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Abstract

Background: There is a growing interest in generating precise predictions of survival to improve the assessment of health and life-improving 
interventions. We aimed to (a) test if observable characteristics may provide a survival prediction independent of chronological age; (b) identify 
the most relevant predictors of survival; and (c) build a metric of multidimensional age.
Methods: Data from 3 095 individuals aged ≥60 from the Swedish National Study on Aging and Care in Kungsholmen. Eighty-three variables covering 5 
domains (diseases, risk factors, sociodemographics, functional status, and blood tests) were tested in penalized Cox regressions to predict 18-year mortality.
Results: The best prediction of mortality at different follow-ups (area under the receiver operating characteristic curves [AUROCs] 0.878–
0.909) was obtained when 15 variables from all 5 domains were tested simultaneously in a penalized Cox regression. Significant prediction 
improvements were observed when chronological age was included as a covariate for 15- but not for 5- and 10-year survival. When comparing 
individual domains, we find that a combination of functional characteristics (ie, gait speed, cognition) gave the most accurate prediction, with 
estimates similar to chronological age for 5- (AUROC 0.836) and 10-year (AUROC 0.830) survival. Finally, we built a multidimensional 
measure of age by regressing the predicted mortality risk on chronological age, which displayed a stronger correlation with time to death 
(R = −0.760) than chronological age (R = −0.660) and predicted mortality better than widely used geriatric indices.
Conclusions: Combining easily accessible characteristics can help in building highly accurate survival models and multidimensional age 
metrics with potentially broad geriatric and biomedical applications.
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One of the most important understandings of the last years is that 
no single parameter can capture the complexity of aging and fully 
reflect how biologically old we have become (1,2). At the same time, 
the need has grown for clinicians, public health policymakers, and 
researchers to be able to predict individuals’ risk of developing nega-
tive health outcomes. Even though chronological age can provide 
useful indications, better predictions are needed (3). Early identifi-

cation of people with an unexpectedly high or low relative health 
status could help, for example, to adjust their lifestyle and imple-
ment prevention strategies to delay severe disease and disability 
onset. Additionally, optimal measures of biological age and health 
could help to determine the medical benefits of various treatments 
and interventions. To this end, several biological clocks and frailty 
measures have been proposed (4,5)
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First-generation biological clocks are based on the linear predic-
tion of chronological age, using, among others, DNA methylation 
status, telomere length, metabolomics, or their combination (6–8). 
Such tools can predict chronological age with exceptional precision 
across different populations and in different tissues. However, their 
performance in predicting geriatric phenotypes as well as survival has 
not always been optimal (9). On the one hand, this may be caused 
by such clocks being based on the biological variance of drivers (eg, 
genetic, or epigenetic) that reside far upstream from the outcomes 
that are being predicted, namely disease and death (10). On the other 
hand, being developed by predicting chronological age, these metrics 
could fail to fully capture the biological heterogeneity within people 
of the same chronological age (11). To overcome these limitations, 
a new generation of aging metrics have been developed based on in-
dividuals’ phenotype or health traits (eg, diseases, functional status, 
serum biomarkers, etc.) and aiming to predict time to death instead 
of chronological age (9,12). Along these lines, several measures of 
frailty have been suggested, as a means to assess the accumulation of 
clinical and functional deficits, which reflect the downstream result 
of the interaction between genetics and environment (13).

In humans, chronological age is a strong predictor of disease 
development, functional decline, and remaining life expectancy 
(14). However, the accumulation of biological deficits that we ex-
perience between conception and death does not happen linearly 
across time. An interindividual mismatch in the association between 
chronological age, disease, and survival exists and becomes greater 
during the seventh and eighth decade of life (15). Such complexity 
and heterogeneity of the aging process make chronological age an 
imperfect proxy of our actual biological age. Still, due to its high 
predictive performance, chronological age remains largely employed 
in the new generation of age clocks (16), and the extent of its con-
tribution to these clocks is not always reported among the studies’ 
findings. Thus, the development of a measure that predicts survival 
better than chronological age alone, and that can do so even without 
using information on chronological age, remains an attractive goal. 
Finally, it is well-known that peoples’ living conditions influence 
aging and health (17–19), but only a few of the abovementioned 
measures include such variables, for example, socioeconomic char-
acteristics. The interest in health and survival prediction tools is 
growing fast, but there is still a basic lack of knowledge on the ability 
of variables from various domains to make precise survival predic-
tions. Therefore, in this study we aimed (a) to determine the ability 
of observable characteristics from various health domains to predict 
short- and long-term mortality along with and beyond chronological 
age, (b) to quantify the relative contributions of these variables to 
mortality predictions and identify a minimum set of significant pre-
dictors, and (c) to derive—as proof of concept—a multidimensional 
metric of age that reflects both chronological age but also health 
status, and thereby provides superior predictions of mortality.

Materials and Methods

Study Population
Data were derived from the Swedish National Study on Aging 
and Care in Kungsholmen (SNAC-K), including participants aged 
60 years and older and living at home or in institutions. A random 
sample (n  = 5 111) from 11 age cohorts born between 1982 and 
1939 were invited to participate in the study. A total of 4 590 in-
dividuals were eligible and 73.3% (n = 3 363) attended the base-
line examination conducted between March 2001 and June 2004. 

Follow-up assessments are performed every 6 years for individuals 
younger than 72 years and every 3 years for those 78 years or older. 
Over the 18 years of follow-up, participation rates have varied be-
tween 87.0% and 88.0%. In the current study, we included 3 095 
participants after excluding 268 people with more than 50% of 
missing data. Excluded people were more likely to be older (84.5 
vs 73.9 years, p value < .001), women (78.0% vs 63.7%, p value < 
.001), and with low education (35.1% vs 16.4%, p value < .001). 
The Ethics Committee at Karolinska Institutet and the Regional 
Ethical Review Board in Stockholm, Sweden, approved baseline 
and follow-up protocols of the SNAC-K study. All participants or a 
proxy (in the case of cognitively impaired persons) provided written 
informed consent.

Data Collection
During baseline and follow-up visits, SNAC-K participants undergo 
comprehensive assessments including face-to-face interviews, clin-
ical examinations, and laboratory tests by trained staff following 
standard procedures. The predictors considered in the present study 
were divided in 5 domains.

The sociodemographic characteristics domain includes 6 vari-
ables obtained through face-to-face interviews by trained nurses. (i) 
Educational level was measured as total years of formal schooling 
and categorized as primary (<8  years) and secondary or above 
(≥8 years). (ii) Marital status was categorized as partnered (including 
married or equivalent, in case of civil union, and living together) 
and single (including widowed, unmarried, and divorced). (iii) Living 
arrangement was divided into living in the community and living 
in an institution. (iv) Gender. (v) Social connections were estimated 
considering the following data: marital status, living arrangement, 
parenthood, and friendships. We also asked about the number of 
living children, and the frequency of direct or remote contacts with 
relatives, neighbors, and friends. The social connections index was 
calculated as the average of the abovementioned normalized vari-
ables. (vi) Social support was assessed based on the following items: 
reported satisfaction with aforementioned contacts, perceived ma-
terial and psychological support, and sense of affinity with relatives 
and residence area. The social support index was calculated as the 
average of the abovementioned normalized variables (20).

The risk factors domain includes 7 characteristics. (i) Smoking 
history was assessed by asking participants whether they had ever 
smoked, how long they have smoked, and the number of cigarettes 
smoked per day. We categorized the participants as never or former 
smokers and current smokers. (ii) Alcohol consumption was categor-
ized based on the quantity and frequency of alcohol intake: never/
occasional (never or a standard drink per month) or light/moderate 
(less than 4 standard drinks a week for men; less than 2 standard 
drinks a week for women), and heavy (more than 5 standard drinks 
a week for men; more than 3 standard drinks a week for women). 
A  standard drink was defined as 45 cl of medium–strong beer, 
33 cl of strong beer, a glass of red or white wine, a small glass of for-
tified wine, or 4 cl of liquor. (iii) Body mass index was obtained by 
dividing the weight by their squared height. (iv and v) Systolic and 
diastolic blood pressure. Arterial blood pressure was measured twice 
at a 5-minute interval in a sitting position on the left arm with a 
sphygmomanometer, and the mean of the 2 readings was considered. 
(vi) Sleep disorder. (vii) Dyslipidemia.

The functional status domain includes 5 characteristics. Physical 
performance was assessed by walking speed and grip strength test. 
(i) Walking speed was measured by asking the participants to walk 6 
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or 2.4 m at their usual speed. (ii) Grip strength was  assessed through 
a validated dynamometer (Grippit). (iii) Disability was defined by the 
number of limitations in activities of daily living (ADL)—bathing, 
dressing, toileting, transferring, and eating—and (iv) instrumental 
activities of daily living (I-ADL)—grocery shopping, managing 
money, using the telephone, and using public transportation. (v) 
Global cognitive function was measured with the Mini-Mental State 
Examination (MMSE).

The chronic diseases domain includes 51 chronic conditions. 
Physicians collected information on diagnoses of chronic diseases 
via physical examination, medical history, consulting medical charts, 
lab tests, and from the Swedish National Patient Registry system. 
All diagnoses were coded in accordance with the International 
Classification of Disease, 10th revision (21). The following dis-
eases were considered: allergy, autoimmune diseases, cataract and 
lens diseases, chronic infectious diseases, chronic ulcer of the skin, 
ear nose and throat diseases, glaucoma, inflammatory bowel dis-
eases, neurotic stress somatoform disorders, other musculoskeletal 
and joint diseases, other eye diseases, other neurological diseases, 
Parkinson and Parkinsonism, prostate diseases, thyroid diseases, 
dementia, bradycardias and conduction diseases, anemia, visual im-
pairment, deafness and hearing loss, chronic kidney disease, chronic 
obstructive pulmonary disease, epilepsy, heart failure, ischemic heart 
disease, osteoarthritis degenerative joint diseases, other cardiovas-
cular diseases, other genitourinary diseases, other psychiatric and 
behavioral diseases, peripheral neuropathy, schizophrenia and de-
lusional disorders, venous and lymphatic diseases, depression and 
mood diseases, cardiac valve diseases, asthma, hematologic diseases, 
colitis and related diseases, chronic pancreatic and biliary diseases, 
dorsopathies, upper digestive diseases, inflammatory arthropathies, 
migraine and facial pain syndromes, osteoporosis, other digestive 
diseases, other metabolic diseases, other respiratory diseases, per-
ipheral vascular diseases, solid neoplasms, cerebrovascular diseases, 
atrial fibrillation, diabetes.

The blood tests domain includes 14 routine parameters. Venous 
blood samples were taken at baseline (fasting was not compulsory) 
and analyses were performed following standard procedures within 
2 hours from sampling at Karolinska Hospital in Stockholm. The 
following analytes were considered: hemoglobin, creatinine, total 
cholesterol, leucocytes, calcium, glycated hemoglobin, vitamin 
B12, thryroid-stimulating hormone [Thyroid Stimulating Hormone 
(TSH)], alkaline phosphatase, thyroxine, albumin, folic acid, 
C-reactive protein (CRP), gamma glutamyl transferase (GT).

Survival status
Information about the vital status of the participants was derived 
from the National Death Registry provided by Statistics Sweden 
from SNAC-K baseline until December 31, 2016, and assessed dir-
ectly by SNAC-K nurses, by means of regular telephone contacts 
with participants and their relatives, until January 2019.

Statistical Analyses
Data analysis
All analysis were carried out in R version 4.1.2 (2021-11-01), using 
the magrittr package (22) and packages loaded by the tidyverse li-
brary (23). Pearson correlation was calculated with the base R func-
tion “cor.”

Data imputation
Only a small fraction of data was missing (0.7%). Variables with 
missing values (Supplementary Table 1) were imputed using the 

multivariate imputation by chained equations method, via the R 
package mice (24,25) with the predictive mean matching method 
(26), generating 5 imputed data sets. All the predictors and responses 
were used in the multiple imputation model. All data analyses were 
performed using the imputed data. Results from the complete case 
(n = 2 237) analyses are reported in all Supplementary Tables and 
Supplementary Figures. For all analyses performed on the imputed 
data sets, degrees of freedom (DOF) and pooled standard errors 
were estimated using Rubin’s rule (27). For the complete case, the 
DOF was the number of observations minus the number of fitted 
variables. These DOF and standard errors were then used to derive 
the 95% confidence interval [Confidence Interval (CI)] based on the 
t-distribution.

Building and evaluating survival models for each domain
Cox proportional hazards models with ridge penalization were fitted, 
using the glmnet (28) and the caret (29) packages, in order to predict 
survival from different domains of variables. Multicollinearity is an 
issue with large numbers of variables. Ridge regularization allevi-
ates this issue by biasing coefficients toward zero. Six domains were 
evaluated: sociodemographic (6 variables), diseases (51 variables), 
risk factors (7 variables), functional status (5 variables), blood 
tests (14 variables), and all domains (83 variables). Each domain 
was modeled with and without including chronological age as a 
covariate. A 10-fold cross-validation, with 5 repeats, was employed 
to select the optimal lambda parameter—which is the strength of the 
regularization—and to estimate model performance. In each testing 
fold, the corresponding model’s ability to predict survival was as-
sessed by computing the area under the receiver operating charac-
teristic curve (AUROC) at 5, 10, and 15 years of follow-up, using a 
fast auroc function (30). The mean of the AUROC values at 5, 10, 
and 15 years was then computed. Standard errors were estimated as 
the standard deviations of AUROC values divided by the square root 
of the number of folds (i.e., 10). To find more parsimonious models 
with similar prediction performance, the same cross-validation pro-
cedure was repeated for each domain by building models using only 
significant variables (see next section).

Estimation of coefficient significance
In each domain, the optimal lambda value (highest mean AUROC 
across all folds) was used to build models with all observations. 
Standardized coefficients (31) were extracted to assess variable im-
portance in each model. Coefficient variability was determined by 
bootstrapping: 1  000 bootstrap samples were generated for each 
data set, and L1-penalized Cox regression models were fitted, using 
the optimal lambda value. Standard errors were estimated as the 
standard deviation of bootstrapped coefficients. Finally, a 2-step test 
procedure was used to determine the 95% CIs corrected for multiple 
testing as described by Jung et al. (32). In the first step, a 2-sided t test 
was performed to determine significant coefficients after Benjamini–
Hochberg (33) false discovery rate adjustment. In the second step, 
an adjusted significance level α* was used to estimate the t-statistics 
from which was derived the margin of the CI. The adjusted signifi-
cance level was computed as α* = k·α/m, with k being the number 
of significant coefficients and m the number of estimated coefficients.

Estimation of multidimensional age
Multidimensional age was derived from the models containing all 
domain variables (one for each imputed data set) built by including 
age and only significant variables (15 variables in total). Relative risks 
from each final Cox model were averaged across imputed data sets and 
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log2-transformed. Multidimensional age was estimated via weighted 
regression of log2-transformed relative risk on chronological age. 
Chronological age was split into 7 bins of similar size and each bin 
was given a similar weight overall. This weighting strategy was used 
because data are unbalanced with more individuals in the younger age 
bins. The cutting points used for binning were: 59, 63, 68.8, 74.6, 80.4, 
86.2, 92, and 103. The R package cocor (34) was used to determine the 
significance of the difference between 2 correlation coefficients.

Computing Area Under the Curve (AUC) for single variables
For multidimensional age and other variables of interest, AUROCs 
were computed using the roc function from the pROC package (35). 
Standard errors were estimated using the method from DeLong et al. 
(36), as implemented in the var function of the pROC package. The 
following geriatric indices were chosen for this analysis: Health 
Assessment Tool (37), gait speed, disease count, handgrip strength, 
drug count, basic activities of daily living, and I-ADL.

Results

The mean age of the study sample was 73.9 ± 10.8 years, and 63.7% 
were females. During the 18 years of follow-up (median follow-up 

time 14 years), 1 729 (55.9%) participants died. Those who died, 
compared to survivors, were older, more likely to be single, to have 
lost their partner due to divorce or death, or to live in nursing homes, 
and they took more medications, had more diseases, and showed 
lower physical and cognitive performance (Table 1; Supplementary 
Tables 1, 2 and 3).

Mortality Prediction Based on Observable 
Characteristics and Chronological Age
We built several models to predict 5-, 10-, or 15-year mortality, by 
including the individual health domains, as well as the 83 candi-
date predictors at once, and testing the additive value of chrono-
logical age to the prediction. We found that models based solely on 
chronological age had a strong ability to predict survival (AUROC 
at 5 years: 0.822, at 10 years: 0.839, at 15 years: 0.871; Figure 1; 
Supplementary Table 4). They significantly outperformed all other 
domain-specific models at 15-year follow-up. While age had a sig-
nificantly better ability to predict long-term than short-term survival, 
risk factors were significantly better at predicting short-term than 
long-term survival (AUROC at 5 years: 0.711, at 10 years: 0.680, 
at 15 years: 0.665). We observed that the functional status domain 
yielded the best predictions of survival despite being the domain 

Table 1. Baseline Sample Characteristics by 18-Year Survival Status

Characteristics 
Alive  
N = 1 366 (44.1) 

Dead  
N = 1 729 (55.9) 

Total  
N = 3 095 

Chronological age (mean; SD) 66.1 ± 6.5 80 ± 9.5 73.9 ± 10.8
Female sex (count; %) 864 (63.3) 1 109 (64.1) 1 973 (63.7)
Living in institution (count; %) 2 (0.2) 65 (3.8) 67 (2.2)
MMSE score (mean; SD) 29.2 ± 1.3 27.2 ± 4.03 28.1 ± 3.3
Without partner (count; %) 529 (38.7) 1 114 (64.4) 1 643 (53.1)
BMI kg/m2 (mean; SD) 26.2 ± 3.9 24.9 ± 4.12 25.5 ± 4.1
≥1 impaired B-ADL (count; %) 9 (0.659) 170 (9.83) 179 (5.8)
≥1 impaired I-ADL (count; %) 22 (1.61) 491 (28.4) 513 (16.6)
Hand grip strength, kg (mean; SD) 28.5 ± 11.9 20.6 ± 10.4 24.1 ± 11.7
Gait speed, m/s (mean; SD) 1.30 ± 0.30 0.78 ± 0.44 0.99 ± 0.50
Number of drugs (mean; SD) 2.8 ± 2.7 4.8 ± 3.5 3.89 ± 3.36
Number of diseases (mean; SD) 2.8 ± 1.8 4.9 ± 2.5 4.0 ± 2.5

Notes: ADL = activities of daily living; BMI = body mass index; MMSE = Mini-Mental State Examination; N = count of individuals; SD = standard deviation.

Figure 1. Accuracy (AUROC) of different health domains in predicting mortality. A 10-fold cross-validation strategy was used to estimate through penalized 
Cox regressions the predictive abilities of models built from various domains, after adjusting and not adjusting by chronological age. Domains were sorted by 
their mean AUROC with age across the 3 follow-up time points. Bars indicate 95% confidence intervals of the estimations. Analyses were carried after imputing 
missing data. AUROC = area under the receiver operating characteristic curve.
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containing the least number of variables. Finally, we found that 
combining the full set of 83 observable variables with chronological 
age strongly improved the predictive performances of the models 
(AUROC at 5 years: 0.878, at 10 years: 0.886, at 15 years: 0.909; 
Figure 1; Supplementary Table 4). Removing chronological age as 
a covariate significantly worsened the discriminative ability of the 
models for the 15-year follow-up but not for the 5- and 10-year 
follow-ups. Similar trends were observed for the complete case ana-
lyses (Supplementary Figure 1; Supplementary Table 4).

Variables Importance Within and Across Domains 
for Survival Prediction
To investigate which and how many variables were necessary to 
reach the maximal predictive ability within each domain, we re-
peated the cross-validation by including only the significant vari-
ables, as estimated from a bootstrapping approach (see Materials 
and Methods section). Almost identical performances were obtained 
for all domains indicating that more parsimonious models could be 
built while maintaining high predictivity (Supplementary Figure 2; 
Supplementary Table 5). Further, this analysis revealed that adding 
age as a covariate was reducing the number of significant features 

from all domains, with the exception of the functional domain 
(Figure 2A; Supplementary Table 6). However, this reduction was 
large only for the disease domain (29 and 12 features kept, respect-
ively, without or with age). Finally, when all variables were tested, 
those significantly predicting mortality went down to only 15 or 21 
when chronological age was added or not as a covariate, respectively.

Figure 2B shows the standardized coefficients and 95% CIs of the 
15 variables that were significantly associated with survival in the 
full model (Figure 2B; Supplementary Table 7). All health domains 
were represented among the significant variables. Chronological 
age was by far the most predictive individual characteristic. After 
age, being a smoker and having atrial fibrillation were the highest 
positively associated variables. Gait speed and female sex were the 
second and third most predictive variables, with twice greater coeffi-
cients than any other negatively associated variables.

We observed consistent results with a model covering 
multidomain observable characteristics but not chronological age 
(Figure 2C). However, in this case, more variables contributed sig-
nificantly to mortality prediction, including some diseases (chronic 
kidney disease, deafness), systolic blood pressure, and living without 
a partner (all showing positive coefficients), and hand grip strength 
(with a negative coefficient). Similar results were observed for the 

Figure 2. Significant predictors of mortality in different health domains Coefficients were derived by penalized Cox regression models with mortality as the 
outcome. (A) Number of total or significant features by domain when adjusting or not by chronological age. (B, C) Coefficients of the multidimensional model 
including (B) or not including (C) chronological age among the potential predictors. Positive coefficients indicate a positive association with mortality risk. 
Negative coefficients indicate a negative association with mortality risk. Bars indicate 95% confidence intervals of the estimations. Analyses were carried out 
after imputing missing data. ADL = activities of daily living; BMI = body mass index; COPD = chronic obstructive pulmonary disease; MMSE = Mini-Mental State 
Examination.
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complete case analyses (Supplementary Figure 3; Supplementary 
Table 6).

Deriving a Multidimensional Metric of Age
We used the 15-variable multidomain model that includes chrono-
logical age, to derive a multidimensional metric of age expressed in 
years, with the purpose of predicting survival more reliably than 
by using chronological age alone (Figure 3B). Our multidimen-
sional metric of age showed a significantly (p < .001) higher nega-
tive Pearson’s correlation coefficient with time to death (−0.760; 
Figure 3C) than chronological age (−0.660; Figure 3A). According 
to this measure, participants with the same chances of dying over the 
follow-up will display similar multidimensional age. For example, 
2 individuals with 36 years of difference in chronological age had 
similar multidimensional age (Figure 3B) and time to live after their 
study entry (Figure 3C). Ultimately, we used Cox regression analysis 
to obtain relative risks for determining the strength of the association 
of our metric with mortality. For every year increase in multidimen-
sional age, an 17.4% (95% CI: 16.7%–18.2%) increase in mortality 
rate was observed, while chronological age showed a 12.3% (95% 
CI: 11.7%–12.9%) increase in mortality rate per calendar year.

Comparison Between Multidimensional Age and 
Established Geriatric Indices
As the last step, we compared the performance of our measure of 
multidimensional age with chronological age and widely used geri-
atric indices and health scales (Figure 4; Supplementary Table 8).  
Our measure of multidimensional age showed significantly higher 
AUROCs (0.879 at 5  years; 0.887 at 10  years; and 0.910 at 
15  years) for predicting survival than any of the other measures. 
Besides our multidimensional age measure, the disease count showed 
good predictivity of survival (AUROC range: 0.729–0.755). Hand 
grip strength, drug count, and I-ADL showed only fair perform-
ances (AUROC range: 0.642–0.704), while Personal Activities of 
Daily Living (P-ADL) showed poor performance (AUROC range: 
0.548–0.591). Interestingly, unlike chronological age, we observed 
that I-ADL provided significantly better predictions for short-term 

than for long-term survival (AUROC at 5 years: 0.704, at 15 years: 
0.642). Similar patterns were observed in the complete case analyses 
(Supplementary Figure 4; Supplementary Table 8).

Discussion

In this study, we found that the simultaneous utilization of observ-
able measures from several health domains like functional status, 
diseases, blood tests, sociodemographics, and risk factors allows 
for highly performant survival predictions, in a manner that is in-
dependent of chronological age, particularly for up to ~10  years 
shorter-term survival predictions.

Previous work has already shown that observable phenotypic 
characteristics are easily accessible in clinical and research set-
tings—and their combinations can improve the appraisal of health 
status in old age (14). Measures of biological age have been built 
regressing biological, functional, and clinical characteristics on 
chronological age—and more recently time to death—with the goal 
of selecting a core set of variables with sufficient capacity to predict 
health status and survival (38). For example, Levine et al. proposed 
a measure of phenotypic age, using chronological age and 9 blood 
tests commonly available in clinical practice including parameters 
of renal, liver, glucose, and immune function and metabolism (12). 
In a validation study of this metric, the authors showed that their 
measure was associated with all-cause and cause-specific mortality 
(16). In the present study, we did not select our predictors based on 
their independent correlation with chronological age (39,40), nor 
did we select them using predefined rules based on the scientific 
literature or clinical knowledge. We rather implemented a data-
driven methodology aiming at better modeling mortality in older 
adults. Interestingly, we found that the inclusion of chronological 
age in our model decreased the predictivity of some observable 
characteristics (ie, chronic kidney disease, systolic blood pressure, 
being unpartnered, alkaline phosphatase, albumin, and hand grip 
strength) suggesting that chronological age harbors the prognostic 
information brought in by such features, while several other ob-
servable characteristics offered prognostic information that was 
independent of chronological age.

Figure 3. Multidimensional age prediction and its correlation with time to death. Relative risks from the multidomain models were averaged across imputed 
data sets, and then log2-transformed. Multidimensional age was obtained by regressing averaged risks on chronological age, using weights by age groups (see 
Materials and Methods section). For each panel, the red line shows the weighted regression (by age groups) of x on y, and R shows the Pearson correlation 
coefficients between the 2 variables. Highlighted points show 2 individuals with 36 years of age difference but with similar relative risk (B), multidimensional 
age (B, C), and time until death (C). Analyses were carried out after imputing missing data.
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Our findings point to the importance of maintaining a hol-
istic approach to measuring health and making prognoses in old 
age. At the same time, we could also demonstrate the greater rela-
tive importance of specific measures over others within the same 
health domain. Beyond sociodemographic characteristics, the vari-
ables found to be significantly associated with mortality in our 
multidomain model include established risk factors such as sys-
tolic blood pressure and smoking but not dyslipidemia, chronic 
diseases such as atrial fibrillation and diabetes but not ischemic 
heart disease, blood markers such as creatinine and hemoglobin 
but not CRP, and physical and cognitive function measures such 
as gait speed and MMSE. Such observation is in consonance with 
a study by Goldman et al. that showed that serum creatinine and 
homocysteine, as well as CRP, were predictive of mortality more 
than traditional cardiovascular risk factors (41). A  very similar 
selection of variables was reported in a previous study which 
included, among other predictors of biological age, hand grip 
strength, knee extension, hemoglobin, estimated glomerular fil-
tration rate, MMSE, and blood pressure (40). A  key difference 
between both studies is that Zhong et al. built models predicting 
chronological age, while our models predict survival, which should 
be closer to the phenotypes that the concept of biological age aims 
to describe. Indeed, a model perfectly predicting chronological age 
would have limited value because age is usually already known 
from the beginning.

Another key aspect of our study that has rarely been explored 
before is the inclusion of several variables that describe contextual 
characteristics of the individual, on top of those more linked to 
the biology. Due to these inclusions, our measure of multidimen-
sional age cannot strictly be considered a measure of biological 
age. Still, we believe that the same predictive goals foreseen for 
measures of biological age can be achieved by measures based on a 
multidimensional array of predictors, perhaps even in a more effi-
cient way. This is in line with the emerging importance of studying 
the contribution of extrinsic factors to biological aging in humans 
(10). In our study, individuals’ social connections and civil status 
were identified as meaningful predictors of mortality. Although 
they cannot be considered proper biomarkers of aging, these 
features may be extrinsic compensatory mechanisms that help 
to counteract the numerous biological and phenotypic impair-
ments that accumulate throughout life and/or proxies of higher-
level functioning roles such as social interactions, which require 

the integrity of several organs and systems. Our observation of a 
significant role of socioenvironmental characteristics such as civil 
status and leisure activities in the prediction of death is coherent 
with results from previous studies (42). Of particular note is a 
study by Liu et al., in which behavioral and socioenvironmental 
circumstances during the entire life course explained ~30% of the 
interindividual differences in phenotypic age (19). Our group pre-
viously demonstrated the involvement of such characteristics in 
the development of several age-related conditions (17,18,43,44). 
Moreover, our study confirms the strong prognostic role of phys-
ical function (45). The functional status domain, encompassing 
several measures of physical performance and dependency, was the 
only single domain that showed comparable predictive perform-
ance to chronological age. These results were however limited to 
the prediction of short-term mortality. Dynamic changes in health 
and functioning in old age may be responsible for the reduced 
predictive power of physical function measures during longer 
follow-ups.

To the best of our knowledge, this is the first study that inte-
grates multidimensional health-related observable features including 
contextual characteristics into an age metric that predicts survival. 
While it includes chronological age, it also works well regardless 
of it, demonstrating that the added value of chronological age in 
survival prediction when using variables across different health do-
mains is lost. Other strengths of our work are the long follow-up and 
the wide age range of our study population, as well as the availability 
of a vast number of observable and measurable characteristics col-
lected through comprehensive evaluations or official registries. The 
quality and depth of our data set allows for an unbiased comparison 
of the prognosis strength of these variables, which has rarely been 
addressed before (41). Besides its strengths, some limitations of our 
study should also be mentioned. First, we lack an external validation 
of our measure of multidimensional age, which restricts its applic-
ability to different contexts and data sets. However, our intention 
was not to propose a new age clock to the scientific community, but 
rather to explore how multiple health domains and their interplay 
with chronological age can be employed to build such a measure. 
Second, although we tested many variables across different health 
domains, some could have been assessed more comprehensively (eg, 
sociodemographics, lab tests). Nevertheless, all domains contributed 
with at least 2 variables to our best model and thus made significant 
contributions to our mortality predictions.

Figure 4. Comparison of the predictive accuracy for mortality of multidimensional age, chronological age, and other clinical and functional geriatric indices. 
The predictive accuracy was compared by mean of AUROC values. Bars indicate 95% confidence intervals of the estimations. Analyses were carried out after 
imputing missing data. ADL = activities of daily living; AUROC = area under the receiver operating characteristic curve; HAT = Health Assessment Tool.
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In conclusion, a multidimensional age metric based on a com-
prehensive assortment of observable individual and contextual 
characteristics can predict mortality independently of chronological 
age and outperforms the mortality predictions by well-established 
geriatric indices. Our work provides important insights into the 
health domains and individual characteristics that can be used to 
predict human mortality in late life. We expect that the relevance of 
these different domains will be further investigated in the future to 
achieve an optimal prediction of biological age. Such measures will 
be of great value in both clinical and research applications.

Supplementary Material

Supplementary data are available at The Journals of Gerontology, 
Series A: Biological Sciences and Medical Sciences online.
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