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Multi-omics characterization
reveals the pathogenesis of liver
focal nodular hyperplasia

Yuming Liu,1,6 Jinmai Zhang,2,6 Zhuo Wang,2,6 Jiaqiang Ma,1 Ke Wang,2 Dongning Rao,1 Mao Zhang,1

Youpei Lin,1 Yingcheng Wu,1 Zijian Yang,1 Liangqing Dong,1 Zhenbin Ding,1 Xiaoming Zhang,3 Jia Fan,1,4

Yongyong Shi,2,* and Qiang Gao1,4,5,7,*

SUMMARY

The molecular landscape and pathogenesis of focal nodular hyperplasia (FNH)
have yet to be elucidated. We performed multi-omics approaches on FNH and
paired normal liver tissues from 22 patients, followed bymulti-level bioinformatic
analyses and experimental validations. Generally, FNH had low mutation burden
with low variant allele frequencies, and the mutation frequency significantly
correlated with proliferation rate. Although no recurrently deleterious genomic
events were found, some putative tumor suppressors or oncogenes were
involved. Mutational signatures indicated potential impaired mismatch function
and possible poison contact. Integrated analyses unveiled a group of FNH spe-
cific endothelial cells that uniquely expressed SOST and probably had strong
interaction with fibroblasts through PDGFB/PDGFRB pathway to promote
fibrosis. Notably, in one atypical FNH (patient No.11) with pronounced copy num-
ber variations, we observed a unique immune module. Most FNH are benign, but
molecularly atypical FNH still exist; endothelial cell derived PDGFB probably pro-
motes the fibrogenic process in FNH.

INTRODUCTION

Liver focal nodular hyperplasia (FNH) ranks the second highest morbidity among benign hepatic tumors after

hepatic hemangioma (Nahmet al., 2011). FNH ismore prevalent in women thanmen, especially at childbearing

age (Luciani et al., 2002; EASL, 2016). Hitherto, surgical resection is the only standard curative treatment of FNH

(Koea and Yeong, 2014), and the surgical procedure will inevitably affect quality of life or even severe postoper-

ative complications. However, if left untreated, the patients may worry about whether FNH could become

cancerous, as well as its increasing size over time in some progressive cases (Tajiri et al., 2014; Kudo et al.,

2008). Despite the common sense that FNH is a benign tumor with almost no malignant potential (Nahm

et al., 2011), its spatial proximity to hepatocellular carcinoma (HCC) within the same patients (Chen et al.,

2001; Petsas et al., 2006) and itsoccurrence linking tochemotherapy-induced liverdamagearewell documented

(Zhu et al., 2021; Torri et al., 2021). Thus, exploring how FNH phenotypic heterogeneity is formed and changed

over time may provide clinical insights for FNH and HCC diagnosis and treatment design.

Morphologically, FNH is featured by vascular malformation, ductular overreaction, and fibrous infiltration.

Previous studies of FNH mainly focus on single molecules that are cancer or angiogenesis related genes,

such as the overexpression of GLUL affacting WNT/b-catenin pathway (Rebouissou et al., 2008), the map-

like distribution of glutamine synthetase (Bioulac Sage et al., 2009), and the upregulation of angiopoietin-1

(Gouw et al., 2010) and CD34 (Maillette DeBuy Wenniger et al., 2010). However, because of hypothesis-

based research design and limited molecular profiling methods, clinical concerns mentioned above are

not well resolved. Therefore, a data-driven approach that utilizes the state-of-art big data to deduce the

molecular features of FNH, their correlation with biological behavior and association with the clinical

outcome may complement current understanding of FNH initiation and progression.

Next-generation sequencing has recently been widely utilized to characterize morphologically normal tis-

sues and benign tumors, unveiling their novel pathogenesis and molecular alterations (Kakiuchi and
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Ogawa, 2021; Tomasetti, 2019). The mutational landscape of the normal esophageal epithelium (Colom

et al., 2020), liver (Brunner et al., 2019; Zhu et al., 2019), and gastrointestinal tract (Li et al., 2021; Lee-Six

et al., 2019) have been established to illustrate the dynamic clonal expansion that provides survival advan-

tage. Likewise, it has been revealed that renal angiomyolipoma harbors TSC2 mutations and copy-neutral

loss of heterozygosity (Idogawa et al., 2020), and uterine leiomyoma carries chromothripsis that is associ-

ated with aggressive cancers (Mehine et al., 2013), indicating that ‘‘benign tumors’’ may not always be

genetically ‘‘faithful’’. As a comprehensive approach, multi-omics studies have uncovered the mystery

from premalignant lesions to early stages of cancer, including pre-invasive lung cancer (Teixeira et al.,

2019), familial adenomatous polyposis (Li et al., 2020), and hepatocarcinogenesis (Jee et al., 2019), which

link genotype with phenotype, offering valuable evidence for precise medication.

Herein, we applied whole exome sequencing (WES), bulk RNA sequencing (RNA-seq), and single-cell RNA

sequencing (scRNA-seq) on 22 paired FNH and adjacent normal liver tissues (aNL), followed by multi-level

validation. We discovered that most FNH were genetically stable with specific transcriptomic modules. Of

importance, FNH specific SOST-expressing vascular endothelial cells (ECs) and PDGFRB+ fibroblasts

contributing to fibrogenesis in FNHwere identified and validated. Surprisingly, some FNH that had atypical

molecular characteristics were also identified. Overall, the integrated analyses performed in this study es-

tablished the genetic andmolecular landscape of FNH, and indicated preliminary clues for clinical decision

making.

RESULTS

Patient clinical characteristics

Clinical information of all 22 FNH patients was summarized in Table S1. Among them, 19 cases were used

for WES and RNA-seq, and 3 cases were applied for scRNA-seq. Eleven male and eight female patients

were included, with no one having background liver disease. 68.4% of patients were between 20 and 40

years old, and age was comparable between two genders. Likewise, tumor sizes between the two gender

groups were not statistically different (Figure S1A). None of the patients received any chemotherapy, radio-

therapy, interventional therapy or drug therapy before surgery.

Individually, P11 simultaneously suffered from HCC in right lobe and FNH in left lobe (Figure S1B). Consid-

ering the genetic abnormality of FNH of P07 and P11 (described below), the morphological features of

them were confirmed again. For P11, we stained GS, CK19, AFP and ki-67, and typical map-like GS distri-

bution and bile duct hyperplasia were found (Figures S1C–S1F). We next re-checked the hematoxylin-eosin

staining image of FNH in P07 with the highest number of somatic mutations, where an FNH-typical central

scar and bile duct hyperplasia were seen (Figure S1G). All sequenced FNH samples had morphologically

typical features with map-like GS distribution and bile duct hyperplasia.

Not all FNH show genomic integrity

The mean coverage was 99.5 and 99.2% for FNH and aNL, respectively; the depth of WES reached 154 G

34X (meanG SD) and 73G 22X (meanG SD) for FNH and aNL under mean coverage, respectively. In total,

we identified 773 somatic exonic mutations among all 19 patients (Table S2). Of them, 694 mutations were

single nucleotide variation (SNV), and the rest 79 mutations were insertion or deletion (Indel). The majority

of mutations weremissensemutations (473 in total, 61.1%), followed by synonymousmutations (181 in total,

23.4%), and each remaining type was less than 5% (34 nonsense mutations, 29 non-frameshift deletions, 28

frameshift deletions, 17 frameshift insertions, 5 non-frameshift insertions, 5 unknown and 1 nonstop muta-

tion in total) (Figure 1A). The variant allele frequency (VAF) of FNH was 0.132 G 0.09 (mean G SD), indi-

cating that mutations were only prevalent in a small proportion of cells within FNH.

The number of somatic mutations among patients varied significantly (2–220mutations per patient, median

13 per patient), with patient P07 carrying the largest number of mutations and P04 having the fewest mu-

tations (Figure 1B upper and Table S2). A total of 50 mutations were randomly selected for Sanger valida-

tion, reaching a success rate of 88% (Figure S2A and Table S3). We checked genes being repeatedly hit

among patients, and the mutations that appeared in more than three patients, homozygous mutations,

or multi-hit events among patients were not detected. However, some putative tumor suppressors or on-

cogenes were affected. Mutations of ARID1B, a probable tumor suppressor (Khursheed et al., 2013), were

detected in patients P07 and P14. ARID1Bmutation (chr6: 157,522,487, G>T, V1574F) in P07 was predicted

to be deleterious by different canonical algorithms. Likewise, ARID1B mutation (chr6: 157,488,191, G>T,
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G953V) in P14 was also predicted deleterious. The mutations of MMP10, which functions as an oncogene

(Deraz et al., 2011), were detected in patients P07 (chr11: 102,651,271, A>T, Y18N) and P16 (chr11:

102,650,265, G>A, P106L), and both mutations were predicted to cause functional damage (Table S2).

Whether FNH shared the same driver mutations with HCC (Brunner et al., 2019; Fujimoto et al., 2012)

was explored, and only IGSF10was foundmutated in P11 but not functionally harmful. Then, themutational

profiles were compared among FNH, normal liver (Wijewardhane et al., 2021), cirrhotic liver (Zhu et al.,

2019) and HCC (Brunner et al., 2019; Fujimoto et al., 2012), and FNH did not share any mutation with normal

liver either, whereas FNH and cirrhotic liver only shared ARID1B mutation. Such recurrent mutations in

cirrhotic liver, like ARID1A and ARID1B, are viewed to confer adaptive changes that promote fitness and

regeneration in response to chronic damage, instead of malignant transformation (Zhu et al., 2019). Patient

P11, who also suffered from HCC, and an elderly patient P10, harbored the second and the third highest

number of mutations, indicating that mutations might preferably arise from diseased or aged liver. In addi-

tion, dS/dN (Martincorena et al., 2017) analysis was applied to FNH and TCGA hepatocellular carcinoma/

cholangiocarcinoma (TCGA-HCC/CCA) datasets, and no positive mutational selection was found to pre-

sent in FNH, whereas TCGA-HCC and TCGA-CCA both had positive selection (Figure 1C), supporting

the notion that FNH did not harbor cancer driver mutations. Conclusively, despite that FNH was not driven

by somatic gene mutations, high-mutation cases indeed exist, and some potential tumor suppressors and

oncogenes were impaired and likely driving clonal expansion.

Mutations often occur during cell proliferation and division (Cairns, 1975). Thus, the relationship between

the cell proliferation rate and the number of mutations was investigated.MKI67 (gene encoding Ki-67) tran-

scripts per million expression was explored as a cell proliferation marker, and a significant positive corre-

lation between mutation load and MKI67 expression level (r = 0.50, p = 0.03, Figure 1D) was identified.

However, the correlation betweenMKI67 expression and tumor size was not significant. This phenomenon

indicates that mutations of FNHmay have an intrinsic connection with cell proliferation, and close follow-up

should be applied to FNH with high proliferative capability, regardless of tumor size. These results are

consistent with the clinical observation that progressive FNH was not always large lesions (Tajiri et al.,

2014; Kudo et al., 2008).

The mutational spectrum and signatures of FNH were also explored. FNH had a nearly equal number of

transition and transversion, where C to T was the predominant type of base substitution (>25% of total mu-

tations), followed by C to A and T to C (Figure 1E), which is similar to cirrhotic liver (Zhu et al., 2019). Of them,

C to T and T to C were also the main mutational features of HCC and CCA (Alexandrov et al., 2013; Dong

et al., 2018), indicating their commonality in liver tumors. The mutational pattern was deconstructed and

compared to COSMIC signature database and signatures with weight R 0.1 were thought significant

(Dong et al., 2018). Liver cancers commonly show signature 16 (Brunner et al., 2019), and four FNH cases

showed signature 16 as well. Poison contact (Henry et al., 1999) or defective DNAmismatch repair function

can contribute to the pathogenesis of liver cancers (Zekri et al., 2005). Similarly, signatures 1, 22, and 24,

which indicate potential exposure to poisons appeared in 8 of 19 FNH samples; four lesions showed signa-

ture 20 that implied defective DNA mismatch repair function. Nevertheless, different from cirrhotic liver

and HCC (Brunner et al., 2019), FNH did not show signature 5, indicating that age may not dominantly ac-

count for mutational accumulation in FNH (Figure 1F).

The clonal status of FNH was deduced using VAF (Figure 1G). Except for P04 having too few mutations,

other samples were successfully analyzed for the number of clones. In total, 7 of the 18 FNH lesions

were monoclonal, and the remaining 11 were polyclonal, which was consistent with a previous study that

Figure 1. Mutational landscape of FNH

(A) The constitution of somatic mutations in FNH (n = 19).

(B) Individual mutational information (upper: the number of nonsynonymous mutations; middle: genes involved in mutation; bottom: basic clinical

information).

(C) dS/dN analysis of FNH, TCGA-HCC and TCGA-CCA.

(D) The correlation between MKI67 expression and the number of mutations of 19 FNH samples (Spearman’s rank correlation coefficient).

(E) The ratio of six-type base substitutions. The line and box represent median and upper and lower quartiles, respectively.

(F) Mutational signatures of each FNH sample.

(G) Number of clones inferred from mutational data. Each dot represents mutations belonging to each inferred clone.

(H) CNVs of each FNH sample.

See also Figures S1 and S2.
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most FNH lesions were polyclonal origin (Paradis et al., 1997). In contrast, the monoclonal origin was well

recognized in malignant tumors like HCC and CCA (Cai et al., 2009). Hence, we suspected that the mono-

clonal FNH of P11, which has the second highest mutational load and the highest proliferative rate, showed

partial molecular features akin to HCC. Thus, AFP and Ki-67 were stained for this lesion. Enlarged nucleus,

disappeared hepatic plates, and positive AFP or Ki-67 staining were observed in many cells within this case

(Figures S1E andS1F), indicating pathologically cancer-like morphology.

Tumor mutational burden (TMB) of FNH was compared to TCGA tumors, and its TMB ranked 32 in all 34

types of tumors (Figure S2B). Among malignant tumors, kidney chromophobe, testicular germ cell tumors,

uveal melanoma, acute myeloid leukemia and thyroid carcinoma did not show significantly different TMB

with FNH. All TCGA benign tumors including thymoma and pheochromocytoma and paraganglioma did

not show significantly different TMB with FNH as well. This result indicates that FNH has relatively low

TMB, which is in agreement with its benign attribute. Each mutation was then substituted with its corre-

sponding VAF, entitled VAF-TMB (Figure S2C). Of interest, except for thyroid carcinoma, the other four ma-

lignancies mentioned above had significantly higher VAF-TMB than FNH, whereas there was no statistical

difference in VAF-TMB between two benign tumors and FNH. Of interest, many of these features are also

observed in liver cirrhosis (Zhu et al., 2019). When only considering VAF >5%, FNH had amean of 10.9% and

a median of 9.3% VAF (excluding P11), whereas cirrhotic liver has a mean of 10.5% and a median of 8.7%

VAF, indicating that mutations may affect same proportion of cells in two diseases. These results again indi-

cate that FNH, as a benign tumor, has fewer cells affected by mutations than malignant tumors.

Copy number variations of FNH

Neither significantly recurrent arm-level copy number variations (CNVs), nor significantly recurrent focal

level CNVs in FNH (Figure 1H) were found. However, significant arm-level CNVs of P11 were detected in

chromosomes 4q, 7q, 8p, 8q, 16q, and 17p, which were also commonly detected in HCC (Qin et al.,

1999). CNVs were confirmed by inspecting the gene expression level in corresponding regions

(Figures S2D). Tumor suppressor genes such as TP53 and FAT4 were included in these arm-level regions

but no obvious downregulation of these genes was observed, possibly because the functions of these

genes were compensated by another intact copy.

The most prominent focal level CNV (copy number = 3) was 113,640,020–114353828 at 13q34 including

TFDP1 and CDC16 with significant upregulation of their expression levels (Figures S2E and S2F). The

copy number of TFDP1 and CDC16 at 13q34 was frequently amplified to enhance proliferative capability

in HCC (Yasui et al., 2002). Altogether, although most of FNH samples did not exhibit common CNVs,

P11 had already got features of HCC from both arm-level and focal level CNVs. However, we cannot

conclude that FNH has the potential to undergo malignant transformation based on one case, and future

integrative analysis enrolling more patients like P11 is needed.

Transcriptomic features of FNH

Principal component analysis (PCA) of the transcriptomic profile revealed pronounced spatial distinction

between FNH and aNL (Figure S3A). Next, differentially expressed gene (DEG) analysis between FNH

and aNL identified 589 significantly upregulated and 236 significantly downregulated genes. Among signif-

icantly upregulated genes, some fibrosis-related genes were found, such as PDGFB, PDGFRB (Czochra

et al., 2006), CXCL6 (Cai et al., 2018), NOTCH3 (Chen et al., 2012), and COL1A1 (Figure 2A). Functional

enrichment analysis showed the significant upregulation of extracellular matrix (ECM) production and

PI3K/AKT pathway (Figure 2B). Also, the PDGF pathway was significantly enriched, again implying its contri-

bution to the fibroblastic process. Meanwhile, Ingenuity Pathway Analysis (IPA) unearthed possible cell

types that were responsible for transcriptomic alterations. The most significant canonical pathways were

hepatic stellate cell activation (Figure S3B) and PDGFB/PDGFRB axis was the only detected input signal

for stellate cell activation in FNH (Figure S3C). Thus, PDGFB/PDGFRB-PI3K/AKT was the most possible

pathway that may cause fibrosis in FNH.

FNH transcriptome was compared with TCGA-HCC, TCGA-CCA and GTEx normal liver using PCA. As ex-

pected, FNH, aNL and GTEx normal liver were spatially adjacent, whereas TCGA-HCC and TCGA-CCA

were located oppositely (Figure 2C). This result preliminarily indicates the benign attribute of FNH. Surpris-

ingly, we found P11 was away from other FNH counterparts and spatially close to TCGA-HCC. Further,

consensus clustering was utilized and five classes were confirmed referring to consensus cumulative
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distribution function (CDF) value (Figure 2D left and S3D). Similarly, FNH, aNL and GTEx normal liver were

clustered together mostly in clusters 1 and 5, whereas TCGA-HCCwas in clusters 2 or 3 and TCGA-CCAwas

in cluster 4. Once again, P11 was clustered in clusters 1, 2 and 3, which suggests its similarity to TCGA-HCC.

As a comparison, aNL of P11 was still clustered in clusters 1 and 5 as other NLs (Figure 2D right).

FNH has specific transcriptomic modules

The transcriptomic data of five types of samples (FNH, aNL, TCGA-HCC, TCGA-CCA and GTEx normal)

were decomposed using independent component analysis (ICA). In total, 35 independent components

(ICs) reached the stable status of the model followed by unsupervised clustering, and four modules

were generated (Figure 3A). The point biserial correlation coefficients between meta-samples and binary

vectors (e.g., all FNH samples were defined as 1 and other types of samples were defined as 0) were calcu-

lated as previously described (Aynaud et al., 2020). It is worth noting that IC13 and IC7 in modules 3 and 4,

respectively, highly correlated with FNH and aNL, whereas ICs such as IC2, IC11, IC17 and IC29 in module 2

correlated with malignancies (Figures 3A and 3B).

Each IC was compared with BIODICA (Captier et al., 2022) (Figure S3E) or MSigDB (Liberzon et al., 2011)

database or manually annotated. Importantly, cellular senescence was most significantly enriched in

IC13, which suggest an intact ‘‘brake’’ function in response to proliferation (Campisi and D’Adda, 2007).

Other features such as CTNNB1 signature (Rebouissou et al., 2008), estrogen-related gene expression (Al-

dinger, 1977) and NOTCH signaling in fibrogenesis (Chen et al., 2012) have been reported in FHN or liver

A B

C D

Figure 2. Transcriptomic features of FNH and co-analyzing with canonical database

(A) Volcano plot shows DEGs between FNH and aNL.

(B) Functional enrichment analysis of significantly upregulated genes in FNH.

(C) PCA of FNH, aNL, TCGA-HCC, TCGA-CCA and GTEx normal liver transcriptome.

(D) Consensus clustering of FNH, aNL, TCGA-HCC, TCGA-CCA and GTEx normal liver transcriptome (k = 5). Red

highlights the position of FNH P11.

See also Figure S3.
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fibrosis. Thus, IC13 was entitled FNH-like IC (Figure 3C). Likewise, IC7 was abundant in macrophages and

endothelial signatures, thus named FNH-Immune (Table S4).

Next, each sample was scored using the leading genes in ICs that highly correlated with samples and had bio-

logical significance. As expected, FNH-Like score was significantly higher in FNH than in other types of samples,

whereas the FNH-Immune score in FNHwas significantly higher thanother types of samples lower than aNL (Fig-

ure 3D). Other ICs also delineatedother features of FNH, such as fibrosis, ECMgeneration,moderately elevated

proliferative capacity andductular proliferation (FigureS3F).Meanwhile, the FNH-Immune score ofP11 FNHwas

significantly lower than P11 aNL, with significantly elevated proliferation score but FNH-Like score did not

decrease. This result molecularly proved that lesion of P11 was FNH and further explained what alterations

happened in P11 that made its transcriptome analogous to HCCmentioned above.

Single-cell landscape of FNH

To further explore FNH molecular characteristics and pathogenesis, three freshly dissected paired FNH

and aNL were dissociated into single cell suspension, followed by flow cytometry sorting living cells and

scRNA-seq. In total, 54,221 cells (including 27,474 cells from FNH, 26,747 cells from aNL) passed quality

control, with 27 clusters of cells generated and visualized by uniform manifold approximation and

A B

C D

Figure 3. FNH owing its specific transcriptomic components

(A) ICA decomposes 35 independent components from FNH, aNL, TCGA-HCC, TCGA-CCA and GTEx normal liver

transcriptome. Unsupervised clustering generates 4 basic transcriptomic modules (Pearson correlation coefficient).

(B) IC7 and IC13 highly correlated with FNH or aNL (The point-biserial correlation coefficient).

(C) ssGSEA on IC13 depicting many features of FNH. NES, normalized enrichment score.

(D) Scoring each type of sample using ICs with biological significance (Mann–Whitney U test). The line represents median.

*, p < 0.05; **, p < 0.01; ***, p < 0.001.

See also Figure S3.
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projection (UMAP) (Figure 4A). Each cluster was then annotated automatically and verifiedmanually, result-

ing in 11 major cell types (Figures 4B and S4A).

To evaluate whether the main features captured by scRNA-seq, three paired pseudo-bulk samples were

generated using the scRNA-seq data, followed by DEG analysis. Among significantly upregulated

genes in FNH detected by bulk RNA-seq and pseudo-bulk DEG analyses, 145 intersected genes

were discovered (Figure 4C). Many essential genes that related to FNH intrinsic features, such as

CXCL6, PDGFB, PDGFRB, and NOTCH3, were all included. At single cell level, CXCL6 was found mainly

in hepatocytes, PDGFB in endothelial cells, PDGFRB and NOTCH3 in fibroblasts (Figure S4B), support-

ing the IPA results (Figure S3C). Also, the pathways enriched in pseudo-bulk samples showed a

high degree of consistency with those in bulk analysis, again indicating the enhanced ECM

interaction, the possible involvement of PI3K-AKT signaling and underlying vascular changes in FNH

(Figure 4D).

A B

DC

E

Figure 4. The single cell landscape of FNH

(A) The single-cell landscape of FNH. 26 clusters were automatically generated under the resolution of 1.2.

(B) Annotations of cells in each cluster.

(C) Venn graph showing 145 intersected significantly upregulated genes in FNH between RNA-seq and pseudo-bulk DEG analysis.

(D) Pathway enrichment analysis for significantly upregulated genes in pseudo-bulk FNH samples.

(E) The proportion of different type of cells in FNH and aNL (paired FNH and aNL, n = 3). Data are represented as mean G SD.

See also Figure S4.
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The proportions of each type of cells were next analyzed to explore FNH specific components (Figure 4E).

Because of the limited number of fibroblasts captured by scRNA-seq (577 cells from FNH and 20 cells from

aNL), we were only able to analyze as a whole. Even so, ECMdeposition related genes, such asCOL4A1 and

COL4A2, were observed significantly upregulated in the fibroblasts of FNH compared to aNL. Many ECM

formation or interaction pathways were enriched in the fibroblasts of FNH as well. FNH had significantly

more endothelial cells compared to aNL, which was consistent with the pathological feature of vascular

proliferation. Among immune cells, macrophages dominated FNH with an abundance of over 5%, which

was proved by the deconvolution of bulk RNA-seq data. Importantly, FNH-Immune consisted of genes

mostly representing macrophage, which conspicuously distinguished FNH from other types of samples.

Therefore, macrophages and endothelial cells that were highly enriched in FNH were selected for further

analysis.

Kupffer cells are abundant in FNH

In total, 2,817 macrophages (1,987 from FNH and 830 from aNL) with three clusters were identified (Fig-

ure 5A). Macrophage cluster 1 (M4_1) expressed a high level of CD206, CD163 and MARCO, showing

the identity of the non-inflammatory Kupffer cell (MacParland et al., 2018). M4_2 highly expressed

S100A8/9 and EREG (Figure 5B), indicative of the role of pro-inflammation (MacParland et al., 2018; Cao

et al., 2019). The proportion of M4_1 andM4_2 significantly differed between FNH and aNL, with FNH hav-

ing more Kupffer cells whereas aNL owning more pro-inflammatory macrophages (Figure 5C). Co-staining

of CD68 and CD206 in additional six samples confirmed the results as well (Figure 5D).

To further investigate the distribution of M4_1 MARCO+ macrophages, the FNH scRNA-seq data from this

study were combined with scRNA-seq from an in-house HCC dataset and a normal liver dataset in a pre-

vious study (MacParland et al., 2018). MARCOwas hardly detectable in macrophages fromHCC, consistent

with the previous study (Sun et al., 2017), whereas it showed a relatively high expression in normal liver data-

sets, FNH and aNL (Figures 5E and 5F). Of note, in P11, FNH rather than corresponding aNL, showed a

nearly negative signal of MARCO, similar to that in HCC, whereas the remaining 18 FNH and paired aNL

showed obvious staining of MARCO (Figure 5G). Clinically, superparamagnetic iron oxide contrast is

able to be taken by Kupffer cells in liver, thus Kupffer-cell-poor lesions can be differentiated (Tanaka

et al., 1996). Therefore, superparamagnetic iron oxide MR contrast may be used to monitor potential mo-

lecular transformation based on the abundance of Kupffer cells in certain FNH non-invasively.

FNH had a unique type of SOST+ endothelial cells

Previous morphological studies assumed that abnormal blood flow might fuel hyperplasia (Rebouissou

et al., 2008), driving us to further ask whether FNH had unique endothelial features. A total of 4,194 endo-

thelial cells (3,561 from FNH and 633 from aNL) were identified with 10 clusters generated (Figure 6A). All

ECs cells of FNH and aNL detected were positive for vascular markers PECAM1 (CD31) and FLT1 (Hirakawa

et al., 2003) but negative for lymphatic EC marker PDPN (Figure S5A) (Amatschek et al., 2007).

We next explored FNH-enriched endothelial clusters and their specific genes. Compared to aNL, the most

prominent differences concentrated on cluster 4 and cluster 6 (Figure 6B) that expressed both venous

marker COUP-TFII and arterial marker DLL4 but negative for sinus marker MRC1 (Figure S5B) (deHaan

et al., 2020; Diez et al., 2007), indicating an ambiguous status between artery and vein. DEG analysis was

performed between all ECs of FNH and aNL. The most upregulated genes (Figure 6C), such as COL4A1,

SOST, EDNRB, were mostly expressed in clusters 4 and 6 (Figures S5C–S5E). The expression of COL4A1

indicates an increased activity in ECM production and high EDNRB expression on ECs indicates an

enhanced ability of proliferation and migration (Ziche et al., 1995). SELE, found in activated or proliferating

endothelial cells (Nishiwaki et al., 2007), was the gene with the highest fold change and its distribution was

relatively equal among clusters (Figure S5F), indicating the diffusive molecular alterations in ECs of FNH.

Then, the relationship between endothelial clusters was inferred using pseudo-trajectory analysis. Surpris-

ingly, cluster 6 with SOST expression was mostly located at the middle and generated a new branch,

whereas all ECs from aNL were found at the ends of the trajectory (Figure S5G). The result indicates that

FNH had a unique type of ECs expressing SOST, independent of any ECs in aNL. To corroborate that

SOST+ ECs were FNH specific, the intersection of FNH upregulated genes in RNA-seq, scRNA-seq and

marker genes of cluster 6 were acquired, and SOSTwas within it (Figure S6A). Moreover, other types of liver

samples, including fetal liver, normal liver, cirrhotic liver, HCC and CCA, were all negative for SOST
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Figure 5. The features of macrophages in FNH

(A) UMAP showing three main types of macrophages in FNH.

(B) The marker genes of each clusters.

(C) The relative ratio of each type of macrophages in FNH and aNL.

(D) IHC confirming the constitutional differences of CD68+CD206+ macrophages between FNH and aNL (paired FNH and

aNL, n = 6; Paired Student’s t test).

(E) Single-cell data exhibiting a decrease of MARCO+ macrophages in HCC.

(F) qRT-PCR data indicating the decreased level of MARCO in HCC (FNH, n = 7; HCC, n = 9; Mann-Whitney U test). The

line and box represent median and upper and lower quartiles, respectively.

(G) IHC confirming significant fewer MARCO+ macrophages in HCC of P11 and FNH of P11 compared to aNL of P11.

*, p < 0.05; **, p < 0.01; ***, p < 0.001.
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expression (Figures S6B–S6F). The expression of SOST in vascular ECs in fibrous septa of FNH but not in

aNL was further confirmed by RNA in situ hybridization (Figure 6D).

The functional enrichment analysis was performed at the whole EC level between FNH and aNL. The ECs of

FNH showed significant enrichment of ECM associated pathways, PDGFBR signaling pathway and fluid

shear stress pathway. Then, we re-analyzed the data excluding clusters 4 and 6, finding that ECM associ-

ated and PDGFBR signaling pathways were not enriched any more whereas fluid shear pathway was still

enriched (Figure 6E). This result indicates that ECs of FNH may be broadly influenced by abnormal blood

flow, and FNH specific ECs of clusters 4 and 6 are probably the main contributors of ECM deposition. In

addition, cluster 4 exhibited a stronger function of vasculogenesis, whereas cluster 6 was more active in

PDGFRB signaling, but the crosstalk between ECs and immune cells decreased (Figure S6G). Moreover,

metabolic signature analysis figured out that cluster 6 had stronger oxidative phosphorylation, citric

acid cycle and glutathione metabolism but lower arginine metabolism, which suggests a more active func-

tional and metabolic status but impaired endothelial protection function (Figure S6H) (Zhang et al., 2006;

Prasad et al., 1999; Jongkind et al., 1989). Together, FNH had a specific type of SOST+ vascular ECs with

higher ECM related activity and higher metabolic activity.

Considering the involvement of PDGFRB signaling in FNH specific ECs, cell-cell interaction analysis was

then performed. There were six clusters of ECs showing interaction with PDGFRB+ fibroblasts, among

which cluster 6 had the strongest interaction (Figure 6F). Next, multiplex immunostaining of PDGFB,

PDGFRB, aSMA, and CD31 in four paired FNH and aNL showed strong PDGFB intensity in vascular ECs

from FNH instead of aNL. Correspondingly, PDGFRB+ fibroblasts were found spatially proximal to

PDGFB+ ECs in FNH but not in aNL as well (Figures 6G and S7A–S7C), highlighting that PDGFB+ ECs could

activate fibroblast and promote fibrosis through spatially proximal PDGFB/PDGFRB pair (Czochra et al.,

2006). In addition, the two cells within 4 mmwere thought actively interacted (Sheng et al., 2021). Therefore,

ECs within FNH may promote fibrosis through upregulating ECM pathways and activating fibroblasts by

producing PDGFB.

DISCUSSION

FNH is the second most common benign hepatic tumor, the prevalence of which is reported between 0.4

and 3% (Maillette DeBuyWenniger et al., 2010). Transcriptomic signature related to FNH pathogenesis has

been reported (Rebouissou et al., 2008), but the existence and relevance of the genomic and micro-envi-

ronmental alterations remain less clear. Herein, we delineated the multi-omics characteristics of FNH in the

scope of genome, transcriptome and single cell transcriptome and revealed that, despite mutations in tu-

mor suppressors or oncogenes, FNH possesses a relatively stable genome with specific transcriptomic fea-

tures. Combined with single cell data, we found FNH harbored abundant MARCO+ Kupffer cells and a

unique type of SOST+ ECs that may contribute to the fibrotic process through PDGFB/PDGFRB axis. Inter-

estingly, an atypical FNH was identified that gained an extra copy of 13q34 and excessive proliferative abil-

ity. Our work advanced the comprehensive understanding of FNH, which may further improve the clinical

management of FNH.

We observed no cancer driver events in FNH at genomic level, which is consistent with the previously re-

ported results that the well-known driver genes in HCC do not appear in FNH (Cai et al., 2009). However,

lesions with a high number of mutations and high proliferative rate were discovered. Despite that only pas-

senger mutations were found, the mutational signatures still indicated impaired DNA repair functions in

FNH. Though the mutational profiles between FNH and liver cirrhosis are generally different, FNH indeed

Figure 6. ECs of FNH probably promoting fibrogenesis and showing an SOST+ subtype

(A) The landscape of ECs in FNH.

(B) Ratios of all EC clusters in FNH and aNL. # and * denotes cluster 4 and 6, respectively.

(C) DEGs between ECs of FNH and aNL at single cell level.

(D) RNA ISH proving the expression of SOST in ECs of blood vessels in fibrous septa in FNH but not in any structure of aNL.

(E) Functional enrichment analysis of significantly upregulated genes of ECs in FNH.

(F) Cell-cell interaction analysis indicating ECs in cluster 6 having the strongest interaction with fibroblasts.

(G) Representative mIF showing PDGF-Bhigh vascular ECs are spatially adjacent to PDGFRB+ fibroblasts in fibrous septa of

FNH; whereas no PDGFBhigh ECs in aNL nor PDGFRB+ fibroblasts closely around vascular ECs in aNL. Scale bar, 50mm. A,

artery; B, bile duct; V, vein.

See also Figures S5–S7.
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shares some genomic features with liver cirrhosis (Zhu et al., 2019), indicating that genomic events are

confined to a fraction of hepatocytes restricted by hyperplastic nodes. Thus, we recommended that

FNH especially atypical FNH with a high proliferative rate should undergo surgical resection in time,

and proliferation markers such as ki-67 should be stained routinely.

Our RNA-seq and scRNA-seq data ascertain the fibrogenic nature of FNH, in agreement with its morpho-

logical feature (Rebouissou et al., 2008). We also revealed that EC-fibroblast interaction may be driven by

PDGFB/PDGFRB interaction through PI3K-AKT pathway. One mechanism for fibrosis in FNH can be sum-

marized as ECs that under abnormal blood flow secretes PDGFB, by which ECs activate and recruit hepatic

stellate cells to form fibroblasts, and further in vivo study is needed for validation. Notably, PDGFB/

PDGFRB-PI3K/AKT was the only enriched pathway in FNH instead of famous TFGB1/TGFBR1 signaling,

which differs from corresponding pathways reported in hepatitis-B-related liver fibrosis or alcohol-associ-

ated liver cirrhosis (Kisseleva and Brenner, 2021). As for the source of fibroblasts, other than stellate cell

formed fibroblasts, portal fibroblasts are another possible source of ECM producing myofibroblast. How-

ever, portal fibroblasts cannot be driven by PDGF (Kisseleva and Brenner, 2021; Wells et al., 2004). These

differences suggest the driving factor of FNH is different from those hepatocyte-injured diseases.

Interestingly, FNH specific ECs of cluster 6, showing the strongest interaction with fibroblasts, also uniquely ex-

press SOST. SOSTwas initially discovered in bone and elevatedwhile encounteringmechanical stimulation (Ro-

bling et al., 2008). Studies about SOST and ECs are scarce. So far as we know, only one study reported that scle-

rostin increased the proliferation of human umbilical vein ECs in vitro (Oranger et al., 2016). Nevertheless, which

factors drive the expression of SOST in FNH and what is the exact biological significance are still elusive.

P11 is the most special among all samples sequenced. FNH of P11 has the second largest number of mutations

that were monoclonal origin, but there are no noxious mutations in famous oncogenes or tumor suppressors.

However,CNVs inFNHofP11 suggests the similarity toearlyHCC.FNHofP11preserves themain transcriptomic

feature, but acquiresextraproliferative capability. Essentially,MARCO+macrophagesdecreasing is themain im-

mune alteration in P11. Thus, Kupffer cell sensitive contrast agent may help non-invasively trace FNH or alarm

atypical FNH. However, further in-depth studies are needed to confirm this conclusion.

In conclusion, by integrating WES, RNA-seq and scRNA-seq data, we revealed that most FNH are genet-

ically stable but some molecularly atypical FNH still exist, discovered a new type of FNH specific ECs, and

offered a probable mechanism of fibrogenesis in FNH. Our work advances the understanding of molecular

pathogenesis of FNH and provides clues for clinical management.

Limitations of the study

Limitations of this study included the lack of cellular or animal models, which handicaps the study of mech-

anisms. Although WES yielded an average of 13% VAF mutations in FNH, it was possible that considerable

somatic mutations with less VAF were left undetected. Ultra-high sequencing depth or single cell genome

sequencing may better help reveal those hidden but important secrets.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CD68 abcam Cat# ab213363

CD206 abnova Cat# 5C11

MARCO ATLAS ANTIBODIES Cat# HPA063793

PDGFRB abcam Cat# ab32570

PDGFB abcam Cat# ab23914

aSMA abcam Cat# ab5694

CD31 abcam Cat# ab76533

GS abcam Cat# ab176562

CK19 abcam Cat# ab52625

Ki-67 abcam Cat# ab15580

Chemicals, peptides, and recombinant proteins

DMEM, without glucose, L-glutamine,

phenol red, sodium pyruvate and sodium

bicarbonate

Sigma-Aldrich Cat#D5030

Fetal Bovine Serum Gibco Cat# 10099141

Opal� 7-Color Manual IHC Kit 50 slides PerkinElmer NEL811001KT

Collagenase IV Gibco Cat# 17104019

Dispase II Gibco Cat# 17105041

Critical commercial assays

RNAscope� 2.5 HD Assay - Brown Advanced Cell Diagnostics Cat#322300

RNAscope� SOST Probes Advanced Cell Diagnostics Cat# 452941

RNAprep Pure Tissue Kit TIANGENE Cat#DP431

NEBNext� Ultra� II Directional RNA Library Prep Kit New England BioLabs Cat#E7765

TIANamp Genomic DNA kit TIANGEN Cat#DP130227

Agilent SureSelect XT Human All Exon V5 kit Agilent Cat#5190-6213

Chromium Single Cell 30 Reagent Kits 103 Genomics Cat# PN-1000057

Deposited data

Normal liver single cell data (Aizarani et al., 2019) GSE124395

Normal liver single cell data MacParland et al., 2018 GSE115469

Liver cirrhosis single cell data (Ramachandran et al., 2019) GSE136103

HCC and fetal liver single cell data (Sharma et al., 2020) GSE156625

Intrahepatic CCA single cell data (Zhang et al., 2020) GSE138709

Oligonucleotides

Primers for Sanger sequencing, see Table S3 This paper N/A

Primer for SOST

Forward: CGTCAGGATTGTCGGCAGTA

Reverse: CCTTTGGAGTAACCCAGCAT

This paper N/A

Software and algorithms

R V3.6.2 R Core Team https://www.r-project.org/

GraphPad Prism V8.0 GraphPad Software Inc https://www.graphpad.com/scientific-software/prism

Burrows- Wheeler Alignment V0.7.12 Li and Durbin, 2010 http://bio-bwa.sourceforge.net/

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Prof. Qiang Gao (gao.qiang@zs-hospital.sh.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

All sequencing raw data, including WES, RNA-seq and scRNA-seq, are deposited in NODE (https://www.

biosino.org/node) under the accession number OEP002718. This paper does not report original code. Any

additional information required to reanalyze the data reported in this work paper is available from the lead

contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Clinical sample acquisition

19 Paired FNH and aNL samples for WES and RNA-seq were all acquired from patients underwent curative

resection from January 2012 to December 2013 at Zhongshan Hospital. Three paired FNH and aNL samples

for scRNA-seq were fromDecember 2019 to January 2020 at Zhongshan Hospital. Samples of Hematoxylin-

Eosin staining, IHC, fluorescent immunostaining and qRT-PCR were included in the 19 sample cohorts. Pa-

tients for ISH were from February 2021. The study was approved by the Research Ethics Committee of

Zhongshan Hospital, and written informed consent was obtained from each patient.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

FastQC V0.11.8 Babraham Bioinformatics https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Samtools V0.1.19 Danecek et al., 2021 https://github.com/samtools/samtools

Mutect2 Broad Institute https://gatk.broadinstitute.org/hc/en-us/articles/

360037593851-Mutect2

CNVkit V0.9.5 Talevich et al., 2016 https://cnvkit.readthedocs.io/en/stable/

dNdScv Martincorena et al., 2017 https://github.com/im3sanger/dndscv

Maftools V3.1 Mayakonda et al., 2018 https://www.bioconductor.org/packages/release/bioc/

html/maftools.html

TopHat2 V2.1.1 (Kim et al., 2019) http://ccb.jhu.edu/software/tophat/index.shtml

Cufflinks V2.1.1 (Trapnell et al., 2012) http://cole-trapnell-lab.github.io/cufflinks/

DESeq2 V1.14.1 Love et al., 2014 http://bioconductor.org/packages/release/bioc/html/

DESeq2.html

edgeR V3.12 (Robinson et al., 2009) https://bioconductor.org/packages/release/bioc/html/

edgeR.html

ggplot2 V3.3.0 (Wickham, 2011) https://cran.r-project.org/web/packages/ggplot2/

index.html

Biodica Captier N et al. https://github.com/LabBandSB/BIODICA

Consensusclusterplus V1.5 (Wilkerson and Ayes, 2010) http://bioconductor.org/packages/release/bioc/html/

ConsensusClusterPlus.html

Cellranger V3.1 10x Genomics https://support.10xgenomics.com/single-cell-gene-

expression/software/pipelines/latest/what-is-cell-ranger

Seurat V3.1.4 Stuart et al., 2019 https://cran.r-project.org/web/packages/Seurat/index.html

Monocle V2.1.4 Trapnell lab https://www.bioconductor.org/packages/release/bioc/html/

monocle.html

Cibersortx Newman et al., 2019 https://cibersortx.stanford.edu/

ggsci V2.9 Xiao and Li https://CRAN.R-project.org/package=ggsci
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METHOD DETAILS

Specimens processing

After resected, paired FNH and aNL for sequencing were transferred in 10% FBS (Giboco, USA) RPMI-1640

medium (Sigma-Aldrich, USA), followed by washing for three times by PBS solution and visibly necrotic and

hemorrhagic parts were carefully removed. Then, the clean samples were put into liquid nitrogen for snap

frozen and stored in�80�C for further processing. The time from sample collection to storage at�80�Cwas

strictly controlled within 30 minutes. aNL was used for germline analysis. All surgically resected samples

were macroscopically and microscopically diagnosed by two experienced pathologists to assure FNH

diagnosis.

DNA extraction, library construction, WES and sanger validation

TIANamp Genomic DNA kit (TIANGEN, Beijing, China) standard procedure was applied to extract tissue

DNA. Quality control was measured by Nanodrop 2000, and DNA content per sample >200 ng and con-

centration >20 ng/mL was accepted for following steps. Covaris� S2 Ultrasonicator System (Covaris, Wo-

burn, MA, USA) was used for DNA segmentation of 150 bp. 200ng DNA for each sample was used for library

construction. Library was built in accordance to Agilent SureSelect XT Human All Exon V5 kit (Agilent, CA,

USA) guideline. 150 bp paired-end sequencing was performed on Illumina X-ten. Primers for Sanger

sequencing were summarized in Table S3.

RNA extraction, library construction and RNA-seq

Total RNA was extracted from freshly frozen FNH and aNL samples using RNAprep Pure Tissue Kit

(TIANGENE, Beijing, China) followed by Nanodrop 2000 for quality control with the threshold of total

RNA >4 mg. 200 ng RNA for each sample was sent for library construction. We prepared RNA-seq library

with NEBNext� Ultra� II Directional RNA Library Prep Kit (NEB, MA, USA) for Illumina in accordance

with the manufacturer’s instructions. 150 bp paired-end sequencing was performed on Illumina X-ten (Illu-

mina, CA, USA).

WES data processing, somatic mutation detection

FastQCV1.9 (https://github.com/s-andrews/FastQC) andMultiQC V1.9 (Ewels et al., 2016) were used for quality

control of primaryWESdata, fastp tool V0.20.1 (Chen et al., 2018) was used to filter data and sequencewasmap-

ped to hg19 using BWA V0.7.15 (Li and Durbin, 2010). We used GATK BaseRecalibrator V4.0.6.0 (https://gatk.

broadinstitute.org/hc/en-us/articles/360036898312-BaseRecalibrator) to adjust base quality. Filtered data was

sent toGATKMutect2 (https://gatk.broadinstitute.org/hc/en-us/articles/360037593851-Mutect2) to call somatic

mutation followedbyAnnovar V2017 (Wanget al., 2010) annotation.Mutationswithalterationdepth<5Xor total

depth of FNH <20X were removed and we used IGV (https://software.broadinstitute.org/software/igv/igvtools)

to verify data. Important databases related to Annovar were COSMIC (http://cancer.sanger.ac.uk/cosmic),

dbSNP146 (http://www.ncbi.nlm.nih.gov/snp), 1000genomes (http://www.1000genomes.org/) and EXAC

(http://exac.broadinstitute.org/).

RNA-seq data processing

Raw data was imported to FastQC V1.9 (https://github.com/s-andrews/FastQC) for quality control and was

subsequently sent to fastp V0.20.1 (Chen et al., 2018) for filtering low quality sequence. Reads weremapped

to the human genome hg19 with HISAT2 V2.0.5 (Kim et al., 2019) and Cufflinks (Trapnell et al., 2012). SAM to

BAM transformation was finished by Samtools V1.7 (Danecek et al., 2021). The final count files annotated by

gencode.v33.annotation.gtf were produced from FeatureCounts V1.22.2 (Liao et al., 2014) processed BAM

files.

dN/dS analysis

To estimate whether FNH has positive selection onmutations, we performed dN/dS analysis referred to the

previously describedmethod (Martincorena et al., 2015). VCF files including silent and non-silent mutations

exported from the WES upstream analysis were imported to dNdScv R package (Martincorena et al., 2017),

and genes with wmis_cv, wnon_cv or wind_cv > 1, and the corresponding q value <0.05 were considered as

positive selection. RTCGA and RTCGA.mutations.20160128 packages (Kosinski and Biecek, 2021) were

used to download TCGA liver hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) mutational

information. Same analytical process was also applied to TCGA data.
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Mutational signature analysis

Due to the relatively lowmutationnumber in each sample compared with malignancies, wemanually merge

SNVs from all 19 samples as one integrated VCF file. Then, the VCF file was imported tomaftools R package

(Mayakonda et al., 2018) for illustration and further analysis. The mutational signature was acquired using

deconstructSigs (Rosenthal et al., 2016), and the cosine similarity was calculated by comparing the signa-

ture with COSMIC predefined Mutational Signatures V2. The cosine similarity ranges from 0 to 1, and the

closer the number is to 1, the higher the similarity between each pair.

Identification of CNVs

Both FNH and aNL BAM files were imported into CNVkit (Talevich et al., 2016), and the aNL file was pooled

and set as reference. The final results were generated using default parameter. The copy number was

thought to be non-diploid if log2(copy number fold change) > 0.585 or % �1. And the arm-level changes

were defined as R 0.1 fold change detected on R 50% length of that chromosome arm.

Clone number estimation

We estimated clone number with maftools (Mayakonda et al., 2018) and the variant allele frequency (VAF)

was used to calculate Mutant-Allele Tumor Heterogeneity (MATH) score. MATH score is a method to mea-

sure intra-tumor genetic heterogeneity. When evaluatingmalignant tumors, highMATH score is correlated

to lower survival rate (Rajput et al., 2017). Here, we put this method into benign tumor to estimate whether

mutations derived from monoclonal cells. Samples with >5 somatic mutations were calculated.

TMB calculation and comparison with TCGA datasets

33 TCGA tumor mutational profiles were acquired with RTCGA and RTCGA.mutations.20160128 packages

(Kosinski and Biecek, 2021). Setting the filtering depth threshold of our dataset as the reference, we ruled

out low quality mutations using the depth-adjusted threshold for TCGA samples. To make our dataset and

TCGA datasets comparable, we then adjusted sequenced exome length and sorted each tumor by median

mutational number. Mann-Whitney U test was performed between FNH and each tumor, respectively.

When considering VAF which means the scale a mutation could affect, we substituted each single point

in previous graph with VAF of each mutation. Mann-Whitney U test was performed as described above.

DEG detection and pathway analysis

Different expressed genes were identified by DESeq2 (Love et al., 2014) R package V3.12 embedding

shrinkage estimation for dispersion and fold change. Read counts were corrected for their patient origin,

and genes expressed more than three patients were included for further analysis. We used log2(fold

change) R 1 or % �1 and FDR q value <0.05 as the threshold for significant gene selection. For function

and pathway enrichment, we used clusterProfiler (Yu et al., 2012) R package V3.14.0 and ToppGene tool

(https://toppgene.cchmc.org/enrichment.jsp) implementing canonical database such as KEGG, GO,

REACTOME. Results with FDR q value <0.05 was thought significant.

PCA of FNH, TCGA and GTEx transcriptome

HCC and CCA read counts were downloaded from GDC portal (https://portal.gdc.cancer.gov/), and

normal liver read counts was downloaded from GTEx portal (https://www.gtexportal.org/home). Only pro-

tein coding genes were extracted from the original matrixes, and these protein coding matrixes including

FNH were merged together. We used DESeq2 R package V3.12 (Love et al., 2014) embedded variance sta-

bilizing transformation that normalizes the count data by dividing the normalization factors. Genes

expressed less than 10% of the corresponding sample were excluded from further analysis. PCA was per-

formed using DESeq2 R package described above and the 3D plot was graphed by plot3D R package V1.3

(https://CRAN.R-project.org/package=plot3D) using top 3 principle components.

Consensus clustering of FNH, TCGA and GTEx samples

Consensus clustering is a method of aggregation of clustering. It refers to that the given clusters of a data-

set desire to fit for a better existing clustering. Thus, this algorithm can reconcile data from different sam-

ples or results from different runs of an algorithm (Bonizzoni et al., 2008). Therefore, we used consensus

clustering embedded ConsensusClusterPlus R package V3.12 (Wilkerson and Ayes, 2010) which can also

determine the ideal cluster number to comprehensively analyze data from our dataset, TCGA and GTEx.

We normalized read count from different dataset via weighted trimmedmean of M-values (TMM) algorithm
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built in edgeR R package V3.12 (Robinson et al., 2009). We then used median absolute deviation (MAD) to

select how many genes were included for the next step. The similarity between each sample and each un-

supervised generated cluster was established by 1000 iterations.

ICA and correlation with five types of samples

ICA is a decomposition method that extracts a group of independent signal from a multivariate signal. The

process can be described as X = AS, and X represents the raw signal, A is the loading matrix and S is the

weight matrix of each independent component (IC). FastICA (Hyvärinen and Oja, 2000), an efficient algo-

rithm implementing ICA, orchestrate Icasso algorithm (Himberg et al., 2004) to synergistically explore the

stable IC number and subsequently acquire a robust IC result. We usedMATLAB developed BIODICA soft-

ware windows GUI version (https://github.com/LabBandSB/BIODICA) which relies on FastIC and lcasso,

running for 100 times respectively for 10 to 70 ICs to inspect the compactness, and finally decided the

optimal IC result. Then, the correlation coefficient between each IC and every BIODICA built-in biologically

significant gene set. Biologically prominent ICs with correlation coefficient >0.4 were directly entitled as

the corresponding name, such as ‘‘proliferation’’ and ‘‘fibrosis’’. We set the binary vector for each sample

within specific type as 1 and outside as 0. To establish the relation between ICs and sample types, we calcu-

lated the biserial correlation coefficient between the binary vector and the metasample (sample versus

component). Lastly, the simple Pearson correlations were calculated between each IC pairs (Aynaud

et al., 2020). In our study, the correlation coefficient >0.5 was considered significant.

Annotation of FNH specific IC and samples scoring

The FNH specific metagenes (IC versus genes) were ranked by the contribution factor by decreasing. The

ranked list was then imported into GSEA_4.0.3 (Subramanian et al., 2005; Mootha et al., 2003), and GSEA

Preranked tool with 1000 permutation was performed. MSigDB V7.2 (Gouw et al., 2010) H, C2, C5 and cell

signatures obtained from xCell (Aran et al., 2017) database were set as the standard signature. Terms

whose normalized enrichment score (NES) > 1.5 and FDR q value <0.05 were significant. Of each gene

for each IC in metagene matrix, contribution factor >3 were ideal representative for the IC. Therefore,

we used the sum of transcripts per million (TPM) of each representative gene as the IC score. Hypothesis

testing was carried out using Mann-Whitney U test between FNH and sample x (x = aNL, TCGA-HCC,

TCGA-CCA and GTEx Normal).

Single-cell suspension preparation

Three paired freshly resected FNH and aNL samples were immediately transferred into a 4�C DMEM

(Gibco, CA, USA) filled 50 mL centrifugal tube with 10% fetal bovine serum (Gibco, CA, USA) and samples

were transported to our lab on ice. Clean tissue was trimmed to 53 53 5 mm in size and was subsequently

emerged into 10 mL complex digestive enzyme system including 1 mg/mL collagenase IV (Gibco, CA,

USA), and 1 U/mL dispase II (Gibco, CA, USA). The 10 mL system was constantly stirred at 37�C for

40 min. The dissociated solution was filtered through a 40-mm cell-strainer nylon mesh (BD, NJ, USA) fol-

lowed by 700 g centrifugation for 10 min. Supernatant was removed and the cell sediment was washed

twice with MACS solution (PBS containing 1% FBS, 0.5% EDTA, and 0.05% gentamycin). Cells were finally

dissolved in sorting buffer (PBS with 1% FBS), stained with DRAQ5 1:200 for 15 min and DAPI 1:200 for

15 min. Living cells were then assessed and sorted by MoFlo Astros EQ (Beckman Coulter, CA, USA)

Cell Sorter into 10% FBS DMEM solution. Living cells took up > 90% of total cells.

Library construction and scRNA-sequencing

We used Chromium Single Cell 30 Reagent Kits V3 (103 Genomics, CA, USA) to construct libraries accord-

ing to manufacturer’s instructions. We aimed to harvest 6000 cells per cells from each channel. Libraries

were constructed using 103 Genomics Single-Cell Instrument and drops were then generated. Samples

were sequenced on Illumina NovaSeq.

scRNA sequencing data processing

Raw data was processed by Cell Ranger Single-Cell Software TABLE suite (103 Genomics, CA, USA) for

doublet removing, barcode processing, alignment and quality control. Reads weremapped to GRCh38 an-

notated with corresponding annotation files in ENSEMBL database by Cellranger pipline V3.0.1 (https://

github.com/10XGenomics/cellranger). To optimally balance cell number and quality, we kept cells with

both 600 < genes <4000, 1200 < UMIs <20,000 and percentage of mitochondrial genes <20%. Moreover,
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we manually checked the marker genes of each cluster and deleted those clusters marked with contradic-

tory canonical genes. A total of 27,474 cells from FNH and 26,747 cells from aNL finally passed the quality

control, with 1,686G 793 (meanG SD) genes for cells of FNH and 1,387G 527 (meanG SD) genes for cells

of aNL.

Unsupervised clustering and determination of cell type

We used log-transformed method to normalize counts and the top 2000 highly variable genes were sub-

sequently scaled for principle component analysis. Seurat V3.2.3 (Stuart et al., 2019) embedding Harmony

algorithm (Korsunsky et al., 2019), a strong method to minimize technical or biological confounders to

integrate different datasets and preserve biological characteristics was used to combine cells derived

from three patients. Top 20 principle components were used for clustering and Uniform Manifold Approx-

imation and Projection (UMAP) was applied for visualization. Marker genes were detected using

FindAllMarker function. Genes expressed in >25% cells in each cluster and log2(fold change) R 1 were

recognized as marker genes. Next, we employed singleR V1.0.6 R package (Aran et al., 2019) to preliminar-

ily annotate clusters followed by manual verification using canonical marker genes published in papers or

documented in databases.

Deconvolution of RNA-seq data

Our bulk RNA-seq data was deconvoluted using Cibersortx (Newman et al., 2019), LM22 signature matrix

was used as background reference and 500 permutations were applied. Absolute mode was finally set to

acquire results.

Pseudo-bulk sample generation

The pseudo-bulk samples were generated by adding all single-cell read counts individually. Genes ex-

pressed by less than 10 cells were excluded from analysis and DEG and pathway enrichment analysis

were performed the same way described in ‘‘Differentially Expressed Genes Detection and Pathway Anal-

ysis’’. DEGs with adjusted p value <0.05 and |log2(fold change)| R 1 were considered significant.

Gene set enrichment of single-cell data

Gene set variation analysis (GSVA), depending on a non-parametric unsupervised method, transform an

expression matrix into a relative enrichment score matrix. The count files were scaled to conform to

Gaussian distribution and imported into GSVA function. For visualization, we used z-score to plot heatmap.

Pseudo-trajectory inference

We used Monocle V2.12.0 R package (Trapnell et al., 2014) to construct the pseudo-trajectory of endothe-

lial cells. Differentially expressed genes (expressed >10% cells) were chosen using differentialGeneTest

function and the genes with FDR q value <0.01 were selected for DDRTree which is responsible for trajec-

tory construction.

Metabolic gene signature scoring

We obtained metabolic gene signatures from the published article (Trapnell et al., 2014). Both Seurat ob-

ject and signature genes were imported to AddModuleScore function of Seurat, which calculates the dif-

ference of the average expression of target genes and control genes randomly sampled from each bin. We

set 100 control genes and 24 bins for analysis. Each cell would get a score of the signature.

Intercellular ligand-receptor analysis

We used CellPhoneDB V2.0 to infer the ligand-receptor crosstalk between single cells (Efremova et al.,

2020). Significant secreting ligand and receptor was selected and visualized by ggplot2 (Wickham, 2011)

and ggsci (https://CRAN.R-project.org/package=ggsci).

Immunofluorescence and immunohistochemistry

The paraffin section was baked for 1 h and dewaxed by 10 min xylene for three times followed by 100%,

95%, 85% and 75% gradient dehydration. Then, the section was washed for twice and placed in boiling an-

tigen retrieval buffer (citrate PH = 6 or EDTA PH = 9) for 10 min. Next, the section was incubated with 3%

H2O2 for 10 min for blocking endogenous peroxidase. Non-specific binding was blocked by goat serum
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(Vector, CA, USA) for 30 min. The section was incubated with primary antibody over night at 4�C or for 1hat

room temperature. After washing for three times, the section was then incubated with corresponding sec-

ond antibody for 25min. Following three-time washing, Opal� (PerkinElmer, MA, USA) fluorescence dye kit

was used to stain the target. The whole process from antigen retrieval to fluorescence staining was

repeated till the last marker was finished. Finally, nuclei were stained using DAPI (Sigma-Aldrich, USA)

and slides were mounted with fluorescence mounting media (DAKO, CA, USA). Slides were scanned and

analyzed using PerkinElmer Vectra3� platform.

Immunohistochemistry followed the same steps as immunofluorescence, however, after second body incu-

bation, the section was processed stepwise by hematoxylin, acidic differentiation solution and bluing

buffer. Then, the section was dehydrated by 100% ethanol and xylene followed by resin mounting.

RNA extraction and qRT-PCR

Frozen tissue wasminced thoroughly in liquid nitrogen precooledmortar into powder. After liquid nitrogen

completely evaporated, 1 mL Trizol (Invitrogen, CA, USA) was added followed by 200 mL chloroform.

Centrifugation was performed and the supernatant was moved to 500 mL isopropanol for RNA precipita-

tion. Centrifugation was performed again and 75% ethanol (prepared with DEPC water) was added for

washing.

RNA with OD260/OD280 > 1.8 was considered qualified. Reverse transcription and qRT-PCR were per-

formed according to the manufacturer’s instruction (Yeasen, Shanghai, China) using QuantStudio 3 (ABI,

MA, USA).

Primers for MARCO:

F: CGTCAGGATTGTCGGCAGTA.

R: CCTTTGGAGTAACCCAGCAT.

RNA in situ hybrization

RNAscope� 2.5 HD Assay - Brown and RNAscope� SOST Probes were purchased from Advanced Cell Di-

agnostics (ACD, CA, USA). Freshly resected FNH tissue was immediately transferred to cold PBS to remove

as much blood as possible. Then, samples were immerged in 10% neutral buffered formalin for 24 h for

paraffin embedding. After deparaffinized, RNAscope� Hydrogen Peroxide and RNAscope� Target

Retrieval Reagents were used to quench endogenous peroxidase and retrieve antigens respectively, fol-

lowed by protein digestion using RNAscope� Protease Plus. Finally, targeted RNA was hybridized by

SOST probe and RNAscope� 2.5 HD Detection Reagents – BROWN was used to amplified the signal.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis

Standard statistical methods were utilized, including Student’s t test, Paired Student’s t test and Mann-

Whitney U test. For clinical data comparison, single-omic and multi-omic analyses, Student’s t test was

used to compare the age and tumor size between two gender groups. Mann-Whitney U test was applied

to the comparison of TMB or VAF-TMB between FNH and each TCGA tumor samples, IC scores between

FNH and each type of samples. For experiment data, Student’s t test was used to compare the MARCO

expression level between FNH and HCC. Paired Student’s t test was utilized to measure the content differ-

ence of macrophages between FNH and paired aNL. All statistical tests were two-sided, and statistical

significance was considered when P value < 0.05. for continuous variables versus continuous variables,

Spearman’s rank or Pearson correlation was used. For category versus continuous variables, the point-bi-

serial correlation was used. Statistical analysis was performed usingGraphPad Prism 8. Correlation analyses

were performed in R v3.6.3. Data were represented using the meanG standard deviation (SD), unless indi-

cated otherwise.
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