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Perfecting antigen prediction
David Hoyos1 and Benjamin D. Greenbaum1,2

Advances in genomics and precision measurement have continued to demonstrate the importance of the immune system
across many disease types. At the heart of many emerging approaches to leverage these insights for precision immunotherapies
is the computational antigen prediction problem. We propose a threefold approach to improving antigen predictions: further
defining the geometry of the antigen landscape, incorporating the coupling of antigen recognition to other cellular processes,
and diversifying the training sets used for models that predict immunogenicity.

Immune-based therapies are finding suc-
cessful application across many diseases,
most famously cancer and COVID-19
(Wolchok et al., 2009; Oliver et al., 2020).
The goal of such therapies is to induce an
immune response against specific antigens
and thereby prime the immune system to
recognize those antigens in the near or dis-
tant future. At the heart of this goal lies a
mathematical prediction problem: can we
predict which antigens, when introduced
today, will best prepare us for tomorrow?
Historically, at a time when vaccines con-
tained entire live or inactivated pathogens,
this task was more straightforward and
focused on an epidemiological problem,
namely predicting which strains were likely
to be circulating when a vaccine went into
production. Once a potential new strain was
identified, the computational challenge was
to determine whether the antigens derived
from this new strain were sufficiently dif-
ferent from the original strain to warrant
updating the vaccine. The practical question
then became whether the new and original
strains diverged enough to warrant the cost,
time, and labor involved in changing the
vaccine, which typically required many
months (Lambert and Fauci, 2010).

Our adaptive immune system has so-
phisticated mechanisms for detecting pro-
teins that are “non-self,” resulting from
viral proteins or mutated peptides in tumor

genomes (Goldberg and Rock, 1992).
Emerging platforms, such as mRNA vac-
cines and engineered T cells, target spe-
cific antigen subsets rather than an entire
strain or genome (Plotkin, 2014). As has
become painfully clear during the COVID-
19 pandemic, new pathogen strains can
rapidly evolve in response to selective
pressures and escape acquired immunity.
However, the speed and specificity of
emerging technologies creates a potential
to update precise targets almost in real
time. Due to mRNA vaccine technology
and rapid viral genome sequencing, we
went from the identification of the SARS-
CoV-2 spike protein to an effective vac-
cine in less than a year. Real-time global
surveillance, advances in computational
models, and high-throughput immune
monitoring and genome sequencing have
moved computational antigen prediction
from epidemiology into the field of evo-
lutionary modeling, requiring, among
others, tools from machine learning,
evolutionary dynamics, and biophysics
(Morris et al., 2018).

The data and mathematical toolkit for
defining and powering these models, while
beginning to emerge, are still largely lack-
ing. As a result, investigators often re-
purpose existing datasets and black-box
modeling approaches that were not de-
signed for this specific problem. We outline

three “gaps” where better datasets and
appropriate mathematical methods are
needed.

Quantifying the geometry of the
antigen landscape
Technological advances in the last few dec-
ades have brought an explosion of genomic
data and, for the first time in human history,
we are able to quantify the molecular etiol-
ogy of diseases such as cancer at large scale.
Accurate mutation calling, a prerequisite for
precise vaccine development, remains dif-
ficult to resolve from heterogeneous tumor
samples from bulk DNA and RNA se-
quences. Evidence suggests subclonal mu-
tations may be a source of targetable
neoantigens (Roudko et al., 2020); however,
it is often difficult to estimate which per-
centage of the tumor is targetable, due to
sequencing bias and varying purity (Aran
et al., 2015). State-of-the-art algorithms
such as NetMHC (Andreatta and Nielsen,
2016) infer the affinity of an antigen to an
MHC molecule, a critical step required for
productive immune recognition. Still, there
remain unknowns around the degree to
which the T cell receptor interaction pro-
vides additional predictive information
(Łuksza et al., 2017), in part due to the low
throughput of T cell validation assays.
Moreover, recent work has proposed biases
in the “distance from self” of various
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antigens, suggesting that the antigen land-
scape, in part resulting from T cell cross-
reactivity, is highly non-uniform and likely
poorly quantified (Bradley and Thomas,
2019). We therefore need to further specify
the “geometry of the antigen landscape,”
which defines which antigenic distances
determine immunogenicity.

Understanding an antigen’s
evolutionary and ecological context
There has been a tendency to look at the
immunogenicity of antigens as separate
from other cellular processes. Although
most efforts to predict antigenicity focus on
the peptide-MHC binding process, factors
such as the concentration of the antigen in
question, and the immune microenviron-
ment in which it appears, are equally im-
portant. Protein expression is non-uniform
for viruses and cancer cells. In cancer, mu-
tations and copy number changes in par-
ticular genes, such as TP53 and KRAS, result
in alterations in protein concentration, and
recent work has suggested intrinsic trade-
offs in the pro-proliferative activity and

immune vulnerability of driver genes
(Hoyos et al., 2022). This suggests tumors
that contain aggressive pro-tumor driver
mutations may have immunogenic clonal
mutations that result in stronger responses
than otherwise expected by affinity in-
ferences. Likewise, the ecological niche in
which an antigen occurs may be immuno-
suppressive, dampening the ability of a po-
tentially immunogenic peptide to ultimately
lead to clearance of an infected cell or cancer
cell. Defining the context in which antigens
exist will help us better understand how to
manipulate the trade-offs between their
immunogenicity and other cellular pro-
cesses to boost responses.

Creating equitable training datasets
Despite cancer cases rising in certain pop-
ulation groups, there is a marked under-
representation of tumors from diverse
demographics in the databases most often
studied and used for computational models
and machine learning (Clegg et al., 2002).
These methods are constrained by available
training datasets (Fig. 1), which inevitably

introduces bias in the accuracy of predictive
models that can only be ameliorated with
large, carefully assembled training data. For
example, MHC prediction algorithms are
most accurate for A*02:01, the most com-
mon MHC-I molecule in the American
population of European ancestry, which
reflects the abundance of immunological
assays restricted to this particular HLA type
(Liu et al., 2021). Not only could this bias the
accuracy of therapeutics, whichmay then be
potentially less effective in different pop-
ulations, scientifically it will limit our un-
derstanding for how therapeutic targets in
viruses and cancer cells evolve. Our ability
to predict emerging pathogens and the ev-
olution of global pandemics requires accu-
rately measuring the selective pressures the
immune system exerts on them. If such
predictions are poorer for substantial por-
tions of the global population, our ability to
predict the future evolution and emergence
of pandemics and how to respond to them
effectively will suffer.

Discussion
We are currently amid a scientific and
clinical revolution of historic proportions.
As the molecular etiologies of infectious
diseases and cancer are being discerned, we
are experiencing the efficacy of mRNA
vaccine technology to halt a global pan-
demic. Encouraged by these results,
many are eager to expand precision im-
munotherapies. However, we remain lim-
ited by gaps in quantifying the antigen
landscape, the evolutionary and ecological
context of antigenicity, and the generation
of large, equitable training sets. In address-
ing these gaps, we can move towards per-
fected predictions and increase the reach of
precision immunotherapies to underserved
populations in the process.
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Figure 1. Disparities in the accurate coverage of computational antigen predictions for diverse
HLA-I populations. The mean fraction of a population that is covered by the NetMHC 4.0 software is
plotted for diverse population groups. The mean and 95% confidence interval are denoted. The popu-
lation groups are derived from the National Marrow Donor Program (Gragert et al., 2013). All HLA-I
haplotypes constructed from the HLA-I molecules covered by the NetMHC 4.0 software were simulated
and population frequencies inferred (Hoyos et al., 2022).
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