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Protein phosphatase 2A (PP2A) is an important phosphatase which regulates various cellular processes, such as protein synthesis,
cell growth, cellular signaling, apoptosis, metabolism, and stress responses. It is a holoenzyme composed of the structural A and
catalytic C subunits and a regulatory B subunit. As an environmental toxin, okadaic acid, is a tumor promoter and binds to PP2A
catalytic C subunit and the cancer-associated mutations in PP2A structural A subunit in human tumor tissue; PP2A may have
tumor-suppressing function. It is a potential drug target in the treatment of cancer. In this study, we screen the TCM compounds in
TCMDatabase@Taiwan to investigate the potent lead compounds as PP2A agent. The results of docking simulation are optimized
under dynamic conditions by MD simulations after virtual screening to validate the stability of H-bonds between PP2A-𝛼 protein
and each ligand.The top TCMcandidates, trichosanatine and squamosamide, have potential binding affinities and interactions with
key residues Arg89 and Arg214 in the docking simulation. In addition, these interactions were stable under dynamic conditions.
Hence, we propose the TCM compounds, trichosanatine and squamosamide, as potential candidates as lead compounds for further
study in drug development process with the PP2A-𝛼 protein.

1. Introduction

Protein phosphatase 2A (PP2A) is an important phosphatase
which consists of a holoenzyme composed of the structural
A and catalytic C subunits and a regulatory B subunit [1–
3]. As each of these subunits exists many different isoforms,
the holoenzymes of PP2A, can form various distinct trimeric
ABC complexes. This enzyme can regulate various cellular
processes, such as protein synthesis, cell growth, cellular
signaling, apoptosis, metabolism, and stress responses [4, 5].
Many researches indicate the cancer-associated mutations in
PP2A structural A subunit in human tumor tissue [6–8]. As
a research in 1988 determined that an environmental toxin,
okadaic acid, is a tumor promoter and binds to PP2A catalytic
C subunit [9], PP2A may have tumor-suppressing function.
As PP2A has tumor-suppressing function, it is a potential
drug target in the treatment of cancer [10, 11].

Nowadays, the researchers have determined more and
more distinct mechanisms of diseases [12–18]. According to
these mechanisms, the researchers can identify the potential
target protein for drug design against each disease [19–
22]. The compounds extracted from traditional Chinese
medicine (TCM) have been indicated in many in silico
researches as potential lead compounds for the treatment of
many different diseases, including tumours [23–26], diabetes
[27], inflammation [28], influenza [29], metabolic syndrome
[30], stroke [31–33], viral infection [34], and some other
diseases [35, 36]. In this study, we aim to improve drug
development of TCM compounds by investigating the potent
lead compounds as PP2A agent from the TCM compounds
in TCM Database@Taiwan [37]. As the disordered amino
acids in the protein may cause the side effect and reduce the
possibility of ligand binding to target protein [38, 39], we
have predicted the disordered residues in sequence of PP2A-𝛼
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Figure 1: Disordered disposition predicted by PONDR-Fit.
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Figure 2: Chemical scaffold of top four TCM candidates with their scoring function and sources.
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Figure 3: Docking pose of PP2A protein complexes with (a) trichosanatine, (b) angeliferulate, (c) dichotomoside E, and (d) squamosamide.

protein before virtual screening. After virtual screening of
the TCM compounds, the results of docking simulation are
optimized under dynamic conditions by MD simulations to
validate the stability ofH-bonds between PP2A-𝛼 protein and
each ligand.

2. Materials and Methods

2.1. Data Collection. The X-ray crystallography structure of
the human serine/threonine-protein phosphatase 2A (PP2A)
catalytic subunit alpha isoform was obtained from RCSB
Protein Data Bank with PDB ID: 3FGA [40]. We employed

PONDR-Fit [41] protocol to predict the disordered residues
in sequence of PP2A-𝛼 protein from Swiss-Prot (UniPro-
tKB: P67775). For preparation, the protein was protonated
with Chemistry at HARvard Macromolecular Mechanics
(CHARMM) force field [42], and the crystal water was
removed using Prepare Protein module in Discovery Stu-
dio 2.5 (DS2.5). The volume of the cocrystallized PP2A
inhibitor, microcysteine, was employed to define the binding
site for virtual screening. TCM compounds from TCM
Database@Taiwan [37]were protonated usingPrepare Ligand
module in DS2.5 and filtered by Lipinski’s Rule of Five [43]
before virtual screening.
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Figure 4: Root-mean-square deviations in units of nm and total energies over 5000 ps of MD simulation for PP2A protein complexes with
trichosanatine, angeliferulate, dichotomoside E, and squamosamide.
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Figure 5: Variation of (a) total solvent accessible surface area, (b) hydrophobic surface area, and (c) hydrophilic surface area over 5000 ps of
MD simulation for PP2A protein complexes with trichosanatine, angeliferulate, dichotomoside E, and squamosamide.
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Figure 6: Root-mean-square fluctuation in units of nm for residues of PP2A protein complexes with trichosanatine, angeliferulate, dichoto-
moside E, and squamosamide during 5000 ps of MD simulation.

2.2. Docking Simulation. For virtual screening, the TCM
compounds were docked into the binding site using a shape
filter andMonte-Carlo ligand conformation generation using
LigandFit protocol [44] in DS2.5. The docking poses were
then optionally minimized with CHARMM force field [42]
and then calculated their Dock Score energy function by the
following equation:

Dock Score = − (ligand/receptor interaction energy

+ligand internal energy) .
(1)

Finally, the similar poses were rejected using the cluster-
ing algorithm.

2.3. Molecular Dynamics (MD) Simulation. The molecular
dynamics (MD) simulation for each protein-ligand complex
under dynamic conditions was performed by Gromacs 4.5.5
[45]. The topology and parameters for PP2A-𝛼 protein with
charmm27 force field and ligands were performed by the
pdb2gmx protocol of Gromacs and SwissParam program
[46], respectively. Gromacs performed a cubic box with edge
approx 12 Å from the molecules periphery and solvated with
TIP3P water model for each protein-ligand complex. The
common minimization algorithm, Steepest descents [47],
was employed with a maximum of 5,000 steps to remove
bad van der Waals contacts. After a neutral system using
0.145M NaCl model was created by Gromacs; the steepest
descents minimization with a maximum of 5,000 steps was
employed again to remove bad van der Waals contacts. For
the equilibration, the Linear Constraint algorithm for all
bonds was employed for the position-restrained molecular
dynamics with NVT equilibration, Berendsen weak thermal
coupling method, and Particle Mesh Ewald method. A total
of 5000 ps production simulation was then performed with
time step in unit of 2 fs under Particle Mesh Ewald (PME)

option and NPT ensembles. The 5000 ps of MD trajectories
was then analyzed using a series of protocols in Gromacs.

3. Results and Discussion

3.1. Disordered Protein Prediction. The result of the disor-
dered residues predicted by PONDR-Fit with the sequence
of PP2A-𝛼 protein from Swiss-Prot (UniProtKB: P67775) is
illustrated in Figure 1. For PP2A-𝛼 protein, Figure 1 indicates
that the structure of binding domain is stable as the major
residues of binding domain do not lie in the disordered
region.

3.2. Docking Simulation. For virtual screening, Dock Score
energy function is used to rank the top potential TCM
compounds; the chemical scaffold of top four TCM candi-
dates with high binding affinity is displayed in Figure 2 with
its scoring function and sources. The top four TCM com-
pounds, trichosanatine, angeliferulate, dichotomoside E, and
squamosamide, were extracted from Trichosanthes rosthornii
Harms, Angelica sinensis, Stellaria dichotoma L., and Annona
squamosa L., respectively. After the virtual screening, the
docking poses of top four TCM compounds in the binding
domain of PP2A-𝛼 are displayed in Figure 3. All the top
four TCM compounds have interactions with key residues
Arg89 andArg214. Trichosanatine exists hydrogen bonds (H-
bonds) with key residues Arg89 and Arg214. Angeliferulate
has H-bonds with residues Arg89, Gln122, Arg214, and a 𝜋
interaction with residue Trp200. Dichotomoside E forms H-
bondswith residuesArg89, Tyr127,Gly215, and a𝜋 interaction
with residue Arg214. Squamosamide has both H-bond and 𝜋
interaction with residue Arg214. In addition, there exist H-
bonds with residue Leu243 and a 𝜋 interaction with residue
Arg89.Those interactions hold the top four TCMcompounds
in the binding domain of PP2A-𝛼 protein.
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Figure 7: Root-mean-square deviation value (a) and graphical depiction of the clusters with cutoff 0.1 nm (d) for PP2A protein complexes
with trichosanatine, angeliferulate, dichotomoside E, and squamosamide.

3.3. Molecular Dynamics Simulation. In LigandFit protocol,
each compound was docked into binding site using a shape-
based docking with rigid body of PP2A-𝛼 protein. The inter-
actions between each compound and PP2A-𝛼 protein men-
tion above may not be stable under dynamic conditions. We

employedMD simulation for each protein-ligand complex to
study the stability of interactions for each docking pose. The
information of root-mean-square deviations (RMSDs) and
total energies over 5000 ps of MD simulation is displayed in
Figure 4. It indicates that the atomic fluctuations of protein
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Figure 8: Docking poses of middle RMSD structure in the major cluster for PP2A protein complexes with trichosanatine, angeliferulate,
dichotomoside E, and squamosamide.

complexes with top four TCM compounds tend to be stable
after 4800 ps of MD simulation, and there is no significant
variation in the total energies for each complex during
MD simulation. To analyze the possible effect of each top
TCM candidate for the PP2A-𝛼 protein, Figure 5 displays
the variation of solvent accessible surface area for PP2A-𝛼
protein over 5000 ps of MD simulation. For top four TCM
candidates, they have similar hydrophobic and hydrophilic
surface areas when the MD simulation tends to be stable,
which indicates that those compounds may not affect the
sharpness of PP2A-𝛼 protein after they dock in the binding
domain. Figure 6 illustrates the root-mean-square fluctuation
of each residue of PP2A-𝛼 protein during 5000 ps of MD
simulation. It indicates that they have similar deviation for
key residues in the binding domain of PP2A-𝛼 protein during
5000 ps of MD simulation. In Figure 7, root-mean-square
deviation value for each PP2A-𝛼 protein complex illustrates
the RMSD values between each MD trajectory of 5000 ps
of MD simulation, and graphical depiction of the clusters
with cutoff 0.1 nm is employed to define the middle RMSD

structure in the major cluster as the representative struc-
tures for each complex after MD simulation. The docking
poses of the representative structures for each protein-ligand
complex are illustrated in Figure 8. For angeliferulate and
dichotomoside E, the interactions between protein and ligand
mention in docking simulation are not stable under dynamic
conditions, which indicates that those two TCM compounds
cannot binding stabilized in the binding domain of PP2A-
𝛼 protein. For trichosanatine, the representative docking
poses in 4.82 ns indicate that it has similar docking pose
as mentioned in docking simulation and maintains the H-
bond with key residue Arg89. In addition, it forms H-bonds
and 𝜋 interactions with residues His118, Tyr127, and Trp200
after MD simulation. The docking pose of squamosamide
in 4.82 ns of MD simulation also has similar docking pose
as mentioned in docking simulation and maintains the H-
bond and 𝜋 interactions with key residue Arg214 andH-bond
with Leu243. To analyze the stability of these H-bonds, the
occupancy ofH-bonds overall 5000 ps ofmolecular dynamics
simulation are listed in Table 1, and the variations of distance
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Figure 9: Distances of hydrogen bonds with common residues during 5000 ps ofMD simulation for PP2A protein complexes with trichosan-
atine and squamosamide.

for each H-bond in the PP2A-𝛼 protein complexes with
trichosanatine and squamosamide are illustrated in Figure 9.
For trichosanatine, it has stable H-bonds with residues Arg89
and His118, and the distances with residues Arg214 are stable
in 0.4 nm. For squamosamide, it has stable H-bonds with
residues Arg214 and Leu243.

4. Conclusion
This study aims to investigate the potent TCM candidates
as lead compounds of agent for PP2A-𝛼 protein. The top
four TCM compounds have high binding affinities with
PP2A-𝛼 protein in the docking simulation. However, the
results of docking simulation are optimized under dynamic
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Table 1: H-bond occupancy for key residues of PP2A protein
with trichosanatine and squamosamide overall 5000 ps ofmolecular
dynamics simulation.

Name H-bond interaction Occupancy

Trichosanatine

Arg89 :HH22 /O23 2%
His118 : HD1 /O8 2%
His118 : NE2 /H51 92%
Tyr127 : HH /O8 26%
Arg214 : HE /O20 11%

Arg214 : HH22 /N25 1%

Squamosamide

His191 : O /H58 1%
Arg214 : HE /O16 100%
Leu243 : HN /O30 98%
Leu243 : HN /O31 98%

H-bond occupancy cutoff: 0.3 nm.

conditions by MD simulations to validate the stability of H-
bonds between PP2A-𝛼 protein and each ligand. Although
angeliferulate and dichotomoside E have potent binding
affinities with PP2A-𝛼 protein in the docking simulation,
the interactions between protein and ligand mentioned in
docking simulation are not stable under dynamic condi-
tions. For the other two top TCM candidates, trichosana-
tine and squamosamide, there exist stable interactions with
key residues Arg89 and Arg214 under dynamic conditions.
Hence, we propose the TCM compounds, trichosanatine and
squamosamide, as potential candidates as lead compounds
for further study in drug development processwith the PP2A-
𝛼 protein.
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