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Abstract: We demonstrate magnetic control of optical reflectance with no ferromagnetic material
via combining the Faraday rotation and the surface plasmon resonance (SPR) in a Kretschman
configuration under magnetic fields < 0.5 T. The SPR produces the polarization sensitive reflectance
from the Au or Ag thin film coated on a N-BK7 prism in which the Faraday rotation occurs. The gold
(Au) or silver (Ag) metal film as a plasmonic film somewhat acts as an incident angle-dependent
reflection polarizer that can sensitively sense the polarization change induced by the Faraday rotation
that occurs in a prism. We find that combination of Faraday rotation and the surface plasmon can
induce a significant magnetic modulation of reflectance normalized with respect to that obtained
with no magnetic fields at a specific incident angle of light. The magnetic control of optical reflectance
presented may find an application in polarizer-free photonic devices with no ferromagnetic material
for magneto-optical modulation.

Keywords: noble metal film; surface plasmon resonance; Faraday rotation; magnetic modulation;
magnetic anisotropy; optical reflectance

1. Introduction

Magnetic control of photons exploits the interaction between light and magnetism.
This interaction that can be activated in magneto-optical materials produces changes
in the optical properties including complex refractive indices, resulting in polarizations
changes and light attenuation as observed such as in Faraday rotations [1–6] and surface
magneto-optical Kerr effects [7–9].

In particular, the Faraday rotation originates from dielectric responses that are distinct
for different handedness of circular polarizations of light propagating in transparent
dielectrics under external magnetic fields. Material electron motions driven by electric
fields of circular polarizations of light are modified by magnetic Lorentz force in opposite
ways between left and right handedness, resulting in a circular birefringence. This enables
a linear polarization that can be decomposed into left and right circular ones to rotate
non-reciprocally for a give direction of external magnetic fields, forming the basis of optical
isolators [10–14].

Surface plasmon resonance (SPR), i.e., the collective oscillation of surface conduction
electrons at metal-dielectric (low refractive index dielectric) interface occurs through a
phase matching condition between incident photons and surface plasmons into surface
plasmon polaritons (SPP) [15–18]. The condition can be met via evanescent coupling of
incident photons through a transparent dielectric of a high index with surface plasmons
at the interface. The SPR excitation is extremely sensitive to polarization of incident light
since only transverse magnetic (TM) polarizations can support the surface confined modes
of electromagnetic fields for surface plasmon polaritons (SPP). In a typical Kretschman
configuration where an incident angle is scanned for reflectance versus angle measurements,
the reflection minimum accounts for the SPP generation whereby reflected light power is
subject to an extreme sensitivity to the polarization of incident light [19–21].
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Enhancement of Faraday effects have been reported using localized surface plas-
mons [4–6], such as with the noble metal nanoparticles to enhance the magnetic anisotropy
of ferromagentic materials. The 8.9 times enhancement of Faraday effects was demon-
strated using gold nanowire arrays on the bismuth iron garnet film [14]. However, thin
metal film supported SPP has never been combined with Faraday effects for magnetic
control of optical properties.

In this work, we report magnetic control of optical reflectance from non-magnetic
metal thin film coated on a N-BK7 glass prism under the magnetic fields of medium levels
(<0.5 T) at the wavelength of 532 nm. The gold (Au) or silver (Ag) metal film as a plasmonic
film somewhat acts as an incident angle-dependent reflection polarizer that can sensitively
sense the polarization change induced by the Faraday rotation that occurs in a prism. The
magnetic modulations of optical reflectance demonstrated with no ferromagnetic material
are unlike those using magneto-optical Kerr effects enhanced by surface plasmons [22–24],
while similarly exploiting surface plasmon properties and using relatively low magnetic
fields (<0.5 T) for modulations of the same order of magnitude of such modulation. This
may find an application in non-reciprocal optical devices with no ferromagnetic material
nor a polarizer, based on noble metal thin film reflectors with transparent dielectrics.

2. Experimentals

An experimental setup is shown in Figure 1. Light from a laser diode (CPS 532,
Thorlabs Inc, Newton, NJ, USA) at 532 nm wavelength is passed through a linear polarizer
(10LP-VIS-B, Newport Inc, Irvine, California, USA) to make nearly horizontal polarization,
i.e., the TM polarization as orthogonal to the transverse electric (TE) polarization. Light is
then made incident to surface of the metal thin film coated base of a N-BK7 prism at the
incidence angle (θin) adjusted for SPR, using a motorized rotation stage with the angular
resolution of 10−4 degrees (NR360S, Thorlabs Inc, Newton, NJ, USA). The base surface
coated with the noble metal thin film offers a metal-dielectric (air) SPR interface. The
plasmonic metal layer, i.e., the 38 nm-thick Au or 50 nm-thick Ag layers, is coated using a
thermal evaporator (Daedong Hightech, Gyeonggi-do, Korea) under a working pressure of
6× 10−6 Torr.
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Figure 1. An experimental set up for magnetic control of optical reflectance from the plasmonic metal
film coated on a N-BK7 prism using the Faraday rotation.

We use a motorized rotation stage to scan θin with respect to the prism base for
measuring reflectance versus θin, and obtain the SPR angles corresponding to minimum
reflectance, i.e., 48.60◦ and 44.16◦ for the Au and Ag thin films. The thicknesses of the noble
metal films are determined via optimizing the depth-to-width ratio of the reflectance dip
(reflectance minimum) in theoretically simulated reflectance versus θin, given the fact that
it is proportional to the plasmon resonance quality factor.
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A neodymium magnet is added to produce the external magnetic fields normal to the
prism base surface as shown in Figure 1. We modulate the magnetic field magnitude from
0 to ~320 mT, that is calibrated by the metal film surface-magnet distance while flipping
the field direction by switching the magnet pole. Under various magnetic fields applied,
we measure optical power of light reflected from the film coated prism as θin is scanned for
respective cases of using the prisms coated with 38 nm-thick Au film and 50 nm-thick Ag
film. All experiments are conducted at room temperature.

3. Results and Discussion

Propagation of light in the prism prior to reflection from the metal layer produces the
linear polarization rotation due to the Faraday rotation for a given magnitude of magnetic
fields. Surface normal direction of the magnetic fields permits the polarization rotation to
occur in proportion to the surface normal distance (L) between the light entrance point on
the prism and the metal surface, i.e., the surface normal projection of the light propagation
in the prism. We estimate the prism-generated Faraday rotation angle, i.e., θF using a
bare N-BK7 prism (with no metal film coating) whose reflected light power is fed to an
additional polarizer, i.e., an analyzer with its axis angle adjusted to be along the transverse
electric (TE) polarization.

We measure the analyzer output power and normalize it with respect to power of light
incident to the prism, i.e., η for various magnetic fields applied (ranging from N 322 mT to
S 318 mT) as shown in Figure 2. Fitting to measured data of η versus the magnetic field
magnitude enables us to estimate θF that varies from −0.725◦ to 0.734◦ for an incident
angle of light 48.60◦, and from −0.785◦ to 0.795◦ for an incident angle of 44.16◦ (reminding
that the two different incident angles are those used for the Au and Ag film SPR conditions,
respectively). This consequently leads the Verdet constant of the N-BK7 glass prism to be
estimated as 275.1 ◦/m·T, being ∼23% lower than that of BK7 glass as found in [25,26].
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Figure 2. Normalized optical power of light through the analyzer after reflection from a bare prism
(no metal coated) under various magnetic field magnitude. The analyzer is TE-polarization oriented
while the analyzer output power is normalized with that of light incident to the prism, i.e., η. The
positive magnetic fields denote those from the N-poled magnet while negative ones from the S-poled
magnet. The plot fitting estimates the Verdet constant ν to be 275.1 ◦/m·T.

When replacing the bare prism with the metal thin film coated one for combining the
SPP effects with the Faraday rotation, we remove the analyzer from the set-up and make
the input polarizer axis 2.1◦ tilted from the horizontal direction, thus incident light having
slight components of TE polarizations. We expect that the small tilted angle of the polarizer
from the TM direction enables SPP to produce significant attenuation of reflected light,
though the Faraday rotation of about 0.8◦ (calculated) occurs. The angle that needs to be
tilted by more than 0.8◦ thus allows the polarization-sensitive SPP to produce detectable
difference between increase and decrease in reflectance due to the opposite directions of
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Faraday rotation caused by opposite directions (N and S poled magnets) of magnetic fields.
The zero tilted angle would otherwise always increase reflectance irrespective of directions
of magnetic fields due to the features of SPP that attenuates reflectance of TM polarized
light only. It is therefore expected that, with the nonzero small tilted angle, the reflectance
change induced by Faraday rotation, though slight in magnitude, can be visible when
normalized with respect to reflectance obtained (as a small as less than 1% in magnitude)
with no magnetic fields. Further Faraday rotation occurs after reflection, adding up to the
pre-reflection polarization rotation due to the magneto-optical non-reciprocity.

Figure 3a presents the optical reflectance (R) for the 38 nm-thick Au film. The re-
flectance is shown at around the SPR angle under various magnetic fields, while its inset
providing the reflectance over all θin scanned with no magnetic fields. It is observed that
the reflectance changes with no SPR angle alteration as the magnetic field’s magnitude
varies. The fact that the magnetic fields applied change no SPR angle implies that the
SPP wave vectors are not altered. This indicates that the Au thin film is not magnetic
enough to generate surface magneto-optical Kerr effects (polar mode) under the magnetic
fields applied (<0.5 T), though the magnetic anisotropy possibly expected to be activated
by its surface plasmonic enhancement based on a pure Au thin film, which is unlike its
plasmonic enhancement using the nanosized Au disks [27–29]. The feature of the negligible
magnetism found in the metal film itself is also found in the Ag film as seen in Figure 3b.
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Figure 3. Optical reflectance (R) and the normalized reflectance change (∆R/R) versus incident
angle θin. The R obtained with 38 nm thick Au film and with 50 nm thick Ag film is given in (a,b),
respectively, while ∆R/R for 38 nm-thick Au film and 50 nm-thick Ag film given in (c,d), respectively.

The magnetic modulation of reflectance (∆R) becomes larger at an angle closer to the
SPR angle. It becomes clearer in Figure 3c,d where the normalized reflectance (∆R/R) is
given as a function of θin. In a case of the 50 nm-thick Ag film, the similar features are found
with noisier characteristics as seen in Figure 3d. The noisier properties are partly due to
intrinsic reflectance modulation under no magnetic fields which occurs with its magnitude
relatively smaller (over an angle range of 0.1◦) in the Ag film case than in the Au film (over
an angle range of 2◦). Another possible cause for such noise is the surface roughness of the
Ag film (its rms of 2.1 nm) higher than that of the Au film (its rms of 1.1 nm).
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∆R/R reaches maximum of about 30% and 20% at 322 mT (N-poled magnet) for the Au
and Ag thin films, respectively, as shown in Figure 3b,d. It is also observed that the slight
asymmetry in ∆R/R occurs between magnetic fields from N and S-poled magnets. This
asymmetry mainly stems from the following: the Faraday rotation linearly proportional to
the magnetic field magnitude modulates nonlinearly the TM polarization component of an
electric field of light incident to the metal film, since it is proportional to cosine (2.1◦ + θF).

The magnetic modulation of optical reflectance demonstrated above can be simu-
lated using the Faraday rotation combined with SPR induced polarization sensitivity of
reflectance from the plasmonic film. The Jones matrix expression used for simulation is(

E′TM
E′TE

)
= R(θF)

(
rspr(θin) 0

0 eiδ

)
R(θF)

(
ETM
ETE

)
(1)

Here ETM and ETE are the normalized TM and TE components of electric fields of light
incident to the prism, and R(θF) is the Faraday rotation matrix where θF = νLB (B is the
magnetic induction). Here rspr is the TM reflection coefficient with its magnitude obtained
from the measured reflectance (Figure 3a,b). Here the phases of reflection coefficients
(rspr and eiδ) for TE and TM polarizations are theoretically obtained from the Fresnel
reflection formula of the three layers (the prism-the metal film-air). It is noted that an input
polarizer imperfection in polarization filtering would produce an elliptical polarization
highly eccentric towards the linear polarization tilted by 2.1◦ from a horizontal direction.
Numerical fit to measured transmission of light through both the 2.1◦ tilted input polarizer
and an angle-scanned analyzer permits us to obtain ETM = cos ∆θ, ETE = sin ∆θeiα where
∆θ ∼ 2.1◦ and α ∼ 0.97.

With the parameters ν, ∆θ and α obtained above, ∆R/R is simulated as shown in
Figure 4a,b at incident angles around the SPR angle for the Au and Ag films, respectively.
The magnetic modulations of reflectance simulated show qualitatively good agreement
with the measured ones. Moreover, it is visible that tilting the input polarizer by 45◦ to have
equal optical power between TE and TM components smears out magnetic modulation as
seen in Figure 4c,d, as expected earlier.
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Figure 4. Numerical simulation of normalized reflectance ∆R/R versus incident angle θin under various magnetic fields for
the different tilted angles (∆θ) of an input polarizer. (a) the Au film at ∆θ = 2.1◦, (b) the Ag film at ∆θ = 2.1◦, (c) the Au film
at ∆θ = 45.0◦, and (d) the Ag film at ∆θ = 45.0◦.
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4. Conclusions

We present the magnetic control of optical reflectance using a polarization sensitive
SPR and the Faraday rotation in a Kretschman configuration with magnetic fields. Under
magnetic fields < 0.5 T, the Faraday rotation occurs during propagation of light inside the
prism while the plasmonic thin films of noble metals coated on the prism base produce
the polarization-sensitive reflectance via SPR. An appropriate tuning of polarization of
light incident to the prism can greatly enhance the magnetic modulation of reflectance
normalized with that obtained with no magnetic field. In addition, it is observed that
the magnetic fields applied make no change in SPR angles for the Au or Ag thin film.
This indicates that the plasmonic enhancements of surface magneto-optical Kerr effects in
such noble metal thin films are negligible under such medium levels of magnetic fields.
However, we find that the combination of SPP and Faraday rotation can induce magnetic
modulation of optical reflectance without a ferromagnetic material, being maximized at a
specific incident angle of light. The magnetic control of optical reflectance presented may
find an application in polarizer-free photonic devices with no ferromagnetic material for
magneto-optical modulation.

Author Contributions: C.S.: Methodology, Investigation, Data acquisition, Initial analysis, Writing
original draft. H.J.: Conceptualization, Supervision, Funding acquisition, Resources, Final analysis,
Correcting and finalizing the manuscript. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korean government (MSIT) (No. 2020R1F1A1050885).

Institutional Review Board Statement: Not applicable.
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Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy.

Conflicts of Interest: The authors declare no conflict of interest.
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