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Signaling Pathways in Osteoclast Differentiation
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Osteoclasts are multinucleated cells of hematopoietic origin that are responsible for 
the degradation of old bone matrix. Osteoclast differentiation and activity are con-
trolled by two essential cytokines, macrophage colony-stimulating factor (M-CSF) and 
the receptor activator of nuclear factor-B ligand (RANKL). M-CSF and RANKL bind 
to their respective receptors c-Fms and RANK to stimulate osteoclast differentiation 
through regulation of delicate signaling systems. Here, we summarize the critical or 
essential signaling pathways for osteoclast differentiation including M-CSF-c-Fms sig-
naling, RANKL-RANK signaling, and costimulatory signaling for RANK.
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INTRODUCTION

Bone is actually a dynamic organ.1 Normal bone mass 
and strength are maintained by constant “bone remodel-
ing” processes.2 The old bone is degraded by osteoclasts and 
replaced by osteoblasts. Therefore, the balance between os-
teoblastic bone formation and osteoclastic bone resorption 
is important for normal bone homeostasis. Excessive bone 
resorption by osteoclasts often causes osteopenic diseases 
including osteoporosis and rheumatoid arthritis.1

Osteoclasts differentiate from bone marrow mono-
cyte/macrophage lineage cells under the control of two es-
sential cytokines.3 The binding of the macrophage col-
ony-stimulating factor (M-CSF) to c-Fms provides signals 
required for proliferation and survival of osteoclast pre-
cursor cells, whereas the binding of receptor activator of 
nuclear factor-B ligand (RANKL) to RANK stimulates 
signals required for osteoclast differentiation and the re-
sorptive function as well as the survival of mature osteo-
clasts.4-8 Recently, several genetic studies have shown that 
additional signals that can support RANK signaling are 
necessary for the full differentiation of osteoclasts (Fig. 
1).9,10

Here, we discuss the important signaling pathways in 
osteoclast differentiation.

M-CSF-C-FMS SIGNALING

The pivotal roles of M-CSF (CSF-1) in osteoclast differ-
entiation were revealed by studies using mice (op/op) and 
rats (tl/tl). The op/op mice and tl/tl rats, which have a point 
mutation in the csf1 gene and express non-functional 
M-CSF, develop severe osteopetrotic bone phenotypes due 
to a complete absence of osteoclasts.11,12 M-CSF plays an 
important role in supporting the proliferation and survival 
of osteoclast precursor cells. The binding of M-CSF to its 
cognate receptor c-Fms results in auto- and trans-phos-
phorylation of specific tyrosine residues in the cytoplasmic 
tail of c-Fms. It has been well demonstrated that four 
(underlined) of the eight tyrosine residues (Y544, Y559, 
Y697, Y706, Y721, Y807, Y921, and Y974) within the cyto-
plasmic tail of c-Fms functionally regulate the prolifera-
tion and survival of osteoclast precursor cells.13-18 Particu-
larly, phosphorylation of Y559 is required for the full acti-
vation of c-Fms. Phosphorylated Y559 interacts with 
c-Src.19 The resulting phosphor-Y559/c-Src complex re-
cruits the phosphatidylinositol 3-kinase (PI3K) and c-Cbl 
complex, which in turn activates the Akt pathway and 
causes c-Fms ubiquitination, respectively.20,21 The c-Cbl- 
dependent c-Fms ubiquitination augments its tyrosine 
phosphorylation and activation via a conformational change 
in the kinase domain. Phosphorylated Y721 also activates 
the Akt pathway through direct interaction with PI3K.20,22 
On the other hand, phosphorylated Y697 and Y974 interact 



13

Jung Ha Kim and Nacksung Kim

FIG. 1. Osteoclast differentiation is stimulated by M-CSF and RANKL. M-CSF induces the proliferation and survival of osteoclast pre-
cursor cells through activation of ERK and Akt. RANKL recruits TRAF6 to activate MAPKs, Akt, and NFATc1 to promote differentiation
of osteoclast precursors to osteoclasts. In addition to RANKL signaling, costimulatory signaling provides robust NFATc1 induction
through activation of calcium signaling.

with Grb2 to mediate activation of ERK.23 Therefore, 
M-CSF-induced activation of c-Fms results in enhanced os-
teoclast precursor proliferation and survival through the 
ERK and PI3K/Akt pathways. Although binding partners 
and the precise signaling mechanism have not been fully 
identified, phosphorylation of Y544 and Y807 are also re-
quired for c-Fms activation and osteoclast differentia-
tion.18,24 The pivotal roles of M-CSF in osteoclast differ-
entiation are also supported by analysis of the csf1r (gene 
coding c-Fms)-lacking mice, which exhibit an osteopetrotic 
bone phenotype.25

RANKL-RANK SIGNALING

RANKL (OPGL, ODF, and TRANCE) and its cognate re-
ceptor RANK are also key osteoclastogenic factors.26 Osteo-
petrotic bone phenotypes without osteoclasts of both 
RANKL- and RANK-deficient mice have well revealed that 
both factors are implicated in regulating osteoclast for-
mation and function.27,28

Binding of RANKL to RANK leads to recruitment of TNF 
receptor-associated factor (TRAF) adaptor proteins in-
cluding TRAFs 1, 2, 3, 5, and 6 to the conserved TRAF do-
main within the cytoplasmic domain of RANK.29,30 Among 
the TRAF members, TRAF6 is the most critical for osteo-
clast formation and function since TRAF6-lacking mice de-
velop severe osteopetrosis owing to impaired osteoclast dif-
ferentiation or bone resorption.31,32 TRAF6 transmits the 
RANKL/RANK signal to downstream targets such as nu-
clear factor kappa B (NF-B), c-Jun N-terminal kinase 
(JNK), extracellular signal-regulated kinase (ERK), p38, 
Akt, and NFATc1.8,31-35 However, IL-1 administration failed 
to induce osteoclast differentiation in RANK knockout 
mice, although TRAF6 is a downstream molecule for both 

RANK and IL-1R (IL-1 receptor), which suggests that 
RANK may also activate a TRAF6-independent signaling 
pathway to induce osteoclast differentiation.36

Recruitment of TRAF6 to RANK forms a signaling com-
plex containing TGF--activated kinase (TAK) 1 and TAK- 
1-binding protein (TAB) 2 to activate all three mitogen- ac-
tivated protein kinase (MAPK) pathways including ERK, 
JNK, and p38.37 The importance of TRAF6-dependent 
MAPK activation was confirmed by several studies. 
RANKL could not activate JNK and p38 in TRAF6-defi-
cient spleen cells.33 A specific inhibitor of p38 and  
(SB203580) suppressed RANKL-mediated osteoclast dif-
ferentiation in RAW 264.7 cells, and osteoclast precursor 
cells derived from jnk1-lacking mice but not from jnk2- 
lacking mice exhibited reduced ability to differentiate to 
osteoclasts.38,39 Based on a recent study, mice with genetic 
deletion of erk1 exhibited reduced osteoclast formation in 
vivo, suggesting that ERK1 plays an important role in os-
teoclast differentiation.40 RANKL activates ERK, JNK, 
and p38 through activation of MEK1/2, MKK7, and MKK6 
to induce activation of their downstream targets such as 
c-Fos, AP-1 transcription factors, and MITF in osteoclast 
precursors, respectively.41-46

RANKL also activates the PI3K/Akt pathway through 
TRAF6.8 In osteoclasts, activation of PI3K/Akt may be de-
pendent on Src kinase activity, since a Src family kinase 
inhibitor or genetic deletion of c-Src inhibits RANKL-medi-
ated Akt activation.8 Activated PI3K generates phosphati-
dylinositol-(3,4,5)-phosphate (PIP3) at the plasma mem-
brane to recruit Akt.47 Two negative regulators of PIP3 pro-
duction, phosphatase and tensin homolog (PTEN) and 
SH2-containing inositol phosphatase 1 (SHIP1), negati-
vely regulate osteoclast differentiation. The PI3K inhibitor 
LY294002 also has an inhibitory effect on osteoclast 
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formation.48-50 Taken together, these studies show that the 
PI3K/Akt pathway is involved in osteoclast differentiation. 

NF-B is one of the important transcription factors for 
osteoclast differentiation that are activated by RANKL. 
NF-B is activated through two pathways: classical and 
alternative. It has been shown that TRAF6 activates the 
classical NF-B pathway, whereas TRAF2 and TRAF5 ac-
tivate both classical and alternative NF-B pathways.37,51 
Five protein groups—Rel, RelA, RelB, NF-B1 (p50), and 
NF-B2 (p52)—constitute NF-B proteins, which are di-
meric transcription factors that bind to B sites. Among 
these protein groups, p50 and p52 lack a transcription acti-
vation domain and therefore require dimerization with 
other NF-B proteins possessing a transcription activation 
domain, such as Rel, RelA, and RelB.52,53 The importance 
of NF-B proteins is recognized by p50/p52 double-knock-
out mice, in which osteoclastogenesis was prevented, al-
though single knockout of p50 or p52 did not show a distinct 
phenotype.54,55 In its inactive state, NF-B exists as a com-
plex with inhibitory B protein (IB) in the cytoplasm. 
Upon RANKL stimulation, IB kinase (IKK) is activated; 
it phosphorylates IB and mediates ubiquitin-dependent 
proteasomal degradation of IB, and ultimately results in 
release of NF-B from the NF-B/IB complex. NF-B re-
leased from the NF-B/IB complex is now free to trans-
locate from the cytoplasm to the nucleus and binds to its 
target genes.52,53 IKK consists of a catalytic component 
(IKK, IKK) and a regulatory component (IKK). Altho-
ugh both IKK and IKK are involved in catalytic activity, 
IKK seems to function more critically as a catalytic 
component. Interruption of IKK resulted in the dis-
ruption of osteoclast differentiation in vitro only, whereas 
interruption of IKK disrupted osteoclast differentiation 
both in vitro and in vivo, suggesting that IKK is critical 
for RANKL-mediated IB degradation.56 An alternative 
pathway of NF-B activation exists, in which RelB:p52 
dimers are involved. In the alternative NF-B activation 
pathway, NF-B-inducing kinase (NIK) and IKK are re-
quired for the formation of the RelB:p52 complex from 
p100.52,53,56 Therefore, NIK plays an important role in the 
alternative pathway. However, osteopetrosis was not ob-
served in NIK-deficient mice, suggesting that NIK-in-
duced alternative NF-B activation is not critical for 
NF-B activation.57

RANKL signaling strongly induces NFATc1, which is a 
master transcription factor for the terminal differentiation 
of osteoclasts. RANKL activates NF-B and c-Fos to stim-
ulate induction of NFATc1 in the early phase of osteocl-
astogenesis.58 RANKL-mediated NFATc1 induction is im-
paired in both p50/p52-deficient and c-fos-deficient cells.59,60 
The activated c-Fos may cooperate with NFATc1 itself for 
vigorous induction of NFATc1 during terminal osteoclasto-
genesis.58 Thus, RANKL enhances NFATc1 transcription 
through the activation of two essential transcription fac-
tors for osteoclast differentiation, NF-B and c-Fos, which 
in turn induce a self-sustaining positive autoregulatory 
system to maintain sufficient NFATc1 expression. NFATc1 

regulates several osteoclast-specific genes including tar-
trate-resistant acid phosphatase (TRAP), osteoclast-asso-
ciated receptor (OSCAR), and cathepsin K in cooperation 
with other transcription factors.35,58,61-63 An essential role 
of NFATc1 in osteoclasts has been well established both in 
vitro and in vivo. In vitro, NFATc1-deficient embryonic 
stem cells failed to differentiate into osteoclasts, and ec-
topic expression of NFATc1 in osteoclast precursor cells in-
duced osteoclast differentiation even in the absence of 
RANKL.35 The in vivo observation that deletion of NFATc1 
in young mice results in osteopetrosis owing to impaired 
osteoclastogenesis also supported the important role of 
NFATc1 in osteoclasts.64

CALCIUM SIGNALING AND COSTIMULATORY 
SIGNALING FOR RANK

The activation of most NFAT transcription factor family 
members (NFATc1/c2/c3/c4) is originally regulated by cal-
cium/calmodulin signaling. In fact, since RANK does not 
seem to directly initiate calcium signaling and RANKL can 
only induce a partial activation of NFATc1 in osteoclast 
precursor cells, it has been suggested that costimulatory 
signaling for RANK may cooperate with RANKL to induce 
full activation of NFATc1 through calcium signaling 
pathways.35 It has been shown that tyrosine-based activa-
tion motif (ITAM)-bearing molecules such as DNAX-acti-
vating protein 12 (DAP12) and Fc receptor common  chain 
(FcR) mediate calcium signaling and activate NFAT in im-
mune cells.65 In osteoclasts, DAP12 and FcR also play an 
important role in the activation of NFATc1 through cal-
cium signaling pathways. The severe osteopetrotic bone 
phenotype of mice doubly deficient in DAP12 and FcR sug-
gests that immunoglobulin-like receptors associated with 
DAP12 and FcR are critical for osteoclast differentiation.9,10 
DAP12 is associated with triggering receptor expressed in 
myeloid cells (TREM) 2 and signal-regulator protein 1 
(SIRP1), whereas FcR interacts with OSCAR and paired 
immunoglobulin-like receptor (PIR-A) in osteoclasts.9 
RANKL-mediated phosphorylation of ITAM through an 
unknown mechanism results in the activation of Syk and 
PLC. Activated PLC mobilizes intracellular calcium, 
which in turn activates the calmodulin-dependent phos-
phatase calcineurin. Calcineurin directly dephosphorylates 
serine residues in NFATc1, allowing for its rapid trans-
location into the nucleus and subsequent activation. 
Recently, specific tyrosine kinases that may provide a link 
between ITAM and RANK signaling were suggested. 
RANKL-mediated activation of Tec family tyrosine kin-
ases such as BTK and Tec leads to phosphorylation of PLC 
to release calcium from the endoplasmic reticulum.66 Tec 
and BTK double-deficient mice develop an osteopetrotic 
phenotype, suggesting that these two kinases are asso-
ciated with the regulation of osteoclastogenesis.66
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CONCLUSION

Increased osteoclast formation is involved in bone dis-
eases including osteoporosis and rheumatoid arthritis. 
Therefore, study of signaling pathways regulating osteo-
clast differentiation is crucial for a thorough understan-
ding of the skeletal system in pathological conditions. 
Although significant signaling pathways for osteoclast dif-
ferentiation have been elucidated, future studies of deli-
cate regulatory networks involved in bone homeostasis are 
required for development of useful therapeutic strategies. 
Notably, future studies should focus on investigating the 
exact mechanisms underlying RANKL-mediated activa-
tion of costimulatory signals for RANK. 
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