZ2

corre-

spond to pairs of quadratic effects between SNPs that exclude A. The effect sizes β0,V, β1,V, βW

and bZ1;Z2
are sampled from N ð0; 1Þ. Given the symmetry around 0 of the effect size distribu-

tions, the simulated cohorts are approximately equally balanced between cases and controls.

To account for the diversity of effect types in disease models, we simulate four scenarios

with different overlap configurations between XV and ðXW ;XZ1
Þ:
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• Synergistic only effects, |V \W| = 0, |V \ Z1| = 0, |V| = |W| = |Z1| = |Z2| = 8;

• Partial overlap between synergistic and marginal effects, |V \W| = 4, |V \ Z1| = 0, |V| = |W|

= |Z1| = |Z2| = 8;

• Partial overlap between synergistic and quadratic effects, |V \W| = 0, |V \ Z1| = 4, |V| = |W|

= |Z1| = |Z2| = 8;

• Partial overlap between synergistic and quadratic/marginal effects, |V \W| = 2, |V \ Z1| = 2,

|V| = |W| = |Z1| = |Z2| = 8.

For each of the above scenarios, we conduct 125 simulations: 5 sets of causal SNPs {A, V,

W, Z1, Z2} × 5 sets of size effects {β0,V, β1,V, βW, βZ1,Z2} × 5 replicates. Within each scenario, we

consider multiple SNP sets to model the range of MAFs and LD which can exist between A
and X.

Because of the filtering window around the SNP A, the causal SNPs (XV, XW, Z1, Z2) are

sampled outside of that window. The second constraint on the causal SNPs is a lower bound

on the minor allele frequencies (MAF). We fix that bound at 0.2. The goal is to obtain well-bal-

anced marginal distributions for the different variants. For rare variants, it is difficult to untan-

gle the statistical power of any method from the inherent difficulty in detecting them. The

lower bound is also coherent with the common disease-common variant hypothesis [36]: the

main drivers of complex/common diseases are common SNPs.

Genotype simulations. For the sake of coherence, we simulate genotypes using the sec-

ond release of HAPGEN [37]. The underlying model for HAPGEN is the same hidden Markov

model used in fastPHASE. The starting point of the simulations is a reference set of population

haplotypes. The accompanying haplotypes dataset is the 1000 Genomes phase 3 reference hap-

lotypes [38]. In our simulations, we only use the European population samples. The second

input to HAPGEN is a fine scale recombination map. Consequently, the simulated haplotypes/

genotypes exhibit the same linkage disequilibrium structure as the original reference data.

In comparison to the HAPGEN-generated haplotypes, the markers density for SNP arrays

is significantly lower. For example, the sequencing technology for the WTCCC case-control

consortium [39] is the Affymetrix 500K. As its name suggests, “only” five hundred thousand

positions are genotyped. As most GWAS are based on SNP array data, we only extract from

the simulated genotypes the markers of the Affymetrix 500K. In the subsequent QC step, we

only retain common bi-allelic SNPs defined by a MAF > 0.01. We also remove SNPs that are

not in a Hardy-Weinberg equilibrium (p< 10−6). We do not conduct any additional LD prun-

ing for the SNPs in X. For univariate GWAS, LD pruning reduces dimensionality while

approximately maintaining the same association patterns between genotype and phenotype.

For second order interaction effects, the loss of information can be more dramatic, as the

retained SNP pairs can be insufficient to represent the complex association of corresponding

genomic regions with the phenotype.

For iterative simulations, HAPGEN can be time-consuming, notably for large cohorts con-

sisting of thousands of samples. We instead proceed in the following way: we generate once

and for all a large dataset of 20 thousand samples on chromosome 22. To benchmark for vary-

ing sample sizes n 2 {500, 1000, 2000, 5000}, we iteratively sample uniformly and without

replacement n-times the population of 20000 individuals to create 125 case-control cohorts.

On chromosome 22, we then select p = 5000 SNPs located between the nucleotide positions

16061016 and 49449618. We do not conduct any posterior pruning to avoid filtering out the

true causal SNPs.

Evaluation. We benchmark our new methods against two baselines. The first method is

GBOOST [9], a state-of-the-art method for epistasis detection. For each SNP pair, it
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implements the log-likelihood ratio statistic to compare the goodness of fit of two models: the

full logistic regression model with both main effect and interaction terms, and the logistic

regression model with main effects only. The preliminary sure screening step in GBOOST to

discard a number of SNPs from exhaustive pairwise testing was omitted, since we are only

interested in the ratio statistic for all pairs of the form (A, Xk), where Xk is the k-th SNP in X.

The second method, which we refer to as product LASSO, originates from the machine learn-

ing community. It was developed by Tian et al. [14] to estimate interactions between a treat-

ment and a large number of covariates. It fits an L1-penalized logistic regression model with A
× X as covariates. The variable of interest A is symmetrically encoded as {−1, +1}. Under gen-

eral assumptions, Tian et al. [14] show how this model works as a good approximation to the

optimal decision rule d�.
We visualize the support estimation performance in terms of receiver-operating character-

istic (ROC) curves and precision-recall (PR) curves. For a particular method in a given sce-

nario, a single ROC (resp. PR) curve allows to visualize the ability of the algorithm to recover

causal SNPs. For each SNP, the prediction score is the area under its corresponding stability

path. The ground truth label is 1 for the SNPs interacting with the target A, and 0 otherwise. In

the high-dimensional setting of GWAS, the use of raw scores instead of p-values lends more

robustness to our methods, by avoiding finite-sample approximations of the score distribu-

tions and multiple hypothesis corrections.

The covariates and the outcome differ between our methods. That implies a different regu-

larization path for each method and as a result, incomparable stability paths. For better

interpretability and comparability between the methods, we use the position l on the stability

path grid Λ = (λl) s.t. λl> λl+1 instead of the value of λl for computing the area under the

curve.

In Fig 1, we provide the ROC and PR curves for the fourth scenario which corresponds to a

partial overlap between synergistic and quadratic/marginal effects and for a sample size

n = 500. Because of space constraints, all ROC/PR figures and corresponding AUC tables are

listed in the S2 File. The figures represent the average ROC and PR curves of the 125 simula-

tions in each of the four scenarios. To generate those figures, we used the R package precrec

[40]. It performs nonlinear interpolation in the PR space. The AUCs are computed with same

package.

Regardless of the scenario and the sample size, the areas under all ROC curves are higher

than 0.5. This confirms that all of them perform better than random, yet with varying degrees

of success. By contrast, the overall areas under the precision-recall curves are low. The maxi-

mum area under the precision-recall curve is 0.41, attained by modified outcome with shifted

weights for n = p. This can be attributed to the imbalanced nature of the problem: 8 synergistic

SNPs out of 5000. We also check that the AUCs increase with the cohort size for both ROC

and PR domains.

The best performing methods are robust modified outcome and GBOOST. Robust modi-

fied outcome has a slight lead in terms of ROC AUCs, notably for low sample sizes. The latter

setup is the closest to our intended application in genome-wide association studies. Of special

interest to us in the ROC space is the bottom-left area. It reflects the performance of highly-

ranked instances. For all scenarios, we witness a better start for robust modified outcome. The

other methods within the modified outcome family behave similarly. Such a result was

expected because of their theoretical similarities. Despite the model misspecification, product

LASSO performs rather well. On average, it comes third to GBOOST and robust modified out-

come. The outcome weighted learning approach which is an approximation to estimating the

sign of δ has consistently been the worst performer in the ROC space.
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In PR space, the results are more mixed. For low sample sizes, robust modified outcome is

still the best performing method. As the sample size increases, we observe that other methods

within the modified outcome family, notably shifted modified outcome, surpass the robust

modified outcome approach. Surprisingly, the good performance of GBOOST in ROC space

was not reproduced in PR space. This might be explained by the highly imbalanced nature of

the problem and the lower performance of GBOOST, compared to robust modified outcome

in the high specificity region of the ROC curves (lower left). By contrast, product LASSO is

always trailing the best performer of the modified outcome family. As for ROC curves, we are

also interested in the beginning of the PR curves. For a recall rate of 0.125, the highest preci-

sion rate is near 0.5 for the first, third and fourth scenarios. That implies that we detect on

average one causal SNP in the first two SNPs. For the second scenario, the highest precision

rate is even higher at approximately 0.68. The area under the stability path is then a robust

score for model selection in the high dimensional setting.

It is worth noting the homogeneous behavior of the different methods across the four sce-

narios. For a given sample size, and for a given method, the ROC and PR AUCs are similar.

This suggests they all successfully filtered out the common effects term μ(X) even in presence

of an overlap between the causal SNPs within μ(X) and δ(X).

Case study: Type II diabetes dataset of the WTCCC

As a case study, we selected the type II diabetes dataset of the WTCCC [39] to illustrate the

scalability of our methods to real datasets. To the best of our knowledge, no confirmed

Fig 1. Average ROC (left) and PR (right) curves for the fourth scenario and n = 500.

https://doi.org/10.1371/journal.pone.0242927.g001
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epistatic interactions exist for type II diabetes. We instead propose to study the synergies with

a particular target: rs41475248 on chromosome 8. We focus on this target SNP because (i)

GBOOST finds that it is involved in 3 epistatic interactions, when controlling for a false dis-

covery rate of 0.05, and (ii) it is a common variant, with a MAF of 0.45.

Before running our methods on the WTCCC dataset, we applied the same QC procedures

with the following thresholds: 0.01 for minor-allele frequencies and p> 10−6 for the Hardy-

Weinberg equilibrium. No additional pruning is performed. The number of remaining vari-

ants is 354439 SNPs. The number of samples is 4897, split between 1953 cases and 2944

controls.

To solve the different L1-penalized regressions, we abandoned the glmnet package in favor

of another one, biglasso [41]. Indeed, glmnet does not accept as input such ultra-high dimen-

sional design matrices. On the other hand, biglasso was specifically developed for similar set-

tings thanks to its multi-threaded implementation and utilization of memory-mapped files.

Because biglasso does not implement sample weighting, it cannot be used to run outcome

weighted learning. Since this approach performs worse than the modified outcome approaches

on simulated data, we simply exclude it from this case study.

The main difficulty for the evaluation of GWAS methods is the biological validation of the

study results. We often lack evidence to correctly label each SNP as being involved or not in an

epistatic interaction. Evaluating the real model selection performance of the different methods

on real datasets is then impossible. However, we can study the concordance between them. A

common way to proceed is Kendall’s tau which is a measure of rank correlation. In Table 1, we

give the correlation matrix of our four variants of modified outcome methods, and of the two

baseline methods GBOOST and product LASSO. All elements are positive which indicates a

relative agreement between the methods. While methods using different mathematical defini-

tions of epistasis cannot be expected to return the same results, those with similar or identical

underlying models should capture similar genetic architectures and return more similar

results. Modified outcome, normalized modified outcome and shifted modified outcome have

the highest correlation coefficients. Such a result was expected because of their theoretical sim-

ilarities. We also note that the lowest score is for robust modified outcome and GBOOST. In

the previous section, these two methods were the best performing. This suggests those two

methods can make different true discoveries.

In any follow-up work, we will only exploit the highly-ranked variants. A weighted tau sta-

tistic that assigns a higher weight to the first instances is therefore more relevant. Weighted

nonnegative tau statistics better assess the relative level of concordance between different pairs

of methods, while the sign in Kendall’s tau shows if two methods rather agree or disagree. In

Table 2, we list Kendall’s tau coefficients with multiplicative hyperbolic weighting. Similarly,

we notice that robust modified outcome is least correlated with GBOOST and most correlated

with product LASSO.

Aside from rank correlation, another option to appraise the results is to measure the associ-

ation between the top SNPs for each method and the phenotype. Table 3 lists the Cochran-

Armitage test p-values for the top 25 SNPs for each method in an increasing order. Despite

being synthetic univariate measures, the Cochran-Armitage statistics give us an indication of

the true ranking performance. Robust modified outcome is clearly the method with the lowest

p-values. For instance, the top 14 SNPs have a p-value lower than 0.001. That confirms the

result of our simulations that robust modified outcome is the best performer for capturing

causal SNPs. The p-values associated to product LASSO and GBOOST are also relatively low,

with respectively 5 and 4 p-values lower than 0.001. However, we note the overall difficulty in

drawing clear conclusions for all methods. Without multiple testing correction, most of the p-

values for each method already exceed classical significance levels e.g. 0.05. For 3 out of 6
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methods, the p-values of the 25th SNP are greater than 0.90. Nonetheless, the existence of such

high p-values further demonstrates the capacity of our methods in discovering novel associa-

tions undetected by univariate methods.

Discussion

In this paper, we have proposed several methods, inspired from the causal inference literature,

to select SNPs having synergystic effects with a particular target SNP towards a phenotype.

The consistency of our results across the four disease models show that the proposed methods

are rather successful. Indeed, their performance is not strongly impacted by the presence/

absence of other marginal and epistatic effects. Among the methods we propose, robust modi-

fied outcome is the most suited to real GWAS applications. Its superior performance is par-

tially due to its robustness against propensity score misspecification. The AUCs for robust

modified outcome are overall the highest in addition to its retrieval performance for highly-

ranked instances. More importantly, robust modified outcome outperforms GBOOST and

other regression-based methods. This is particularly true for small number of samples

(n = 500), which is the closest setup to real GWAS datasets. However, the low PR AUCs show

that there is still room for improvement. The highest observed PR AUC is 0.17. Interestingly,

we note that several of our methods clearly outperform GBOOST across all scenarios and all

sample sizes in the PR space. Nonetheless, GBOOST behaves similarly to our methods in the

ROC space. Such differences between ROC and PR curves are common for highly-imbalanced

datasets where PR curves are more informative and discriminative [42].

In our simulations, ROC and PR AUCs were relatively close between all methods. On the

other hand, according to two rank correlation measures (Kendall’s tau and weighted Kendall’s

tau), the results do not strongly overlap between the different methods (values far from 1). For

Table 1. Concordance between methods used to determine SNPs synergistic to rs41475248 in type II diabetes, measured by Kendall’s tau.

GBOOST Modified

outcome

Normalized modified

outcome

Shifted modified

outcome

Robust modified

outcome

Product

LASSO

GBOOST 1.000 0.200 0.203 0.202 0.070 0.152

Modified outcome 0.200 1.000 0.411 0.405 0.150 0.283

Normalized modified

outcome

0.203 0.411 1.000 0.406 0.153 0.284

Shifted modified outcome 0.202 0.405 0.406 1.000 0.179 0.301

Robust modified outcome 0.070 0.150 0.153 0.179 1.000 0.257

Product LASSO 0.152 0.283 0.284 0.301 0.257 1.000

https://doi.org/10.1371/journal.pone.0242927.t001

Table 2. Concordance between methods used to determine SNPs synergistic to rs41475248 in type II diabetes, measured by Kendall’s tau with multiplicative

weights.

GBOOST Modified

outcome

Normalized modified

outcome

Shifted modified

outcome

Robust modified

outcome

Product

LASSO

GBOOST 1.000 0.483 0.481 0.517 0.423 0.501

Modified outcome 0.483 1.000 0.851 0.857 0.462 0.586

Normalized modified

outcome

0.481 0.851 1.000 0.860 0.467 0.594

Shifted modified outcome 0.517 0.857 0.860 1.000 0.504 0.603

Robust modified outcome 0.423 0.462 0.467 0.504 1.000 0.596

Product LASSO 0.501 0.586 0.594 0.603 0.596 1.000

https://doi.org/10.1371/journal.pone.0242927.t002
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instance, GBOOST least agrees with robust modified outcome. However, the two methods are

the best performing in our simulations. Different approaches seem to discover different types

of interactions [43]. We conclude that a consensus method combining GBOOST and robust

modified outcome could better improve the recovery of interacting SNPs.

Across all simulation settings, OWL was the worst-performing method. This is expected

given the fact that OWL is only a sign approximation to modified outcome. In OWL, the com-

mon effects term is not completely filtered out, which explains the observed gap in perfor-

mance between the two approaches. Despite this limitation, OWL remains statistically valid, in

the sense that its support recovery performance increases with the sample size (see the S2 File).

In practical settings, we naturally recommend the use of the modified outcome approaches

which linearity allow a complete filtering of common effects, and consequently yield a better

performance.

The carried simulations prove that the highly-ranked SNPs include false positives. This is

accentuated by the imbalanced nature of our problem: a handful of causal SNPs for thousands

of referenced SNPs. Hopefully, the continual decrease in genotyping costs will result in a dra-

matic increase in sample sizes and, in consequence, statistical power. For instance, the UK Bio-

bank [44] comprises full genome-wide data for five hundred thousand individuals.

The case study that we carried for type II diabetes demonstrates the scalability of our meth-

ods to real GWAS. To reduce runtime, one can reduce the number of subsamples used for sta-

bility selection; however this may come at the expense of performance. The development of

Table 3. Cochran-Armitage test p-values for the top 25 SNPs for each method.

GBOOST Modified outcome Normalized modified outcome Shifted modified outcome Robust modified outcome Product LASSO

0.0000047 0.0000000 0.0000000 0.0000000 0.0000000 0.0000047

0.0002632 0.0000015 0.0000015 0.0000015 0.0000000 0.0000075

0.0002667 0.0002667 0.0002667 0.0002667 0.0000001 0.0000172

0.0006166 0.0027308 0.0027308 0.0027308 0.0000012 0.0002667

0.0015069 0.0093734 0.0093734 0.0093734 0.0000049 0.0005286

0.0028872 0.0633055 0.0633055 0.0633055 0.0000059 0.0110392

0.0031533 0.0724198 0.0724198 0.0724198 0.0000075 0.0122543

0.0034323 0.0925877 0.0925877 0.0771170 0.0000172 0.0152912

0.0081128 0.1126164 0.1043632 0.0925877 0.0002030 0.0346055

0.0093734 0.1272777 0.1126164 0.1126164 0.0002667 0.0347964

0.0142695 0.2552284 0.1567974 0.1272777 0.0003047 0.0396448

0.0633055 0.2926915 0.2971396 0.1639805 0.0004643 0.0396932

0.0771170 0.3436741 0.3529366 0.2971396 0.0005286 0.0527104

0.1616393 0.3529366 0.5012038 0.3529366 0.0005841 0.0633055

0.2089538 0.5871432 0.5506690 0.5012038 0.0015214 0.0763114

0.2114803 0.5985624 0.5985624 0.5707955 0.0016353 0.1126164

0.2256368 0.6016953 0.7183847 0.5985624 0.0025709 0.1185275

0.2586186 0.6361937 0.7199328 0.7000506 0.0064196 0.1796624

0.2654530 0.7183847 0.7342897 0.7183847 0.0080405 0.2552284

0.4105146 0.7342897 0.7656055 0.7342897 0.0110392 0.3308890

0.4323674 0.7979653 0.7706524 0.7979653 0.0122543 0.3867409

0.4376669 0.8683271 0.7979653 0.7993838 0.0124442 0.5045073

0.4796214 0.8820292 0.7993838 0.8683271 0.0136452 0.5985624

0.5871432 0.9188037 0.8820292 0.8821872 0.0346055 0.6238335

0.9479547 0.9903334 0.8821872 0.9188037 0.0396932 0.8821872

https://doi.org/10.1371/journal.pone.0242927.t003
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new and faster LASSO solvers [45, 46] for large scale problems will further help broaden the

adoption of our methods by end-users without compromising statistical performance.

The main contribution of our work is extending the causal inference framework to epistasis

detection by developing a new family of methods. They rely on propensity scores to detect

interactions with specific SNP targets. Given our partial understanding of common diseases

and the overall lack of statistical power of existing tools, such refocused models can be more

useful to further our understanding of disease etiologies. Hundreds of genes have already been

associated with several diseases via univariate GWAS. The next step is to leverage such findings

to detect additional synergies between these genes and the rest of the genome. Beyond a better

understanding of disease mechanisms through new biomarker discovery, we see the develop-

ment of combination drug therapies as an additional application of our work.

A first area of future improvement for our methods is propensity score estimation, which

can benefit from a large number of recent methods [47]. A second area is incorporating multi-

ple covariates (whether clinical covariates, variables encoding population structure or other

genetic variants) to account for, among other things, higher-order interactions and population

structure. A straightforward solution is to include additional variables in X, which encode for

the other covariates. However, this will impact the consistency and interpretability of the pro-

pensity scores. A second potential solution is the use of modified targets which combine the

original target with the other covariates e.g. target × gender. We think that such outcomes

have not been explored because of the insufficiency of the representation by a single binary

variable. To address this issue we can, for example, borrow some of the ideas in VanderWeele

and Hernan [48] to construct richer representations.
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23. Llinares-López F, Papaxanthos L, Roqueiro D, Bodenham D, Borgwardt K. CASMAP: detection of sta-

tistically significant combinations of SNPs in association mapping. Bioinformatics. 2018; 35(15):2680–

2682. https://doi.org/10.1093/bioinformatics/bty1020

PLOS ONE Novel methods for epistasis detection in genome-wide association studies

PLOS ONE | https://doi.org/10.1371/journal.pone.0242927 November 30, 2020 16 / 18

https://doi.org/10.1016/j.neurobiolaging.2007.11.027
https://doi.org/10.1038/s41467-019-10881-y
http://www.ncbi.nlm.nih.gov/pubmed/31278268
https://doi.org/10.1016/j.cell.2017.03.007
http://www.ncbi.nlm.nih.gov/pubmed/28340352
https://doi.org/10.1038/nrg2579
https://doi.org/10.3389/fgene.2015.00285
http://www.ncbi.nlm.nih.gov/pubmed/26442103
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1093/beheco/arh107
https://doi.org/10.1016/j.ajhg.2010.07.021
http://www.ncbi.nlm.nih.gov/pubmed/20817139
https://doi.org/10.1093/bioinformatics/btr114
https://doi.org/10.1093/bioinformatics/btr114
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1214/13-AOS1096
https://doi.org/10.1080/01621459.2014.951443
https://doi.org/10.1080/01621459.2012.695674
https://doi.org/10.1080/01621459.2012.695674
https://doi.org/10.1038/nrg2361
http://www.ncbi.nlm.nih.gov/pubmed/18427557
https://doi.org/10.1037/h0037350
https://doi.org/10.1111/j.1467-9868.2010.00740.x
https://doi.org/10.1186/1752-0509-6-145
https://doi.org/10.1214/009053607000000505
https://doi.org/10.1002/047174882x
https://doi.org/10.1002/047174882x
https://doi.org/10.1101/gr.137885.112
http://www.ncbi.nlm.nih.gov/pubmed/22767386
https://doi.org/10.1093/bioinformatics/bty1020
https://doi.org/10.1371/journal.pone.0242927


24. Achlioptas P, Schölkopf B, Borgwardt K. Two-locus association mapping in subquadratic time. In: Pro-

ceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining

—KDD’11. ACM Press; 2011. https://doi.org/10.1145/2020408.2020521.

25. Rosenbaum PR, Rubin DB. The Central Role of the Propensity Score in Observational Studies for

Causal Effects. Biometrika. 1983; 70(1):41–55. https://doi.org/10.1093/biomet/70.1.41

26. Lunceford JK, Davidian M. Stratification and weighting via the propensity score in estimation of causal

treatment effects: A comparative study. Statistics in Medicine. 2004; 23(19):2937–2960. https://doi.org/

10.1002/sim.1903

27. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: A Tool Set for

Whole-Genome Association and Population-Based Linkage Analyses. The American Journal of Human

Genetics. 2007; 81(3):559–575. https://doi.org/10.1086/519795 PMID: 17701901

28. Herold C, Steffens M, Brockschmidt FF, Baur MP, Becker T. INTERSNP: genome-wide interaction

analysis guided by a priori information. Bioinformatics. 2009; 25(24):3275–3281. https://doi.org/10.

1093/bioinformatics/btp596 PMID: 19837719

29. Gatto NM. Further development of the case-only design for assessing gene-environment interaction:

evaluation of and adjustment for bias. International Journal of Epidemiology. 2004; 33(5):1014–1024.

https://doi.org/10.1093/ije/dyh306 PMID: 15358745

30. Piegorsch WW, Weinberg CR, Taylor JA. Non-hierarchical logistic models and case-only designs for

assessing susceptibility in population-based case-control studies. Statistics in Medicine. 1994; 13

(2):153–162. https://doi.org/10.1002/sim.4780130206 PMID: 8122051

31. Yang Q, Khoury MJ, Sun F, Flanders WD. Case-only design to measure gene-gene interaction. Epide-

miology (Cambridge, Mass). 1999; 10(2):167–70. https://doi.org/10.1097/00001648-199903000-00014

32. Scheet P, Stephens M. A fast and flexible statistical model for large-scale population genotype data:

applications to inferring missing genotypes and haplotypic phase. American journal of human genetics.

2006; 78(4):629–44. https://doi.org/10.1086/502802 PMID: 16532393

33. Rabiner LR. A tutorial on hidden Markov models and selected applications in speech recognition. Pro-

ceedings of the IEEE. 1989; 77(2):257–286. https://doi.org/10.1109/5.18626

34. Zou H, Hastie T. Regularization and variable selection via the elastic net. Journal of the Royal Statistical

Society: Series B (Statistical Methodology). 2005; 67(2):301–320. https://doi.org/10.1111/j.1467-9868.

2005.00503.x

35. Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models via Coordinate

Descent. Journal of Statistical Software. 2010; 33(1). https://doi.org/10.18637/jss.v033.i01 PMID:

20808728

36. Schork NJ, Murray SS, Frazer KA, Topol EJ. Common vs. rare allele hypotheses for complex diseases.

Current Opinion in Genetics & Development. 2009; 19(3):212–219. https://doi.org/10.1016/j.gde.2009.

04.010 PMID: 19481926

37. Su Z, Marchini J, Donnelly P. HAPGEN2: simulation of multiple disease SNPs. Bioinformatics. 2011; 27

(16):2304–2305. https://doi.org/10.1093/bioinformatics/btr341 PMID: 21653516

38. Auton Ae. A global reference for human genetic variation. Nature. 2015; 526(7571):68–74. https://doi.

org/10.1038/nature15393

39. Burton PR, et al. Genome-wide association study of 14, 000 cases of seven common diseases and 3,

000 shared controls. Nature. 2007; 447(7145):661–678. https://doi.org/10.1038/nature05911 PMID:

17554300

40. Saito T, Rehmsmeier M. Precrec: fast and accurate precision–recall and ROC curve calculations in R.

Bioinformatics. 2016; 33(1):145–147.

41. Zeng Y, Breheny P. The biglasso Package: A Memory- and Computation-Efficient Solver for Lasso

Model Fitting with Big Data in R. ArXiv e-prints. 2017;.

42. Davis J, Goadrich M. The relationship between Precision-Recall and ROC curves. Proceedings of the

23rd international conference on Machine learning—ICML’06. 2006; p. 233–240. https://doi.org/10.

1145/1143844.1143874

43. Bessonov K, Gusareva ES, Steen KV. A cautionary note on the impact of protocol changes for

genome-wide association SNP × SNP interaction studies: an example on ankylosing spondylitis.

Human Genetics. 2015; 134(7):761–773. https://doi.org/10.1007/s00439-015-1560-7 PMID: 25939665

44. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. Genome-wide genetic data on

500,000 UK Biobank participants. bioRxiv. 2017;. https://doi.org/10.1101/166298

45. Le Morvan M, Vert J. WHInter: A Working set algorithm for High-dimensional sparse second order Inter-

action models. In: Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
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