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Abstract
Understanding the genetic architecture of beef cattle growth cannot be limited simply to the

genome-wide association study (GWAS) for body weight at any specific ages, but should

be extended to a more general purpose by considering the whole growth trajectory over

time using a growth curve approach. For such an approach, the parameters that are used to

describe growth curves were treated as phenotypes under a GWASmodel. Data from

1,255 Brahman cattle that were weighed at birth, 6, 12, 15, 18, and 24 months of age were

analyzed. Parameter estimates, such as mature weight (A) and maturity rate (K) from non-

linear models are utilized as substitutes for the original body weights for the GWAS analysis.

We chose the best nonlinear model to describe the weight-age data, and the estimated

parameters were used as phenotypes in a multi-trait GWAS. Our aims were to identify and

characterize associated SNP markers to indicate SNP-derived candidate genes and anno-

tate their function as related to growth processes in beef cattle. The Brody model presented

the best goodness of fit, and the heritability values for the parameter estimates for mature

weight (A) and maturity rate (K) were 0.23 and 0.32, respectively, proving that these traits

can be a feasible alternative when the objective is to change the shape of growth curves

within genetic improvement programs. The genetic correlation between A and K was -0.84,

indicating that animals with lower mature body weights reached that weight at younger

ages. One hundred and sixty seven (167) and two hundred and sixty two (262) significant

SNPs were associated with A and K, respectively. The annotated genes closest to the most

significant SNPs for A had direct biological functions related to muscle development

(RAB28), myogenic induction (BTG1), fetal growth (IL2), and body weights (APEX2); K
genes were functionally associated with body weight, body height, average daily gain
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(TMEM18), and skeletal muscle development (SMN1). Candidate genes emerging from this

GWASmay inform the search for causative mutations that could underpin genomic breed-

ing for improved growth rates.

Introduction
In beef cattle, postnatal body weight is often recorded repeatedly at different ages for the same
individual and is a typical example of longitudinal data which the trait of interest changes grad-
ually and continually over time. The term growth curve is used as a general designation for
such data, and reflects the lifetime interrelationships between an individual's inherent potential
to grow and mature in all body parts[1].There are different models to describe growth curves
in livestock animals[2], and these models allow us to summarize the weight-age gain through a
few parameters, such as mature weight (A) and maturity rate (K),which explain the whole
growth process under a biological scenario. When fitting these different models to a particular
dataset, the use of goodness of fit measures are needed to choose the best model to describe the
growth curve to the population in question.

Considering a specific model, individual animal growth curves might be assessed and differ-
ences between individuals may partly reflect the genetic impacts on body weight, with some
genes contributing at different levels to the overall growth trajectory. Historically, changes in
the shape of growth curves have been assessed by using a quantitative genetic knowledge[1,3–
5]assuming the parameters (commonly A and K) estimates as phenotypes under a mixed
model approach. In relation to QTLs affecting growth curves, the theory of functional mapping
proposed by Ma C-X et al.[6] is quite general and can be applied to any dynamic complex traits
[7], such as beef cattle body weights over time. Although these studies have been the basis of
QTL detection for longitudinal traits, the postulated theory is based on linkage analysis by
using highly spaced markers (low density) in specific designed population mapping.

In the current post-genomic era, genome-wide association studies (GWAS) based on high
density markers could demand new strategies of QTL mapping, even in non-specific designed
populations. In this context, Das et al. [8] proposed a method based on random regression
enabling them to exploit, among several points, non-additive effects and specific covariance
functions to describe changes in the SNP effect markers over time. Das et al.[9] generalized this
method to a multi-trait approach, making it even more powerful and applicable to situations
involving more than one trait. Even though these random regression-based models are cur-
rently the most sophisticate and flexible tools to assess GWAS for longitudinal traits, it does
not directly provide biological-interpretable parameters such as mature weight (A) and matu-
rity rate (K), which are usually required in animal breeding programs.

Although representing an obvious way to access the genetic underpinning growth curve
changes, the use of molecular markers associated with growth curve parameters was attempted
herein for the very first time. Current studies have limited the understanding of the genetic
architecture of beef cattle growth to simple QTL detection from GWAS by using body weight
at specific ages as phenotypes[10,11]. Further understanding of beef cattle growth must be
extended by considering the whole growth trajectory over time under a growth curve GWAS
approach.

Since the seminal study of Fitzhugh[1] about growth curves in the context of animal breed-
ing, the genetic correlations between the parameter (mainly A and K) estimates have been con-
sidered in scientific studies. These genetic correlations could be attributed to quantitative trait
loci (QTL) that have pleiotropic effects on multiple parameters or to closely linked QTL, each
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affecting different parameters. In this context, a multi-trait GWAS might help to explain these
correlations. Multi-trait methods have already been successfully used to identify QTL sustain-
ing genetic correlations in beef cattle, such as growth and intake components of feed efficiency
[12]as well as stature, fatness, and reproduction[13,14]. However, studies still carried the above
mentioned limitation: phenotypes were original measurements at a given age or condition. To
our knowledge, there is no reports of multi-trait GWAS applied to growth curve parameters.
Thus, we believe that the present study can be a solid reference for future researchers interested
in applying GWAS to other longitudinal traits of economic importance in animal production,
such as lactation and egg production curves.

It is expected that the integration of statistical modeling (growth curve GWAS) and functional
genomics (gene function annotation and ontology analyses) may be useful for deciphering the
genetic mechanisms sustaining individual variation of growth curves in beef cattle. Functional
genomics have been applied to reproductive traits in cattle, revealing candidate genes and molec-
ular markers that proved useful for genomic selection [15]. Candidate genes were associated with
growth traits in cattle such as bodyweight, height, or average daily gain; these include, for exam-
ple,PLAG1,PDE4B, LEPR, CYP2J2, and FGGY[16–18]. However, these candidate genes may not
reflect the functional genomics of growth curve parameters, which data are unknown.

In this study, we compared and chose the best fitting nonlinear model from five models
describing the weight-age data of a Brahman cattle population. Our major aim was to use the
estimated parameters from the best model as phenotypes in a multi-trait GWAS and identify
and characterize single nucleotide polymorphisms (SNPs) associated with the parameters.
Once SNPs were associated, we progressed to indicate SNP-derived candidate genes and to dis-
cuss their annotated functions with relation to the biological processes of growth in beef cattle.

Material and Methods
Animal Care and Use Committee approval was not required for this study because the data
were obtained from pre-existing phenotypic databases and DNA storage sets. Data used herein
were gathered by the Cooperative Research Centre for Beef Genetic Technologies (Beef CRC).
Experimental design details and general information regarding the Beef CRC cattle herd was
published elsewhere[19].

Phenotypic and genotypic data
Data were comprised of six records of body weight from Brahman cattle, which were born between
2004 and 2010. A total of 1,642 animals had at least one measurement of body weight, but1,255
animals were weighed at birth, and at the sixth, twelfth, fifteenth, eighteenth, and twenty-fourth
months of age, therefore comprising 7,530 records of body weights. From the broad beef CRC
population, we only included animals with complete records (six weight-age data points).

The original body weight measurements at each age were pre-adjusted for fixed effects (con-
temporary group, year/month/birthday) by using a linear model fitted separately for the data
from each age. This methodology is generally used in analysis that consider nonlinear models
parameters estimates (e.g. mature weight, A, and maturity rate, K) as phenotypes in mixed
models, because these effects are related to the observed body weights instead of the growth
curve parameter estimates. Differently, the use of linear random regression models (RRM),
such as Legendre polynomials and splines, allows the inclusion of different effects in the same
model. On the other hand, RRM do not provide biological interpretation to the estimated coef-
ficients such as A and K from nonlinear regression.

The summary containing the descriptive statistics of the pre-adjusted phenotypic data is
presented in Table 1.

Multi-Trait GWAS and New Candidate Genes for Growth in Brahman Cattle

PLOS ONE | DOI:10.1371/journal.pone.0139906 October 7, 2015 3 / 19



Genotyping was performed by using the BovineHD BeadChip of Illumina (San Diego, CA,
USA) and by using the UMD 3.1 assembly of the bovine genome sequence for the mapping
information. A total of 1,255 samples were genotyped for 777,000 SNPs, and the quality control
(QC) analysis was applied to this genotype data. Individuals with call rates<95% and markers
with call rates<95% and/or minor allele frequency (MAF)<0.01 were excluded in each popu-
lation. Markers that deviated from the Hardy-Weinberg equilibrium (HWE) (P<10−7) were
also removed. After the QC analysis, a total of 729,068 markers were considered. There were
941 genotyped animals with 6 records of body weight each. Since the GWAS was based on a
polygenic mixed model approach, the pedigree file that was used to calculate the relationship
matrix was composed of 17,021 individuals.

Growth curve fitting
Five of the most widely used nonlinear models (Table 2) to describe animal growth curves,
Brody[20], Logistic[21], von Bertalanffy [22], Gompertz [23], and Richards [24],were fitted for
each animal by using the iterative nonlinear least squares method via the Gauss-Newton algo-
rithm implemented in the package nlme (Nonlinear Mixed-Effects Model) of R software[25].

In general, the growth curve parameters (Table 2) may be interpreted as follows [1]:A repre-
sents the mature body weight (adult or asymptotic weight), maintained independently of
short-term fluctuations; b is the integration parameter, and indicates the proportion of the
asymptotic mature weight to be gained after birth (has no relevant biological interpretation);
k is the maturity rate (growth precocity measure), representing the rate of approach to the
mature body weight.

In order to determine the nonlinear model that best describes the growth curve of the stud-
ied Brahman cattle population, the following goodness of fit measures were used: adjusted coef-
ficient of determination (R2), mean square error (MSE), convergence rate (C%), Akaike`s
Information Criterion (AIC), and mean absolute deviation (MAD) in two periods of the curve

Table 1. Means, standard deviations (SD), and ranges for body weight (kg) measurements at six differ-
ent ages of 1,255 Brahman cattle.

Age (months) Mean weight (SD) Min Max

0 35.3(5.26) 17.47 55.5

6 203.6 (23.87) 109.2 298

12 247.0(24.43) 160.7 334.1

15 297.8 (27.5) 188.4 397.5

18 353.4(29.38) 212.7 471.5

24 384.4(34.31) 210.5 505.4

doi:10.1371/journal.pone.0139906.t001

Table 2. Nonlinear regression models fitted to growth curve data (weight-age) of Brahman cattle.

Model Function Number of parameters

Brody wt = A(1-bexp-Kt) 3

von Bertalanffy wt = A(1-bexp-Kt)3 3

Logistic wt = A(1+bexp-Kt)-1 3

Gompertz wt = Aexp(-bexp-Kt) 3

Richards wt = A(1±bexp-Kt)M 4

wt: body weight at ages t = 0, 6, 12, 15, 18, and 24 months; A: asymptotic or mature weight; b: parameter

of integration (or the time-scale parameter); K: maturity rate; M: inflection parameter of Richards function.

doi:10.1371/journal.pone.0139906.t002
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(MAD1 e MAD2). MAD evaluates the model`s fitting according to the difference between pre-
dicted and observed body weights in different parts of growth curve[26]. In the present study, it
was performed to evaluate the ability to provide consistent predictions for body weight in the
first three measures, that comprises birth, 6, and 12 months (MAD1); and15, 18, and 24 months
(MAD2). Since we used the nlme function of R software, that is based on nonlinear mixed mod-
els, the adjusted coefficient of determination (R2), mean square error (MSE), mean-absolute devi-
ation for periods one (MAD1) and two (MAD2) were calculated for each animal taking into
account the individual parameter estimates (A, b and K) postulated as deviations of overall
growth curve (population curve). In this context, the AIC values were calculated separately for
each model, since all animals were considered jointly in the nonlinear mixed model fitting.

The AIC and BIC criteria were also used to compare all presented growth models consider-
ing different correlation matrices (corAR1, corCAR1 and corARMA1) aiming to point out for
the best within-individual correlation structure. The mentioned matrices were implemented by
using the corr statement of nlme function from R software (S1 Script).

Genome-wide association studies
After selecting the nonlinear model that best fit the body weight data, only animals with pheno-
types and genotypes were used in genome-wide association studies (GWAS), that was per-
formed for all three traits (A, b, and K parameters estimates); this was accomplished by using a
multiple trait analysis in order to test the association of a given marker simultaneously with
these three traits. In order to point out for some pre-existent sub-populations (correction for
family structure effects), the polygenic random effect was added to the model according to
Goddard and Hayes[27]. Thus, the following multi-trait mixed model was considered:

Y ¼ Wsþ Zuþ e; ð1Þ
where Y represents the vector of observations from the three phenotypes (A, b, and K esti-
mates) for each animal; s represents the SNP effects vector (one value for each trait); u is the
vector of random animal polygenic effect, u*N(0, ∑u �A), where A is the additive pedigree
relationship matrix, and e represents the residual vector, e*N(0, ∑e �I). The matricesW and
Z represent the incidence matrices for s and u, respectively. Besides the estimated SNP effects,
this model also allows for estimation of the heritabilities and genetic correlations by using the

estimates of the genetic and residual covariance matrices (cPu and
cP

e), as well as the predic-
tion of the genetic breeding value (bu). These covariance matrices are provided by the
following:

Su ¼
s2
Au

sAu bu
sAuKu

s2
bu

sbu Ku

sim s2
Ku

2
664

3
775 and Se ¼

s2
Ae

sAe be
sAeKe

s2
be

sbe Ke

sim s2
Ke

2
664

3
775, thus enabling the estimation

of relevant genetic parameters, such as heritabilities and genetic correlations. In general terms,
the model presented in (1) can be rewritten as follow:

YA

Yb

YK

2
664

3
775 ¼

WA 0 0

0 Wb 0

0 0 WK

2
664

3
775

sA

sb

sK

2
664

3
775þ

ZA 0 0

0 Zb 0

0 0 ZK

2
664

3
775

uA

ub

uK

2
664

3
775þ

eA

eb

eK

2
664

3
775;

where each sub-matrixW represents the genotypes of each SNP, which was coded as 0 for the
homozygote of the first allele, 1 for the heterozygote, and 2 for the homozygote of the second
allele.
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Under a GWAS approach, this model was fitted individually for each SNP, where the output

is a vector of marker effect estimates for each trait, i.e. bs ¼ ½bsA;bsb;bsk�0. These SNP effects were
ranked according to the significance of association with each trait and the cutoff for consider-
ing a significant association was established by Benjamini and Hochberg multiple testing cor-
rection of the P-value (false discovery rate< 0.05;[28]) adopting a P-value threshold of 0.001.

In addition to the marker effect estimates, the percentage of the genetic variance accounted
by the ith SNP (Vi) was also estimated in order to facilitate the identification of possible relevant
chromosome regions related to growth curve parameters. The following equation was used to
estimate this percentage per SNP:

Vi ¼ 100� 2piqibs2iX729;068
i¼1

2piqibs2i
;

where pi and qi are the allele frequencies for the i
th SNP estimated across the entire population

andbs2i is the estimated additive effect (from model 1)of the ith SNP squared. Since the percent-
age of the variance explained by a specific marker may be very small (mainly when using Bovi-
neHD BeadChip), and very often without practical interpretation, we adopted a haplotype
block analysis in order to group related markers aiming to increase the variance explained by
this group. To achieve this, the software Haploview 4.0 [29]was used to examine measures of
linkage disequilibrium (r2) between adjacent SNPs and to define haplotype block structures
based on the definition by Gabriel et al [30].The variance explained by a given haplotype block

containing N markers can be determined by
XN
i¼1

Vi.

Fixed effects were not considered at this step, since they were already taken into account
before fitting nonlinear functions (see pre-adjustment for fixed effects in the topic “phenotypic
and genotypic data”). Solutions to the effects in the model (1) as well as variance components
were estimated by using WOMBAT software[31]. The corrected p-value (FDR) were log trans-
formed for visualization in Manhattan plots, which were built by using themhtplot function of
R software [25].

We also evaluated the performance of the multi-trait GWAS mixed model by using simu-
lated data, which was provided by QTLMAS2009 and fully described in Coster et al [32]. It
consists of 100 full-sib families, each with 20 offspring. Half of the offspring have both pheno-
type information of yield at 5 distinct time points (0, 132, 25, 397, 530) and genotype data from
453 SNP markers distributed over 5 chromosomes of 1 Morgan each. Phenotypes were simu-
lated according to a logistic growth curve and were made available for 1,000 offspring
individuals.

In order to validate the simulation study, we performed ten replicates using permutations
from the individuals’ records over time, resulting in new data sets. For this, it was ensured that
the records were shuffled separately for each time point, which means that a given individual
received randomly only records from other individuals measured in the same time point. This
permutation constraint was essential to guarantee the behavior of the original longitudinal pat-
tern (sigmoid growth trajectory).A logistic nonlinear growth model was fitted to the records
over time generating ϕ1, ϕ2 and ϕ3parameter estimates of each individual. Hereafter, multi-
trait GWAS mixed model was applied to QTL detection, considering ϕ1, ϕ2 and ϕ3 estimates as
phenotypes. Each parameter was influenced by six QTLs (one QTL had a large effect and five
QTLs had small effects), located on five evaluated chromosomes. The results were computed in
terms of percentage of detected true QTLs in ten replicates.
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Gene function annotation
We exploited the biological mechanism of growth underlying the significant SNPs based on
the interpretability of the gene functions related to the relevant SNPs. In order to track the
genes with markers inside or close to markers, we used the package Map2NCBI [33] of R soft-
ware based on the UMD Bos taurus 3.1 assembly of the bovine genome sequence.

To provide information regarding the identity and function of genes at mapped SNP mark-
ers, the chromosomal positions at the Ensembl Genome Browser[34]were used. Lists of genes
located nearest to the significant SNP were extracted, allowing for a maximum distance of 1
Mb between SNP and annotated genes. Putative genes identified for Brahman breeds were
established by a BLAST Homology search of known, identified human gene transcripts, which
were downloaded from the genome databanks National Center for Biotechnology Information
(NCBI)[35]. The biological function of these genes and their possible relation to growth traits
were investigated, and when no information was available for the Bos taurus genes, human, rat,
and mouse biological function annotations were used to proceed with the in-silico functional
analyses. Animal QTLdb[36]was accessed to verify previous QTL that were reported for
growth traits in the surrounding regions of our significant SNPs. Thus, it was possible to iden-
tify the biological mechanisms and functions involving the identified genes as well as highlight
the most relevant of them that are putatively associated with growth curves in Brahman cattle.

Results

Growth curve fitting and estimated genetic parameters
The summary of growth curve parameter estimates for all models, as well as the goodness of fit
analysis that was used to reveal the most appropriate model to describe the growth curve of
Brahman cattle is given in Table 3.

We compared the models considered in Table 3 assuming special within-individual correla-
tion structures (corAR1, corCAR1 and corARMA1). Other more complex correlation struc-
tures were also considered, but they presented convergence problems. The goodness of fit
analysis based on Akaike Information Criterion (AIC) revealed the superiority (S4 Table) of
the simplest model (assuming independence), maybe because the pre-adjustment of the pheno-
typic data for fixed effects might have dispelled some possible correlation between observations
over time. Thus, results presented in Table 3 reflect the goodness of fit analysis for different
nonlinear growth models considering the best identified correlation structure.

Table 3. Means and standard deviations for the parameter estimates, and goodness of fit(GOF) results based on convergence rate (C%), adjusted
coefficient of determination (R2); mean square error (MSE); mean-absolute deviation for periods 1 (until 12 months–MAD1) and 2 (older than 12
months–MAD2), and Akaike's information criterion (AIC).

Parameter Models

Gompertz Logistic Brody von Bertalanffy

A 419.90(51.44) 399.85(42.67) 520.32(163.72) 373.86(36.26)

b 2.00(0.12) 4.85(0.64) 0.92(0.02) 0.75(0.04)

K 0.13(0.03) 0.20(0.044) 0.06(0.02) 0.08(0.02)

GOF Gompertz Logistic Brody von Bertalanffy

C% 100 99.44 99.92 99.52

R2 0.96(0.01) 0.95(0.02) 0.98(0.01) 0.87(0.03)

MSE 604.91(224.70) 821.16(273.40) 382.79(167.01) 2,071.96(618.33)

MAD1 27.53(5.81) 32.83(6.18) 18.94(5.32) 46.61(10.70)

MAD2 10.95(3.72) 10.51(4.31) 10.28(3.34) 11.87(6.06)

AIC 42.90(2.39) 44.81(2.18) 40.01(2.76) 50.42(2.033)

doi:10.1371/journal.pone.0139906.t003
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All tested models had high convergence rates (Table 3), which were very close to 100%;
therefore, this information could not be used to discriminate the alternative growth curve mod-
els (Table 3). The Richards model did not achieve the convergence for the majority of animals
(C%<10); thus, it was excluded from this study, as there is no practical reason to consider a
model presenting a low convergence rate. The Brody model presented with a higher coefficient
of determination (R2), the lowest mean squares error (MSE),the lowest mean absolute devia-
tion for both initial and final parts of the curve (MAD1 and MAD2), and the lowest Akaike's
Information Criterion (AIC). Thus, it was chosen as the most appropriate to describe the
growth curve of Brahman cattle in the present study.

The heritability values of 0.23, 0.41, and 0.31 for A, b, and K respectively indicate that these
traits can be a feasible alternative for breeding programs, when the aim is to produce efficient ani-
mals considering the growth curve. The genetic correlation between A and K was -0.84, between
A and b was 0.78, and between K and b it was -0.88. Thus, direct selection of a higher mature
weight (A) leads to animals take longer to reach maturity (result of a lower maturity rate–K).

Genome-wide association studies
The Manhattan plots pointed 167 and 262 significant SNPs associated with mature weight (A)
and maturity rate (K), respectively (Fig 1 and Fig 2). The peak that was observed for A was
composed of 44 significant SNPs, which started from 13417489 to 114954346 bp on BTA6, and
the SNP with the lowest p-value was located at 97907606 bp. In spite of K, Manhattan plots
indicated 64 significant SNPs at BTA20, starting from 1876553 to 69791421 bp, and the SNP
with the lowest p value was located at 11089453 bp.

The majority of SNPs with lower p-values are located on chromosomes 4, 5, 6, 8, and 27 for
trait A (mature weight), and chromosomes 5, 20, and 24 for trait K (maturity rate). For trait A,
around 25% of the significant SNPs were located on chromosome 6, where A was observed
(Fig 1), and those SNPs were related to 12 genes (S1 Table).

For trait K, the Manhattan plot revealed that almost 25% of significant SNPs are on chromo-
some 20 (Fig 2), and these markers were associated with 10 genes (S2 Table).

Fig 3 shows the growth curves for the genotypes of the most significant markers for mature
weight (Fig 3, BovineHD0600027188) and Fig 4 for maturity rate (Fig 4,
BovineHD2000000873).

For marker BovineHD0600027188the estimates of A, b, and K for the homozygous geno-
type were 504.59,0.92, and0.0063,respectively; for the heterozygous genotype of this marker,
the estimates were 515.45,0.92, and 0.0064. Based on these estimates, the heterozygous geno-
type showed a higher weight at the end of the growth curve (Fig 3). According to the methodol-
ogy proposed by Wu and Lin, this marker can be considered a late QTL because it remains
silent during early stages and is expressed only after a particular age[7]. The two genotypes
showed similar growth at early stages, but tended to diverge at later stages.

In relation to the marker BovineHD2000000873, the A, b, and K estimates for the dominant
homozygote were 506.34, 0.92, and 0.0063, for the heterozygote they were 496.32, 0.92, and
0.0064,and for the recessive homozygote they were523.39, 0.91, and 0.0068. In this case, the
dominant homozygote and heterozygote presented with similar behaviors in their growth
curves, while the recessive heterozygote showed a higher performance (Fig 4). Additionally,
although this marker might also be considered a late QTL following the [7]definitions, it is pos-
sible to note that this QTL effect started to increase earlier in comparison with the previously
mentioned marker.

A haplotype block analysis was performed to uncover the genes underlying regions with
large numbers of significant markers and to understand the percentage of variation explained
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by each significant genome region. S3 Table presents the details of the haplotype blocks,
including the start and end of each region, the number of SNPs contained, and the nearest
annotated genes. The number of blocks identified for the mature weight (A) and maturity rate
(K) were five and nineteen, respectively. The most relevant block (number three at BTA19) for
trait A explained 2.37% of the total genetic variance, while for trait K, the most important
block (number 4 at BTA4) explained 2.49%. The sum of the percentage of variance explained
by the five blocks for A and nineteen blocks for K were 6.5 and 18.5%, respectively.

The annotated genes that were closer to the identified relevant markers for the growth curve
parameters are shown in the S1 Table and S2 Table. Thus, these genes will be discussed after-
wards, in terms of their function.

Fig 1. Manhattan plots for the growth curve parameter mature weight (A) in Brahman cattle.Chromosomes 1 to 29 and X are shown, separated by
alternating colors. The corresponding horizontal lines indicate the genome-wide significance levels for both traits.

doi:10.1371/journal.pone.0139906.g001
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In order to quantify the effectiveness of the multi-trait GWAS mixed model used in the
present study, a simulation study was performed by generating replicates from permutation
using the simulated data set provided by Coster et al[32]. The percentage of detected true
QTLs for growth curve parameters ϕ1, ϕ2 and ϕ3 are presented in S3 Fig.

Discussion

Growth curve fitting and estimated genetic parameters
The two growth curve parameters with the most important interpretation for beef cattle breed-
ers are the mature weight (A) and maturity rate (K); those estimates are directly obtained from

Fig 2. Manhattan plots for the growth curve parameter maturity rate (K) in Brahman cattle.Chromosomes 1 to 29 and X are shown, separated by
alternating colors. The corresponding horizontal lines indicate the genome-wide significance levels for both traits.

doi:10.1371/journal.pone.0139906.g002
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fitting the nonlinear models. The Brody model was chosen as the best (Table 3) to describe the
growth curve for the Brahman cattle population considered in the present study.

Although there are few studies about full growth curve analysis in Brahman cattle, different
authors reported the best fit of the Brody model to analyze weight-age of this breed[37,38] and
their crosses[39]. According to Forni et al. [5], in general, the traditional models (Brody, Gom-
pertz, von Bertalanffy, and Logistic) are adequate to establish mean growth patterns and to pre-
dict the adult body weight, but the Brody model is simpler and more accurate in predicting the
birth weight of animals, and therefore, it has often been used to study growth curves in beef cat-
tle. DeNise and Brinks [40] compared the Brody and Richards growth curve models fitted to
body weight of several beef cattle inbred lines, and concluded that was easier to interpret the

Fig 3. Estimated growth curves based on the Brody nonlinear model for genotypes of the most significant SNPs for mature weight
(BovineHD0600027188).

doi:10.1371/journal.pone.0139906.g003
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results from the Brody equation, despite the lower number of parameters in comparison to the
Richards model. Brody equation was also less sensitive to fluctuations in mature weight estima-
tions. Furthermore, the Brody model can be applied to the estimation of A and K, even in
herds where a portion of the animals are culled before adult age. Thus, these authors suggested
that parameter estimates of the Brody model could be considered as traits in the selection
index (by means of genetic parameter estimates), along with its corresponding economic
weight, to improve the overall efficiency of beef cattle production.

The parameter estimates obtained in the present study (Table 3) were, in general, similar to
the estimates from other growth curve studies in Brahman cattle. Among them, Brown et al.
[39] found the average values of 556.9, 0.87, and 0.03, respectively for A, b, and K. Takahashi
[37] reported that the reference mature weight (A) of Brahman cattle that should be used in

Fig 4. Estimated growth curves based on the Brody nonlinear model for genotypes of the most significant SNPs for maturity rate
(BovineHD2000000873).

doi:10.1371/journal.pone.0139906.g004
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feedlot diet management was around six hundred kilograms. In a crossbreeding experiment,
Brown et al. [39]reported slightly lower values of A and higher values for K and b in Hereford–
Brahman crosses (1/4-1/2 Brahman cattle).

In relation to the heritability estimates (0.23, 0.41, and 0.31, respectively for A, b, and K) for
the growth curve parameters that were observed in the present Brahman cattle population (all
considered to be moderate), we can infer that changes in the shape of these curves might be
accessed by including these traits in genetic selection programs. In fact, the objective would be
to obtain animals with a fast early growth rate without a dramatic increase in the adult body
weight; that can be achieved by exploiting the negative nature of the genetic correlation
between A and K, which was -0.84 in the present study. This negative correlation has been
reported in other studies of growth curves applied to animal breeding, including the classics [1]
and[40], which indicated that animals with lighter mature weights reached that weight at youn-
ger ages. Thus, in a genetic context, it is expected that animals that mature early are less likely
to attain as high mature weights comparing with animals that mature slowly in early life; they
are less desirable because animals with greater mature weights require more energy for mainte-
nance and reach puberty later in life. Given the genetic correlation between parameter esti-
mates, we believe that the multi-trait GWAS model is more feasible when it comes to identify
markers that affect the growth curve of Brahman cattle.

Genome wide association studies and gene function annotation
In summary, a joint genomic association analysis of multiple potentially correlated traits, like
growth curve parameters, could be advantageous. The approach has increased the power of
QTL detection as reported by Galesloot et al[41],when comparing several multivariate and uni-
variate GWAS methods. Furthermore, these authors suggested that the multivariate methods
might be able to identify genetic variants that are currently not identifiable by standard univari-
ate analysis. For this reason, recent relevant applied GWAS in beef cattle populations[12,14]
have considered this multi-trait analysis.

Quantile-quantile (Q-Q) plots were built (S1 Fig and S2 Fig) to assess the magnitude of
observed associations between markers and phenotypes (growth curve parameter estimates A
and K), as well as to identify potential population structure issues. Deviations from the identity
line suggest that the sample contains values arising at the extremities, possibly due to a true
association. Furthermore, there was no remarkable inflation in observed statistics due to relat-
edness and differences in the population structure, especially because the GWAS mixed model
that was utilized (which includes the polygenic effect) has main advantages such as the effec-
tiveness to control this kind of inflation.

The results of simulation study (S3 Fig) demonstrated the effectiveness of the multi-trait
GWAS mixed model to detect true QTLs for growth curve parameters (ϕ1, ϕ2 and ϕ3) esti-
mates. As expected, the performance to detect the main QTL (one by trait) was higher (80, 80
and 60% for ϕ1, ϕ2 and ϕ3) than other QTLs (50 and 48% for ϕ1, ϕ2 and ϕ3 in average, respec-
tively). We would like to clarify that the original simulation study by Coster et al.[32] consists
in only one data set which was replicated by permutation. Thus, the disturbances inserted to
perform permutations characterize a more challenging scenario than original study. Even so,
the method used in the present study outperformed the traditional Bayes B applied to the origi-
nal simulated data set by Pong-Wong et al.[42]

Mature weight (parameter A). The peak of significant SNPs that was observed for mature
weight (A) at BTA6 was also reported in another study using beef cattle. Saatchi et al.[43]per-
formed GWAS using 50K genotypes scored in 18,274 animals from ten north American beef
cattle breeds and reported at Animal QTLdb[36]that SNPs on BTA6explained more than 10%
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of the additive genetic variance in mature weights of Hereford, Red Angus, and Simmental
breeds. They identified 3-lead SNPs at this QTL(rs81131471 at 38.91 Mb, rs110834363 at 38.94
Mb, and rs81151923 at 39.26 Mb).Many other studies have pointed to the presence of QTL on
BTA6 for body weights and growth traits[44,45]in cattle. In addition, Lu et al.[46] identified a
cluster of 18 SNPs on chromosome 6 (36 Mbp—40 Mbp) that is significant for carcass weights.

The polymorphism with a higher effect (Fig 3 and S1 Table) located on BTA6 (Bovi-
neHD0600027188), associated in this study with mature weight (A), is close to the RAB28gene.
Jiang et al.[47]indicated that RAB28 positively influences endothelial cell proliferation and vas-
cular smooth muscle cells. However, these authors reported that the function of RAB28 in
mammalian cells and its role in muscle development, although proven, is still unknown and
needs to be further investigated.

For the S1 Table, the BTG1 gene (B-cell translocation gene 1) was marked by SNP Bovi-
neHD0500006477, located at BTA5:22. This gene is a member of an anti-proliferative gene
family that regulates cell growth and differentiation, and it appears that BTG1 acts as a myo-
genic inductor[48,49] in a broad study about muscle differentiation, thus showing that BTG1 is
an important coactivator involved in the regulation of myoblast differentiation. In addition,
BTG1 not only stimulates the activity of myogenic factors, but also the activity of nuclear recep-
tors already known to be positive myogenic regulators.

The IL2 gene (Interleukin–2) was related to the BovineHD0600027154, Bovi-
neHD0600027161, BovineHD0600027170, and BovineHD0600027188 markers that are also
represented in the peak of BTA6 (Fig 1). Although, several studies in different beef cattle popu-
lations reported that the region of this gene on chromosome 6 harbors quantitative trait loci
(QTL) affecting fetal growth[44,50]. In general, the protein (cytokine) encoded by this gene is
required for T-cell proliferation and other activities crucial to regulation of the immune
response[51].This gene has also been associated with tick-resistance in Brahman cattle [52].

The significant BovineHD3000046685 marker on chromosome X (Fig 1) for mature weight
was identified close to theAPEX2 gene. Ide et al.[53] compared APEX2-null mice with the wild
type, and observed that APEX2-null mice body weights were about 80%of the wild-type male
littermates at birth; this tendency persisted into childhood and adulthood, thereby indicating
that all developing embryos, infants, and adults of APEX2-null mice may somehow be retarded
in terms of growth.

Maturity rate (parameter K). Related to maturity rate (K), the peak identified in the Man-
hattan plot at chromosome 20 had 64 significant SNPs, 8 of them building 3 blocks, which
explained 3% of the additive genetic variance of the characteristic (S3 Table). The other 56
were not in linkage disequilibrium. All significant polymorphisms identified on chromosome
20 accounted for 26% of the total additive genetic variance of the characteristic (S3 Table).

The TMEM18 gene (Transmembrane Protein 18) was marked by a SNP at BTA1 associated
with trait K (maturity rate) and has been reported to be associated with growth traits and obe-
sity[54,55]. The association analysis of genotypes in the single and combined SNPs located in
the exonic region of the TMEM18 gene revealed a consistent effect on growth traits in Nanyang
cattle, especially on body weight, body height, hucklebone width, and average daily gain in cat-
tle aged 6 months[56]. As already known, mutations in or near the TMEM18 gene were associ-
ated with larger waist circumferences and total body fat in humans [57]. There are studies that
also revealed that novel SNPs near the TMEM18 gene had a significant association with body
weight in rats [55].

One of the genes that was found on BTA20:8Mb was SMN1, which is involved with skeletal
muscle development in murines [58]. The effect of SMN gene mutations in the degeneration of
muscle fibers is supported by results obtained in mice with a deletion of SMN exon 7 restricted
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to skeletal muscle[59]. Another gene acting on BTA20:8Mb isMSX2, which is related to bone
growth and ectodermal organ formation in mice [60].

The SFRP2 gene is a protein-coding gene that was marked close to significant markers on
BTA17 for both traits (mature weight and maturity rate) in Fig 1 and Fig 2. This gene has been
reported to be related to embryonic organogenesis in mammals [61], and consists of relevant
information, since polymorphisms that affect multiple traits confirm the complexity of growth
processes in beef cattle [14].

Future Implications
The GWAS results do not provide direct functional information regarding the most relevant
identified loci (individual significant SNP markers). Thus, additional analysis, like the SNP-
derived gene function annotation that was used in the present study, is needed to identify the
candidate genes and their role in the post-natal growth trajectory of Brahman cattle. However,
a complementary study associated with the validation of GWAS candidate genes, like expres-
sion analyses, re-sequencing of genes, and haplotype blocks, may be considered in the future.
Initially, we may propose a quantitative real-time PCR (qPCR) under contrasting defined envi-
ronmental conditions. In the context of this study, these conditions can be supported by groups
of animals that are genetically different in relation to the growth curve shapes. These groups
can be selected by means of the predicted breeding values for the parameter estimates (A, b,
and K) generated by the utilized multi-trait mixed model methodology.

Other methods to validate or refine the identified candidate genes in future studies can be
done directly by a re-sequencing approach. The advent of next-generation sequencing (NGS),
and the highly decreased whole-genome sequencing associated costs, allow us to sequence spe-
cific genome regions (related to genes of interest) of a few contrasting individuals and to access,
for example, by alignment algorithms, causal polymorphisms underlying these regions[62,63].

Conclusion
Of the five most used nonlinear growth models (Brody, Gompertz, von Bertalanffy, Logistic,
and Richards), the Brody model was the most appropriate model to summarize growth curve
behaviors and describe the growth curve of Brahman cattle considered in the present study.
The heritability values for the parameter estimates of mature weight (A) and maturity rate (K)
indicated that these traits can be a feasible alternative for breeding programs aiming to change
the shape of growth curves within genetic improvement programs. The use of estimated
parameters with biological interpretations extracted from the best model and treated as pheno-
types in a multi-trait GWAS was efficient at indicating SNP-derived candidate genes with func-
tions related to biological processes of growth in beef cattle. New candidate regions for growth
traits were detected, and some of them have interesting biological functions. Future studies tar-
geting these areas could provide further knowledge to uncover the genetic architecture under-
lying growth traits in Brahman cattle.

Supporting Information
S1 Datafile. File containing identification of all animals, pedigree information, breed infor-
mation, year/month/day of birth, farm code where they born and farm code where they
were relocated after post weaning, and weight measures at different ages.
(CSV)

S1 Fig. QQ plot for mature weight (A) based on t-student test.
(TIF)
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S2 Fig. QQ plot for maturity rate (K) based on t-student test.
(TIF)

S3 Fig. Performance of the multi-trait GWAS mixed model to detect QTL for the ϕ1by
using simulated data for parametersϕ1, ϕ2 and ϕ3

(TIF)

S1 Script. Script built in order to test nonlinear models.
(TXT)

S1 Table. Significant SNPs for mature weight (A) sorted by chromosome and then pvalue.
(PDF)

S2 Table. Significant SNPs for maturity rate (K) sorted by chromosome and then pvalue.
(PDF)

S3 Table. Blocks formed by linkage disequilibrium among the 167 significant SNPs for A
(mature weight) and 262 significant SNPs for K (maturity rate).
(PDF)

S4 Table. Comparison between four nonlinear growth models (Gompertz, Logistic, Brody,
and von Bertalanffy) using different covariance matrix structures (diagonal, corAR1, cor-
CAR1, corARMA1). Estimates for growth curve parameters: mature weight (A), scale (b), and
maturity rate (K). Goodness of fit measures: LOGLIK, Akaike Information Criterion (AIC),
and Bayesian Information Criterion (BIC), using nlme function by R software.
(PDF)
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