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Sex differences in the immune response and in infectious 
disease susceptibility have been well described, although the 
mechanisms underlying these differences remain incom-
pletely understood. We evaluated the frequency of cord 
blood CD4 T cell subsets in a highly malaria-exposed birth 
cohort of mother-infant pairs in Uganda by sex. We found 
that frequencies of cord blood regulatory T cell ([Treg] 
CD4+CD25+FoxP3+CD127lo/−) differed by infant sex, with sig-
nificantly lower frequencies of Tregs in female than in male neo-
nates (P = .006). When stratified by in utero malaria exposure 
status, this difference was observed in the exposed, but not in 
the unexposed infants.
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In both adults and children, there is an abundant precedent 
for sex disparities in the immune response to infections [1, 
2] and to vaccinations [3]. In general, females exhibit more 
robust innate and adaptive immunity than males. Females 
develop higher postvaccination antibody titers, clear anti-
gen more quickly, and exhibit lower levels of viremia dur-
ing chronic viral infections, but they are more susceptible 
to autoimmune and inflammatory disease and have higher 
rates of postvaccination adverse effects including local and 
systemic reactions [3]. Several mechanisms have been shown 

to contribute to these differences, including the effects of sex 
steroid hormones, as well as intrinsic genetic differences aris-
ing from X chromosome-encoded genes [3]. Disparities in 
the immune response and manifestations of infection are evi-
dent in prepubertal children [2], suggesting that sexual differ-
entiation in the immune response may begin during infancy 
or gestation.

It is noteworthy to mention that, in a recent phase III trial 
of the RTS,S/AS01 malaria vaccine, RTS,S/AS01 vaccination 
was associated with higher all-cause mortality in female but 
not male children compared with the control arm [4]. This dif-
ference was highly statistically significant and was observed in 
both age groups in which the vaccine trials were conducted. 
Furthermore, there was a tendency towards an increased risk 
of fatal malaria in females but not males [4]. As the authors 
noted, there is precedent for increased vaccine-associated 
mortality in females: after introduction of the high-dose mea-
sles vaccine, a doubling of all-cause mortality among girls (but 
not boys) led to eventual withdrawal of the vaccine from the 
market [5]. The potential immunologic basis for sex differ-
ences in postvaccination mortality after RTS,S/AS01 was not 
explored.

Malaria is known to trigger numerous immunoregulatory 
pathways, including induction of regulatory T cell (Treg) pop-
ulations [6]. Clinical manifestations of malaria infection are 
likely to result from an imbalance of inflammatory and regu-
latory aspects of the immune response. For instance, malaria 
infection in a naive host results in peripheral induction and 
expansion of suppressive FoxP3+ Tregs [6], and these Tregs have 
been shown to impact subsequent T-cell effector responses. 
After acute malaria, Treg induction may limit the magnitude of 
subsequent Th1 response. Lower levels of FoxP3 messenger rib-
onucleic acid during acute malaria are associated with higher 
malaria-specific interferon (IFN)-γ responses to repeated 
malaria antigen exposure during follow-up [7]. Although sex 
differences in the prevalence, severity, and pathophysiology 
of numerous infectious diseases have been described [1, 2], 
including malaria-related mortality [8], there are few pub-
lished studies examining potential sex differences in effector 
and regulatory immune responses to malaria, which is a lead-
ing cause of childhood deaths in Africa.

We sought to investigate sex differences in T-cell differen-
tiation among infants in a highly malaria-endemic setting in 
Eastern Uganda, where the majority of pregnancies are com-
plicated by placental malaria. Using cord blood samples from 
a birth cohort of pregnant mothers and their infants, we evalu-
ated the frequency of total, regulatory, and activated CD4 cells 
in cord blood by sex.
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METHODS

Study Populations

Cord blood samples were collected from infants born to mothers 
enrolled in a clinical trial of prenatal malaria chemoprevention 
conducted in Tororo, Uganda, an area of high malaria endemic-
ity. Clinical trial outcomes are described in a prior publication 
[9]. In brief, between June 2014 and October 2014, 300 human 
immunodeficiency virus negative mother-infant pairs were 
enrolled between 12 and 20 weeks of gestation. Informed con-
sent was obtained from the parent or guardian of all study par-
ticipants. The study protocol was approved by the institutional 
review boards of the Uganda National Council of Science and 
Technology, the University of California, San Francisco, and 
Makerere University. We collected cord blood from 166 par-
ticipants from which sufficient cord blood mononuclear cells 
(CBMCs) were available. Participants received routine medical 
care at the study clinic, and mothers were evaluated monthly 
throughout pregnancy for Plasmodium parasitemia by periph-
eral blood via loop-mediated isothermal amplification (LAMP), 
which detects Plasmodium deoxyribonucleic acid (DNA). 
During febrile episodes, mothers were evaluated with blood 
microscopy and, if positive, treated per local guidelines for clin-
ical malaria, as previously described [9]. At the time of delivery, 
maternal peripheral blood, placental blood, and cord blood were 
tested for parasitemia by both LAMP and microscopy. Placental 
tissue was processed for histopathologic evidence of malaria 
infection, determined by standardized placental malaria histo-
pathology criteria as previously described [9].

Cord Blood Mononuclear Cells Collection

At the time of delivery, whole cord blood was collected in 
umbilical cord blood collection kits (Pall Medical). Cord blood 
mononuclear cells were isolated by Ficoll-histopaque density 
centrifugation (GE Life Sciences) and cryopreserved in liquid 
nitrogen.

Flow Cytometry Immunophenotyping

Cord blood mononuclear cells were thawed, aliquoted at 1 × 
106 cells, and surface stained using standard protocols with 
the following antibodies: APC/Cy7-conjugated CD3, PerCP-
conjugated CD4, BV421-conjugated CD25, BV650-conjugated 
CD127 (BioLegend). Cells were then fixed and permeabilized 
with FoxP3 transcription factor staining buffer set (eBiosci-
ence). After washing, cells were then intracellularly stained 
with PE-conjugated FoxP3 (eBioscience). BV510-conjugated 
CD8, CD14, CD19 (BioLegend), and LIVE/DEAD aqua amine 
(Invitrogen) were used as exclusion markers to minimize non-
specific binding. Flow cytometry data were collected on an 
LSRII 4-laser flow cytometer with FACSDiva software. Color 
compensations were performed using compensation beads. An 
isotype control was used to define negative and positive pop-
ulations for FoxP3 and CD25. Cellular profiles were gated on 
live CD3+CD4+ lymphocytes. Fresh cord blood CD4 T cells 

were enumerated from 50 μL of whole cord blood stained with 
antibodies in BD TruCount tubes or with 20 μL of CountBright 
counting beads (ThermoFisher Scientific) on 152 available cord 
blood samples. Cells were incubated for 20 minutes, and 900 
μL of BD FACS lysis solution was added for 15 minutes. CD4 
T cell staining was performed using PerCP-conjugated CD3, 
APC-conjugated CD4 antibodies. Cells were immediately ana-
lyzed on an Accuri C6 cytometer. Absolute CD4 counts were 
recorded per microliter of whole cord blood. To normalize the 
frequency of Tregs and activated CD4 T cells from cryopreserved 
CBMCs to absolute rates of CD4 per microliter of fresh whole 
cord blood, we calculated absolute CD4 subset counts (absolute 
subset count = (subset frequency) × (absolute CD4 count per 
μL of whole cord blood)).

Statistical Analysis

Cell frequencies were compared between sexes using Wilcoxon 
rank-sum testing. Associations between sex and malaria expo-
sure outcomes were compared using χ2 testing. Statistical anal-
yses were completed using PRISM 7.0 (GraphPad). Two-sided 
P values were calculated for all test statistics, and P <  .05 was 
considered significant.

RESULTS

We evaluated the frequency of total, regulatory (Tregs; CD25+ 

FoxP3+ CD127lo/−), and activated (CD25+FoxP3−CD127hi) CD4  
T cells (Figure  1A) in the cord blood of 166 infants born to 
mothers enrolled in a randomized clinical trial of prenatal 
malaria chemoprevention. Pregnancy-associated malaria was 
common, with 79% of infants exhibiting evidence of in utero 
malaria exposure by either maternal, cord, or placental micros-
copy or P falciparum DNA testing, and/or positive placental 
histopathology for malaria infection. Rates of in utero malaria 
exposure did not differ between male and female infants (75.8% 
vs 82.7%, P = .282) (Table 1). However, we found that frequen-
cies of Tregs in cord blood differed significantly by infant sex, 
with female neonates having lower frequencies of Tregs than 
males (1.82% vs 2.61%, P = .006) (Figure 1B; Table 2). In addi-
tion, absolute Treg counts, calculated by normalizing subset fre-
quency to CD4 counts per volume of whole blood, were also 
lower in females than in males (24.4 vs 35.8 cells/μL whole cord 
blood, P = .012) (Table 2).

To explore whether exposure to malaria antigens during fetal 
life may have contributed to differential expansion of Tregs in 
males and females, we examined the relationship of infant sex 
to Tregs following stratification for in utero malaria exposure sta-
tus (positive maternal, cord, or placental microscopy or P falci-
parum DNA testing, and/or positive placental histopathology). 
A sex disparity was observed in the exposed infants with females 
having lower Treg frequencies than males (P = .012; n = 131), but 
not in the unexposed infants (P  =  .353, n  =  35) (Figure  1C). 
However, the small number of infants who lacked evidence of 
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any malaria exposure limited the power of this comparison in 
the unexposed subgroup.

We also compared the frequency of activated CD4 T cells 
(CD127hi CD25+ but lacking FoxP3 expression), because we 
have previously shown this population to be expanded in 
infants who were exposed to malaria in utero [10]. There was 
no sex difference in the frequency of these activated CD4 cells 
(P = .884) (Table 2) in the cohort as a whole or in the exposed 
and unexposed subgroups.

Several studies have documented that female newborns have 
higher CD4 percentages and that this trend persists through 
childhood [2, 3]. In our cohort, there was no difference in the 
frequency (P  =  .993) or absolute counts of total CD4 T cells 

(P = .669) by infant sex. Thus, only the FoxP3+ regulatory CD4 
T-cell compartment, and not total or activated CD4 T cells, dif-
fered between male and female neonates (Table 2).

DISCUSSION

We found significantly lower frequencies of cord blood FoxP3+ 
regulatory CD4 T cells in female than in male infants born in 
a region of high malaria transmission intensity, where 79% of 
enrolled participants had evidence of malaria infection either 
during pregnancy or at parturition. To our knowledge, no prior 
studies have reported a difference in frequencies of Tregs in the 
cord blood of male and female infants, either in uncomplicated 
healthy pregnancy or after in utero exposure to a pathogen. It 
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Figure  1.  Lower frequency of cord blood T regulatory cells (Tregs) in females vs males in in utero malaria-exposed infants. (A) Cord blood cells were gated on live, 
single lymphocytes, dump-negative T cells. Gating of CD4+CD25+ cord blood T cells revealed 2 distinct subsets, Tregs (CD25+FoxP3+CD127lo/−) and activated CD4 T cells 
(CD25+FoxP3−CD127hi). (B) The frequency of cord blood Tregs (CD25+FoxP3+CD127lo/−) from all infants evaluated, regardless of in utero malaria exposure, differs by sex (P = .006; 
Wilcoxon rank-sum testing; error bars indicate median with interquartile range; n = 166). (C) The frequency of Tregs differs by sex in the in utero malaria-exposed infants 
(P = .012), but not the malaria-unexposed infants (P = .353; Wilcoxon rank-sum testing; error bars indicate median with interquartile range).
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is not clear whether this difference reflects an intrinsic biologic 
difference between male and female neonates that is independ-
ent of pathogen exposure, or if alternatively, in utero exposure 
to malaria antigens drives Treg differentiation more strongly in 
males than females.

Several potential mechanisms might contribute to the 
observed sex differences in cord blood Tregs. First, differences in 
sex steroid hormones have direct effects on numerous innate 
and adaptive immune cells [3]. Although infancy and child-
hood have historically been regarded as a time of hormonal 
quiescence, some data suggest that differences in the hormonal 
milieu of males and females emerge in utero, with testoster-
one first produced by male testes as early as gestational week 

10 [11]. Thus, sex-based differences in the immune response 
may begin even before birth. In addition to hormonal influ-
ences, genetic differences between male and female individ-
uals may drive sexual dimorphism in the immune response. 
Experiments comparing transgenic XY and XX mice with a 
common gonadal type indicate that it is the XX sex chromo-
some complement, rather than female steroid hormones, that 
predisposes females to autoimmunity [12]. Many genes critical 
for immune function and immunoregulation are encoded by 
the X chromosome (including FoxP3, TLR7, TLR9, and IRAK), 
and an estimated 15% of these may escape X inactivation to 
some degree, making them subject to gene dosage effects [13]. 
Together, these factors may contribute to a bias towards less 
Treg differentiation and more vigorous inflammatory immune 
responses in females.

In light of recent reports of increased postvaccination mor-
tality in females receiving the RTS,S/AS01 malaria subunit vac-
cine [4], it is clear that sex differences in the immune response 
to malaria require further evaluation, both in naturally exposed 
populations and in malaria vaccine trials. The lower frequencies 
of Tregs observed among female infants in this malaria-endemic 
setting could contribute to a more vigorous effector response and 
increased immunopathology after natural malaria exposure or 
vaccination. In murine vaccination models, Treg depletion at the 
time of vaccination enhances CD4 IFN-γ and interleukin-2 pro-
duction upon restimulation with antigen [14]. Additional studies 
are needed in both malaria-exposed and unexposed populations 
to validate our findings of sex differences in Tregs at birth. Moreover, 
future field studies of malaria-specific immunity, including vac-
cine-induced responses, should pay careful heed to potential sex 
differences in regulatory and effector responses, which may shed 
light on the mechanisms underlying the increased mortality seen 
in female RTS,S/AS01 malaria vaccine recipients.

CONCLUSIONS

Our findings add to the mounting evidence indicating that 
females and males differ in their intrinsic immune responsive-
ness and susceptibility to infection, and that these differences 
arise during early life—even in utero. Moreover, although both 
biological sex and societal gender roles and behaviors have been 
shown to contribute to differences in infectious disease out-
comes, the observation that sex disparities are evident at birth 
highlights the biological underpinnings of sexual dimorphism 
in the immune response.
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Table 2.  Cord Blood T-Cell Subsets by Infant Sex

T-Cell Subset Female Male

Median [IQR] Median [IQR] P-value

Frequency (%)a

Total CD4 74.4 [68.2–83.1] 76.3 [68.6–80.4] .993

Tregs 1.82 [1.2–2.7] 2.61 [1.5–3.5] .006

Activated (CD25+ 
FoxP3−CD127hi)

2.17 [1.1–3.5] 2.39 [1.4–3.0] .884

Absolute Countsb

Total CD4 1356 [1252–1778] 1527 [1056–1872] .669

Tregs 24.4 [15.6–42.2] 35.8 [18.3–57.8] .012

Activated (CD25+ 
FoxP3−CD127hi)

31.8 [18.5–49.0] 32.0 [18.8–49.5] .956

Statistically significant P-value in bold. Abbreviations: IQR, interquartile range; Tregs, T reg-
ulatory cells. 
aFrequency of parent subset.
bAbsolute count per microliter of whole cord blood.

Table 1.  In Utero Malaria Exposure by Infant Sex

Malaria Exposure Category Female Male

Enrollmenta
Positive  
n (%)

Positive  
n (%) P Value

Maternal parasitemia by LAMP 41 (54.7) 48 (52.8) .805

Monthly Screening During Pregnancy

Maternal parasitemia by LAMP 42 (56.0) 39 (42.9) .092

Delivery

Maternal parasitemia

LAMP 13 (17.3) 7 (7.7) .058

Microscopy 2 (2.67) 2 (2.2) .649

Placenta

LAMP 11 (14.7) 9 (9.9) .347

Microscopy 2 (2.67) 2 (2.2) .845

Histopathology 30 (40.0) 33 (36.3) .622

Cord Blood

LAMP 1 (1.3) 2 (2.2) .501

Any malaria during pregnancy or 
delivery

62 (82.7) 69 (75.8) .282

Abbreviations: LAMP, loop-mediated isothermal amplification.
a12 to 20 weeks gestational age.
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