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Abstract: The degradation of the poly(trimethylene carbonate) (PTMC) and poly(trimethylene
carbonate-co-ε-caprolactone) (P(TMC-co-CL)) networks cross-linked by 0.01 and 0.02 mol %
2,21-bis(trimethylene carbonate-5-yl)-butylether (BTB) was carried out in the conditions of hydrolysis
and enzymes in vitro and subcutaneous implantation in vivo. The results showed that the cross-linked
PTMC networks exhibited much faster degradation in enzymatic conditions in vitro and in vivo versus
in a hydrolysis case due to the catalyst effect of enzymes; the weight loss and physical properties of
the degraded networks were dependent on the BTB amount. The morphology observation in lipase
and in vivo illustrated that enzymes played an important role in the surface erosion of cross-linked
PTMC. The hydrolytic degradation rate of the cross-linked P(TMC-co-CL) networks increased with
increasing ε-caprolactone (CL) content in composition due to the preferential cleavage of ester bonds.
Cross-linking is an effective strategy to lower the degradation rate and enhance the form-stability of
PTMC-based materials.

Keywords: cross-linked networks; poly(trimethylene carbonate); in vitro degradation; in vivo
degradation; form-stability

1. Introduction

Biodegradable polymers have been extensively investigated for biomedical and pharmaceutical
applications including implanted medical devices [1–6], drug delivery systems [7–13], nerve
guides [14–16] and temporary three-dimensional (3D) scaffolds in tissue engineering [17–22].
Poly(trimethylene carbonate) (PTMC) is one of the most important biodegradable polymers due to
its favorable characteristics, such as excellent degradability and biocompatibility [23–25]. In previous
work, it has been demonstrated that PTMC was hardly degraded in aqueous solutions [23,26], whereas
its degradation was rapid in vivo via surface erosion mechanism [23,25]. The degradation products of
PTMC were not acidic, which was much better than polyesters at avoiding the inflammation [27–30]
led by acidic degradation products. PTMC was degraded when incubated in lipase solutions
(from Thermomyces Lanuginosus) [23]. Once degraded, PTMC loses it shape due to the lack of
structural stability [31], which is undesirable to limit the applications in medical implants. Hence, the
enhancement of form-stability was considered as one of effective strategies to improve the in vivo
usability of PTMC.

PTMC-based biodegradable cross-linked networks (BCNs) have been reported to enhance the
mechanical and degradation properties of PTMC. The γ irradiation cross-linked PTMC network [32]
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showed that the cross-linking degree of networks increased with increasing the radiation dose
and the mechanical properties could be strengthened. Erhan Bat et al. [33,34] cross-linked melt
pressed (co)polymer films of trimethylene carbonate (TMC) and CL via γ irradiation in vacuum
and investigated the in vitro and in vivo degradation of the networks. The results revealed that the
degradation of networks was in accordance with a surface erosion mechanism, and the erosion
rates could be controlled by the TMC/CL ratio and the irradiation dose. Furthermore, histological
evaluation indicated that the networks initiated a mild tissue response when implanted intramuscularly
in rats [34]. Similar to the gamma irradiated PTMC networks, BCNs based on UV-photocrosslinked star
copolymers of TMC and CL also have been demonstrated to be well tolerated by the host tissue [35].
Therefore, PTMC-based BCNs possessed excellent tensile strength, flexibility and controllable
degradation rates, and have potential applications in a broad range of medical fields [36–40].

Recently, we fabricated PTMC-based BCNs using a new reaction methodology of cross-linking
agent other than γ irradiation to avoid the chain scission during the cross-linking [41]. In addition,
2,21-bis(trimethylene carbonate-5-yl)-butylether (BTB) synthesized from di(trimethylene propane) and
ethyl chloroformate was used as cross-linker in the (co)polymerization of TMC and ε-caprolactone
(CL) in the presence of stannous octanoate (Sn(Oct)2). The effects of cross-linker amount and CL
content on the performance of the resulted elastomers were investigated. A series of structurally
stable networks with desired mechanical and thermal properties were received. In this paper, both
in vitro and in vivo degradation of the cross-linked PTMC-based BCNs were studied. The in vitro
degradation was performed in lipase solutions (from Thermomyces lanuginosus, ě100,000 U/g) and
phosphate buffered saline (pH = 7.4) at 37 ˝C. The in vivo degradation was carried out in subcutaneous
implantation. The form-stability and tissue responses of the implanted networks were studied as well.

2. Materials and Methods

2.1. Materials

TMC was purchased from Daigang Biomaterial Co., Ltd. (Jinan, Shandong, China), recrystallized
twice in ethyl acetate and vacuumed dried at 37 ˝C for 24 h before polymerization. ε-caprolactone
(99%) was purchased from Sigma-Aldrich (St Louis, MO, USA), freshly distilled over CaH2 under
reduced pressure before use. Sn(Oct)2 (95%) was purchased from Sigma-Aldrich and used as received.
All other solvents and reagents were analytical grades and purified by standard methods.

2.2. Methods

1H–NMR spectra were recorded on a Bruker ARX 300 (Bruker, Zurich, Swiss) using CDCl3 as
solvent with tetramethylsilane (TMS) as an internal standard. The molecular weight and distribution
(Mn and PDI) of the sol content were determined by GPC (Waters, Milford, MA, USA) with a Waters
Model 1515 isocratic high-performance liquid chromatography (HPLC) pump, a Waters Model 2414
differential refractive index detector and a Waters Styragel HT4 chromatographic column. THF was
used as eluent with a flow rate of 1 mL/min at 35 ˝C. The molecular weight and molecular weight
distributions were calculated using polystyrene as standard. Glass transition temperature of the
networks was determined with a Netzsch DSC 200 F3 (Netzsch, Selb, Germany) equipped with
a liquid nitrogen cooling system. The measured temperature range was between ´100 and 100 ˝C and
the heating rate was 10 ˝C/min under nitrogen atmosphere. The thermal stability of the polymers
under nitrogen atmosphere was carried out by a Netzsch TGA 209 F3 (Netzsch, Selb, Germany)
at a temperature ranging from room temperature to 550 ˝C and the heating rate was 10 ˝C/min.
Tensile testing was performed on the obtained networks measuring approximately 40 ˆ 3 ˆ 2 mm3

using an Instron 1121 universal testing machine (Instron, Grove, PA, USA) with a crosshead speed
of 50 mm/min in accordance with GB/T 1040.1-2006. The tests were done on triplicate samples, and
the results were presented as an average for tested samples. The scanning electron microscopy
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(SEM) micrographs were obtained from a XL30ESEM–FEG microscope (FEI-Philips, Eindhoven,
The Netherlands). The sample surfaces were sputter coated with Au to avoid charging.

2.3. Preparation of Network Films

A mixture of monomers (TMC and/or CL) and BTB (prepared and characterized as described
previously [41]) was charged into pre-silanized flat-bottomed ampoules with a diameter of 60 mm
under nitrogen atmosphere, 2 ˆ 10´4 mol of Sn(Oct)2 per mole of monomers in anhydrous toluene
was added. The toluene was removed by vacuum evaporation. The ampoules were purged
three times with dry nitrogen and heat-sealed under vacuum. The ampoules were conditioned
in an oil-bath pre-heated at the polymerization temperature and shaken vigorously to mix the mixture
homogeneously. The ampoules were put in the oil bath for polymerization. All copolymerizations
were carried out at 130 ˘ 2 ˝C for 24 h. After the reaction, the ampoules were quenched to room
temperature, and the films were discharged and easily removed from the ampoules. Figure 1 shows
the schematic representation of the formation of the cross-linked P(TMC-co-CL) networks.
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Figure 1. Schematic representation of the formation of the P(TMC-co-CL) networks cross-linked by BTB.

To determine the gel percentage of the network films, a piece of sample was weighed and kept in
a sealed flask containing chloroform for 1 week and the solvent was refreshed twice a week to remove
the sol fraction completely. The swollen gels were taken out and dried to constant weight at 37 ˝C in
vacuum. The gel and the sol fractions were calculated according to Equations (1) and (2), respectively:

gel percentagep%q “
wd
wi
ˆ 100, (1)

sol percentagep%q “
ˆ

1´
wd
wi

˙

ˆ 100, (2)

where wd is the mass of dried swollen samples and wi is the mass of the specimens before swelling.
The measurement for gel and the sol fractions was done in triplicate for each network sample.

2.4. In Vitro Enzymatic Degradation

Circular specimens with a diameter of 10 mm were punched out of the films, weighed and put in
lipase solutions (from Thermomyces lanuginosus, ě100,000 U/g), the media were refreshed twice a week.
The degradation experiments were performed in triplicate at 37 ˝C with gentle shaking. At regular
time intervals, the polymer specimens were taken out from the degradation media, blotted with a tissue
and weighed. The specimens were washed with deionized water and then vacuum-dried at 37 ˝C till
constant weight. The water uptake and mass loss were calculated according to the following equations:

Water uptakep%q “
ww ´wd

wd
ˆ 100, (3)

Mass lossp%q “
wi ´wd

wi
ˆ 100, (4)
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where wi, ww, and wd represent the initial weight, wet weight and dry weight of the
samples, respectively.

2.5. In Vitro Hydrolytic Degradation

Strip shaped specimens with dimensions of approximately 40 ˆ 3 ˆ 2 mm3 were cut from the
films for hydrolytic degradation study. The samples were immersed into vials containing 20 mL of
pH 7.4 phosphate buffered saline (PBS), which was replaced once a week and the vials were placed in
an incubator at 37 ˝C. At time points of 10, 15, 20, 25 and 30 weeks, the samples were removed from
PBS and washed with deionized water. After wiping, the specimens were weighed and dried at 37 ˝C
in vacuum till constant weight. Mass loss and water uptake were then determined.

2.6. In Vivo Degradation

Before subcutaneous implantation, strip shaped specimens with dimensions of approximately
40 ˆ 3 ˆ 2 mm3 were sterilized by soaking in 75% ethanol for 3 h, rinsed with deionized water and
air-dried in a sterile environment. Animal experiments were performed according to the Regulations
of Experimental Animal Administration issued by The people’s Government of Liaoning province
(Decree No. 143 of 1 October 2002). Adult male Wistar rats with body weight of 200 g were used.
Four specimens of one sample were implanted in the back of one rat for each time point.

After implanted for 2, 4, 8 10, 12 and 14 weeks, the rats were sacrificed and shaved, and the
surrounding tissues of implants were excised. Three implants of one polymer in each study point were
pulled out from the fibrous tissue capsules gently with tweezers and one with surrounding tissue was
used for histological examination. Silastic tubes were used as positive controls.

The explants were fixed in neutral buffered formalin for 24 h. After being rinsed in distilled
water and dehydrated in graded alcohol solutions, the explants were embedded in paraffin wax.
Histological sections (5 µm) were routinely stained with hematoxylin eosin (HE). The histology was
independently evaluated by two persons.

3. Results and Discussion

3.1. Synthesis of Cross-Linked PTMC Networks

To enhance the form-stability and control the degradation rate of PTMC for implant
applications, PTMC-based cross-linked networks were prepared using BTB as cross-linker (Table 1).
After copolymerization, the products were isolated as transparent solids and insoluble partially
in chloroform. To determine the gel and sol fractions, the products were thoroughly washed and
extracted with chloroform and there was weak gel left, which was easily broken when being picked
up with tweezers due to low gel percentage. The gel percentage of the products was listed in Table 1.
Obviously, the TMC content influenced the gel percentage greatly, and higher TMC content resulted
in higher gel percentage of the films, similar to the observation in our previous work [41]. This was
attributed to the fact that BTB copolymerizes better with TMC because it has a similar reactivity to TMC
monomer. Moreover, the gel percentage of the networks increased with increasing the BTB amount in
feeding dose. After extraction, the soluble parts were collected by evaporation under reduced pressure
and analysis by 1H–NMR. The results showed that there were no proton signals of BTB in the 1H–NMR
spectrum, which implied the successful incorporation of BTB to the networks. The molecular weight of
the sol fractions was also given in Table 1. The sol fractions had higher Mn and narrower PDI than that
of sol fractions extracted from the networks cross-linked by gamma irradiation [33]. This indicated
that the BTB as cross-linking agent could avoid chain scission during cross-linking.
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Table 1. The characteristics of PTMC based networks a.

No.
Monomers (mol)

Gel percentage b (%) Mn c (g/mol) PDI c Tg d (˝C) Td (˝C) E e (MPa) σm f (MPa) εm g (%)
TMC CL BTB

N100 100 0 0 n/a 274,700 1.07 ´16.2 254.7 3.08 ˘ 0.18 3.32 ˘ 0.23 3570 ˘ 514
N100-1 100 0 0.01 19 ˘ 2 265,200 1.11 ´14.7 286.8 3.18 ˘ 0.16 4.48 ˘ 0.59 2150 ˘ 212
N100-2 100 0 0.02 31 ˘ 2 288,400 1.06 ´13.8 291.7 3.98 ˘ 0.20 6.69 ˘ 0.71 1350 ˘ 208
N75-1 75 25 0.01 11 ˘ 2 260,100 1.14 ´31.4 296.8 2.69 ˘ 0.14 3.43 ˘ 0.12 3350 ˘ 173
N50-1 50 50 0.01 8 ˘ 3 240,500 1.21 ´44.1 306.3 1.83 ˘ 0.23 1.30 ˘ 0.08 163 ˘ 10

a Values are expressed as mean. Standard deviation (n = 3); b Values of gel fraction determined by using chloroform at room temperature; c Values of sol fraction determined by GPC at
35 ˝C using THF as the eluent; d measured from the second heating cycle; e E = elastic modulus; f σm = tensile stress; g εm = tensile strain.
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The thermal and mechanical properties of the network films were shown in Table 1. The cross-linked
P(TMC-co-CL) networks containing 100, 75 and 50 mol % TMC were rubbery under physiological
temperature and the Tgs ranged from ´16.2 to ´44.1 ˝C. The Tgs of cross-linked PTMC networks
were slightly higher than that of non-crosslinked one due to the restricted motion of chain segments
caused by cross-linking. A similar observation was found for the cross-linked P(TMC-co-CL) networks
as compared to the linear P(TMC-co-CL) [42]. Furthermore, the Tgs of cross-linked P(TMC-co-CL)
networks decreased with increasing CL content, which was attributed to the low glass transition
temperature of PCL (around ´60 ˝C).

The obtained networks were flexible with elastic modulus ranging between 1.83 and 3.98 MPa.
The elastic modulus and the tensile strengths of the networks increased with the increase of cross-linker
amount while decreasing with the increase of CL content. It was due to the higher activity of the BTB,
which was preferable to react with TMC monomer, thus resulting in less cross-linking points and low
gel percentage in the network when CL content increased. The thermal and mechanical properties
indicated that the PTMC-based cross-linked networks were elastic and flexible biomaterials potentially
for subcutaneous implants.

3.2. In Vitro Enzymatic Degradation

Lipase (from Thermomyces lanuginosus, ě100,000 U/g) was used as a model enzyme to investigate
the enzymatic degradation of the cross-linked PTMC. Figure 2 showed the mass loss of cross-linked
N100-1 and non-crosslinked N100 specimens in lipase solutions.
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Figure 2. Mass loss of N100 and N100-1 specimens conditioned in lipase solutions at 37 ˝C for different
time periods.

As expected, N100-1 presented a slower mass loss than N100. After 10 weeks, the mass loss of
N100-1 was 54.23% ˘ 1.56% and that of N100 was 92.44% ˘ 0.62%, and the N100 sample was almost
eroded completely within 10 weeks. This observation showed that the cross-linked PTMC networks
were more insensitive and resistant to lipase degradation. Cross-linking showed significant influence
on the degradation behavior and could greatly lower the degradation rate of PTMC.

The macroscopic morphologies of the cross-linked PTMC network specimens degraded in
enzymatic conditions were observed. As displayed in Figure 3A, the shape of N100 specimens
was not circular anymore, but highly irregular after being degraded in lipase solutions for eight
weeks. N100-1 exhibited better form-stability during incubating in the lipase solution at 37 ˝C for
15 weeks. The shape was not changed appreciably, and the diameter remained more or less constant
(Figure 3B), while the thickness of the discs decreased with degradation time (Figure 4). At 20 weeks,
the specimens of N100-1 were thin with serrate margins and visible pores on the surface. The change
in the appearance of the N100 and N100-1 revealed that the cross-linked PTMC networks had a better
form-stability than the non-crosslinked ones.
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SEM measurements were performed to examine the changes in surface morphology of the
PTMC-based networks before and after degradation. The original samples of the cross-linked PTMC
networks (N100-1) exhibited a smooth surface before enzymatic degradation. However, a highly
porous structure was detected after 2, 10 and 15 weeks of degradation, and the size and deepness of the
pits observed on the surface increased with the incubation time, as illustrated in Figure 5. The results
were similar to the findings previously reported for PTMC [43], demonstrating that the cross-linked
PTMC was degraded in lipase solutions via a surface erosion process.
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Figure 6 illustrated the water uptake curves during enzymatic degradation of the networks.
N100 presented a gradual increase in water uptake; the water uptake was 15.47% ˘ 1.86% after
10 weeks and that of N100-1 was approximately 5.68%˘ 0.11% after 20 weeks. The lower water uptake
of cross-linked PTMC was in virtue of the fact that the cross-linked PTMC had a significantly slower
degradation rate with less porous pits and holes on the surface (Figure 2), where the diffusivity of
solvent molecules was less.
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Figure 8 shows the changes in Tg and Td of N100-1 during in vitro enzymatic degradation.
Both the Tg and Td decreased with increasing degradation time, and they were ´21.2 and 234.0 ˝C
after degradation for 20 weeks. This result indicated that the enzymatic degradation could destruct
the structure and decrease the thermal stability of the cross-linked PTMC significantly.
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Figure 8. Change in thermal properties of N100-1 during in vitro enzymatic degradation in lipase
solutions at 37 ˝C.

The samples conditioned in the enzymolysis cases were too short and weak to be clamped for
tensile test, hence their mechanical properties were not be measured.

3.3. In Vitro Hydrolytic Degradation

The hydrolytic degradation of the PTMC-based networks was performed in pH 7.4 PBS at
37 ˝C. The cross-linked PTMC network N100-1 degraded extremely slowly due to the hydrophobic
characteristics of PTMC [26], and the mass loss was only 1.71% ˘ 0.26% after 30 weeks of degradation.
In contrast, the cross-linked P(TMC-co-CL) networks were hydrolytically degradable and the mass
loss rapidly increased to 5.90% ˘ 0.32% for N75-1 and 13.01% ˘ 1.45% for N50-1 at week 30, as shown
in Figure 9. Apparently, the cross-linked P(TMC-co-CL) networks degraded much faster than the
cross-linked PTMC networks, the degradation rates of copolymer networks increased with the increase
of the CL content due to the hydrolysis of ester bonds [27]. Furthermore, the mass loss of cross-linked
PTMC networks in hydrolytic degradation was less than that in enzymatic degradation, implying the
significant contribution of enzyme to the degradation of cross-linked PTMC networks.
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Figure 9. Mass loss of the cross-linked P(TMC-co-CL) networks during hydrolytic degradation.

The cross-linked P(TMC-co-CL) networks exhibited wonderful form-stability and no significant
deformation was observed during the hydrolytic degradation process with the exception of N50-1 that
became bended at 12 weeks (Figure 10). The slight deformation of N50-1 might be attributed to the
lowest gel percentages and the fastest degradation rat. In our previous works, we reported that the
non-crosslinked P(TMC-co-CL) copolymers presented poor form-stability and unexpectedly began
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changing their shape from a cylinder to an oblate sphere after 10 weeks in vitro hydrolytic degradation.
The results indicated that cross-linking is an effective strategy to enhance the form-stability of the
linear P(TMC-co-CL) copolymers.
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hydrolytic degradation. N100-1 was very hydrophobic and its water uptake was 2.11% ± 0.52% after 
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Figure 10. Macroscopic observation of the cross-linked P(TMC-co-CL) networks during hydrolytic
degradation: (A) N100-1; (B) N75-1; and (C) N50-1.

Similar to the enzymolysis cases, the surface of the cross-linked P(TMC-co-CL) networks before
in vitro hydrolytic degradation was smooth, and it became rough and a number of pits were also
visible on the surface after 10 weeks of degradation. For N100-1, the pits grew in size with degradation
time (Figure 11A), indicating the further degradation. However, the pits size observed on the
surface of N75-1 and N50-1 seemed to be smaller with degradation, and the surface became relative
smooth (Figure 11B,C), although the mass loss increased significantly as shown in Figure 9. It was
attributed to the viscous flow caused by the plasticizing effect of the low molecular weight degradation
products leaching out of the degrading samples, which led to the structure collapse and formed the
smooth surface.
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Figure 11. SEM micrographs of the cross-linked P(TMC-co-CL) networks before and after the in vitro
hydrolytic degradation: (A) N100-1; (B) N75-1; (C) N50-1. The scale bar was 100 µm for all images with
exception of 50 µm for N75-1 at week 30.

Figure 12 presents the water uptake profiles of the cross-linked P(TMC-co-CL) networks during
hydrolytic degradation. N100-1 was very hydrophobic and its water uptake was 2.11% ˘ 0.52%
after 30 weeks. N75-1 and N50-1 presented slightly higher water uptakes with 2.93% ˘ 0.45% and
3.65% ˘ 0.43%, respectively. The higher water uptake was due to the degradation of ester bonds in the
cross-linked copolymers.
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Figure 12. Water uptake s of the cross-linked P(TMC-co-CL) networks during hydrolytic degradation.

The Tgs of the cross-linked P(TMC-co-CL) networks were not significantly changed (Figure 13A)
while the Td decreased gradually (Figure 13B) under hydrolytic conditions in vitro, especially for the
networks containing 50 mol % CL (N50-1), which had a decrease of 17.60% in Td after 30 weeks, it was
due to more server destruction of the reticulate structure as indicated by the higher mass loss (Figure 9).
Furthermore, the decrease in Mn and loss of CL content in composition of the sol fraction during the
degradation process would also lower the value of Td, as reported in our previous works that had
researched the degradation behavior of the linear P(TMC-co-CL) [42]. Obviously, there was a significant
increase in Td of the cross-linked PTMC N100-1 after 20 weeks in PBS solutions (Figure 13B), which
was caused by the first degradation of sol fractions. It resulted in the relative increase of gel contents
and led to the increase of the thermal stability of the networks.
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Figure 13. Change in thermal properties of the cross-linked P(TMC-co-CL) networks during in vitro
hydrolytic degradation in PBS at 37 ˝C: (A) Tg and (B) Td.

The changes in mechanical properties (Young’s modulus, E; tensile stress, σ; and tensile strain, ε)
of the cross-linked P(TMC-co-CL) networks in vitro hydrolytic degradation were given in Figure 14.
The results were normalized with respect to their initial values (E0, σ0 and ε0).

As seen in Figure 14, there was a clear tendency that all the Young’s modulus, tensile stress
and tensile strain values of the cross-linked P(TMC-co-CL) networks decreased during the in vitro
hydrolytic degradation. The addition of CL content in the copolymers resulted in significant decrease
of mechanical properties of the cross-linked copolymer networks. For example, for the cross-linked
copolymers, N50-1 contained 50 mol % CL, the modulus and tensile stress decreased to 16.4% and
8.1% of the initial values after 50 weeks, while the corresponding parameters of cross-linked PTMC
N100-1 were 59.0% and 62.0% of the initial values. The tensile strain of the cross-linked polymers
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was shown in Figure 14C, and the trend was similar to that of modulus and tensile stress during the
hydrolytic degradation.
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The significant loss in the mechanical properties of the cross-linked copolymer networks was
attributed to the higher mass loss caused by the instability of ester bonds in hydrolysis conditions.
This result coincided with the hydrolytic degradation results already shown in Figure 9, indicating
that the loss in mechanical properties of the cross-linked polymers was directly proportional to the
mass loss.

3.4. In Vivo Degradation

The implants of all the cross-linked PTMC networks were subcutaneously implanted in the back
of rats. The mass loss, thermal properties and mechanical properties of the implants as well as the
histology at the sites of implantation were monitored and evaluated.

The mass loss of the cross-linked PTMC networks in vivo was presented in Figure 15.
The specimens of N100-1 were completely degraded after 10 weeks, while the N100-2 disappeared at
week 14, indicating that the degradation rate decreased with increasing the cross-linker amount in the
composition of the networks. It has been reported that high molecular weight PTMC degraded fast
in vivo [24,25]; for instance, PTMC discs with molecular weight of 3.16 ˆ 105 g/mol subcutaneously
implanted in the back of rats presented a weight loss of 96% in three weeks. Therefore, N100-1 and
N100-2 exhibited a slower degradation rate as compared to the non-crosslinked PTMC mentioned
above. The results indicated that cross-linking could lower and tailor the degradation rate of PTMC
via the adjustment of cross-linking density.
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Figure 15. Mass loss of N100-1 and N100-2 at different implantation times in the back of rats.

The shape of the explants was not changed obviously, while the thickness decreased and the
surface became rougher (The figures were not given), indicating that the degradation of the cross-linked
PTMC in vivo proceeded via surface erosion mechanism. The surface morphology of the explants was
observed by SEM as shown in Figure 16, and the surface was smooth without any cracking or pitting
before implanting, while the surface of implants was eroded to a highly porous texture and numerous
pits were visible after two weeks of implantation. With further degradation, the size and deepness of
the pits were greater at eight weeks. Furthermore, the pit size observed on the surface of N100-2 was
smaller versus that of N100-1 at each same time point. It further confirmed that the degradation rate
of the cross-linked PTMC could be tailored by the cross-linking density: the higher the cross-linking
density, the lower the degradation rater. The surface structure of cross-linked PTMC was very similar
to that of PTMC films eroded in vivo [43,44]. It was likely that the degradation mechanism of these
networks was surface enzymatic erosion. The rapid surface erosion of the cross-linked PTMC networks
in vivo as well as being stable under hydrolytic conditions suggested that enzymes in body fluid played
an important role in the degradation process. However, it is not clear yet which enzyme is dominant
for the in vivo degradation of cross-lined PTMC. Meanwhile, body response, such as the accumulation
of macrophages, may accelerate degradation [45].
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Figure 16. SEM micrographs of the surface of N100-1 (A–C) and N100-2 (D–F) after 0 (A,D); 2 (B,E)
and 8 weeks (C,F) implanted in the back of rats. The scale bar was 50 µm.

The thermal properties of the cross-linked PTMC degraded in vivo were presented in Figure 17.
The thermal properties decreased as the degradation time increased, similar to that in vitro
enzymatic degradation. It was quite evident that N100-2 had higher thermal stability than N100-1,
which was attributed to the more stable structure caused by cross-linking when the amount of
cross-linker increased.
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Figure 17. Change in thermal properties of N100-1 and N100-2 networks at different implantation
times in the back of rats: (A) Tg and (B) Td.

Figure 18 shows the changes in mechanical properties of the cross-linked PTMC networks after
implantation in vivo. Interestingly, the modulus of cross-linked PTMC N100-1 and N100-2 increased
up to 103% and 118% of initial modulus in the first four weeks, and they then sharply decreased
(Figure 18A). The tensile strength of cross-linked PTMC networks was shown in Figure 18B, and the
trend was identical to that of modulus during implantation time. The increase in modulus and tensile
strength was attributed to the anti-plasticization effect of hydrogen-bonded bridges established by
water molecules penetrated in the inter-chain spaces of cross-linked polymers, once the explants were
exposed to water for a short period, and the similar result was reported by other groups [26,46–48].
Different from the changes in modulus and tensile strength with degradation time, the networks
underwent a marked decrease in tensile strain. N100-1 samples retained only 42.4% of their initial
values, while N100-2 experienced a lower alteration of decrease to 65.8% of the initial value for 12 weeks
in vivo degradation (Figure 18C). The samples of N100-1 were too weak to be clamped for tensile
test and their mechanical properties could not be measured after degraded for 10 weeks. The same
phenomena were found to N100-2 samples after 14 weeks degradation.
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To investigate the influence of degradation on the nature and extent of inflammatory and foreign
body reactions, the cross-linked PTMC networks (N100-1 and N100-2) with a different cross-linker
amount were implanted. As shown in Figure 19, at week 2, there was a minor inflammatory response
at the site of implantation for both N100-1 and N100-2, the signs of formation of fibrous capsule and
induction of vascularization were observed around the implants. Cells in the capsule were mainly
fibroblasts and fibrocyte with a few multinucleated neutrophils and foreign-body giant cells, and
the amount of cells was relatively higher than that around the silastic tube. However, no significant
difference in the number of cells was found between the two samples.
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The thickness of the capsule and the cellular content at the site of implantation increased slightly
at week 4 for both elastomeric implants. After 12 weeks post implantation, these fibrous capsules
composed of fibroblasts and fibrous tissue appeared to become thinner in a manner similar to other
implanted biodegradable polymers [49–51], and the cellular content decreased for all the implants.

At the 4th week of implantation, some small fragments from the implanted networks were found
on the tissue-implant interface, which was likely due to the erosion of the implants via phagocytosis,
these polymeric fragments were absorbed and disappeared gradually with the prolonged degradation
time, avoiding the removal of the degradation products from the site of implantation.

4. Conclusions

The degradation of cross-linked PTMC-based networks was investigated both in vitro and in vivo.
The degradation rate of cross-linked PTMC networks was slower than that of the linear ones, indicating
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the enhanced resistance to degradation of PTMC via cross-linking with the adjustment of cross-linking
density. With the comparison of an in vitro hydrolysis case, the faster degradation rate in lipase or
in vivo was attributed to the essential role of enzymes in the erosion of cross-linked PTMC networks.
Furthermore, surface morphology observation of the degradation samples demonstrated that the
degradation was the surface erosion process. The cross-linked PTMC networks degraded extremely
slowly in PBS, while the cross-linked P(TMC-co-CL) degraded dependent on the compositions.
The higher the CL content, the faster the degradation. The cross-linked PTMC-based networks
maintained better form-stability versus the non-crosslinked ones and were the promising candidates
for potential clinical application in subcutaneous implants.
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