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Abstract

A protein’s amino acid sequence dictates the folds and final structure the macromolecule

will form. We propose that by identifying critical residues in a protein’s atomic structure, we

can select a critical stability framework within the protein structure essential to proper protein

folding. We use global computational mutagenesis based on the unfolding mutation screen

to test the effect of every possible missense mutation on the protein structure to identify the

residues that cannot tolerate a substitution without causing protein misfolding. This method

was tested using molecular dynamics to simulate the stability effects of mutating critical resi-

dues in proteins involved in inherited disease, such as myoglobin, p53, and the 15th sushi

domain of complement factor H. In addition we prove that when the critical residues are in

place, other residues may be changed within the structure without a stability loss. We vali-

date that critical residues are conserved using myoglobin to show that critical residues are

the same for crystal structures of 6 different species and comparing conservation indices to

critical residues in 9 eye disease-related proteins. Our studies demonstrate that by using a

selection of critical elements in a protein structure we can identify a critical protein stability

framework. The frame of critical residues can be used in genetic engineering to improve

small molecule binding for drug studies, identify loss-of-function disease-causing missense

mutations in genetics studies, and aide in identifying templates for homology modeling.

Introduction

The interest of identifying residues most critical to a protein’s structure and function has

existed for decades. By understanding those critical residues, we can better understand the

folding mechanism and ways in which the structure may be modified. The approaches of these

methods vary but are all based on phylogenic trees or data from limited experimental results.

One such method involves a systematic study in a significant number of protein families, test-

ing the statistical meaning of the Tree-determinant residues predicted by three different meth-

ods that represent the range of available approaches[1]. Another method using continuum

electrostatics methods is used to identify destabilizing residues, and identifying functionally
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important residues in otherwise uncharacterized proteins[2]. However, others head warning

to such approaches stating different aspects of protein function (enzymatic function classifica-

tion, functional annotations in the form of key words, classes of cellular function, and conser-

vation of binding sites) can only be reliably transferred between similar sequences to a modest

degree[3].

More recently, a number of new methods using a combination of phylogenic and network

analyses have emerged[4, 5]. Here, phylogenetic approaches were compared to several differ-

ent network-based methods for the prediction of critical residues for protein function, and

demonstrated that this method is superior to other methods previously employed. The results

show that this method identifies critical residues for protein function and improves automatic

sequence-based approaches and previous network-based approaches. However, for these

methods there is a large reliance on Multiple Sequence Alignments (MSA) data, which has lim-

ited applications when it comes to identification of critical residues specifically due to uncer-

tainty regarding the exact location of the active site.

While MSA has the ability to align sequences based on similarity, it is not without its limita-

tions. A 2011 study that developed a benchmark for testing the efficacy and efficiency of MSA

noted that some limitations include: locally conserved regions are less well aligned, motifs in

natively disordered regions are often misaligned and finally the badly predicted or fragmentary

protein sequences lead to a significant number of alignment errors[6].

When alignments are computed using protein sequences without the 3 dimensional struc-

tures, significant information regarding the protein’s secondary and tertiary structure is

missed. In such circumstances, the conservation indices are based primarily on residue fre-

quency, neglecting residue similarity. PROMALS3D[7] provides the option to use information

about the secondary structure of using Protein Data Bank[8] (PDB). This method, however,

has its own limitations when it comes to the availability of protein structures. There are few

protein families in which more than one structure is available (about 25% of all PFAM families

with a known structure)[9].

Because a protein’s structure is directly related to the protein’s function, the need to under-

stand the role of individual residues in the folding mechanism is increasingly important. It is

known that the protein sequence directs the folds and interactions that occurs between amino

acids in the globular protein structure[10, 11] and mutations in the amino acid sequence lead

to protein misfolding and often disease[12]. The interaction of different amino acid side chains

leads to the folding of the protein into the most thermodynamically stable confirmations. As

part of this process, the structure goes through a series of trial and error confirmations within

the fitness landscape to identify the most thermodynamically stable structure[13].

Recently we developed the unfolding mutation screen (UMS)[14, 15], a global computa-

tional mutagenesis tool developed with the goal of evaluating the effect of any possible mis-

sense mutations on protein structure by using an unfolding propensity and displaying the data

in the form of interactive heat maps. The unfolding propensity is calculated in silico from the

free energy change between the mutant and wild type protein. This measure provides a nor-

malized method of quantifying the effect of a mutation on protein folding with the value rang-

ing from 0–1. Mutations that give an unfolding propensity of greater than 0.9 are said to have

a severe destabilizing effect on the protein as demonstrated in a comparison with ~1,400

experimental mutations from Prothem Database[14]. These propensities can be used to iden-

tify residues that are critical to the protein’s fold. A critical residue is a residue that cannot be

mutated to any other residue without having severe destabilizing effects on the protein’s struc-

ture. Critical residues are found using the foldability parameter, which evaluates the frequency

of severe mutations that may occur at each location in the protein sequence. The foldability
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parameter shows higher risk positions for a loss of protein stability and is defined as the sum

of the propensities greater than 0.9 at a given location in the sequence[14].

Analysis of this work has shown a number of trends in critical residues. Common critical

residues are cysteines involved in disulfide bonding, glycines, and prolines. The critical resi-

dues are buried in the hydrophobic core of the protein or located at the protein surface and

disrupt protein-protein interactions. A critical role of cysteines and glycines is well docu-

mented in human genetic eye diseases such as X-linked retinoschisis[16], age-related macula

degeneration[17], Stargardt’s disease[18], and others. There is also numerous data suggesting

these residues participate protein function. For example, conserved cysteine localized in func-

tional sites of proteins[19], glycine residues are involved in inhibition of protein aggregation

[20], and conserved prolines are critical for protein-protein interactions[21].

We propose that by identifying critical residues in a protein’s structure, we can select a pro-

tein stability framework that is critical to a protein’s folding. In our work, we use the UMS to

calculate unfolding propensities for every possible missense mutation in a protein structure

and identify these critical residues based on the foldability values. We have tested the impor-

tance of these residues by using molecular dynamics to evaluate stability and structural

changes when the critical residues are both altered and kept in place. These changes were

quantified using RMSD, Ramachandran plots, and distance matrices. In addition, we have

shown that critical residues remain the same when calculated for proteins within a family.

Finally, we have shown through direct comparisons with MSAs for 9 proteins that the critical

residues are highly conserved. Critical stability framework is essential in understanding a role

of genetic mutations in inherited disease.

Results

We employed the unfolding mutation screen[14] to iterate through every possible amino acid

substitution at a given location in a protein atomic structure to identify critical residues for

protein folding and stability. We compared the critical residues to the highly conserved resi-

dues from multiple sequence alignments to show that if a residue is critical, it will be conserved

by species over time. We used myoglobins to shows that the critical residues remain the same

across species. Finally, we have proved the importance of the critical framework by generating

two different structures. The first is the critical structure (CS) in which the critical residues are

kept the same as in wild type protein, while the others are mutated. The other is the changed

critical structure (ΔCS) where only the critical residues in the structure are changed. Compari-

sons of the stability of these structures demonstrate the importance of critical residues in form-

ing a stable frame for the protein structure.

Conservation vs. critical residues

To begin, we compared the residue conservation index from the PROMALS[22] multiple

sequence alignment to the foldability of the same residue produced by UMS. Following our

belief that foldability may be a suitable substitute for residue conservation, we have created a

dataset of 9 eye disease-related proteins (S1–S3 Figs) to demonstrate the similarities of these

two properties, as well as account for the differences. Table 1 summarizes principal charac-

teristics of conservation indices and foldabilities to demonstrate the differences in the

approaches.

In comparing the two scores, we considered differences in the ranges of the scores and the

intervals in which the scores increase. The conservation index ranges from 0–9 with integer

intervals. The foldability value covers the spectrum of rational numbers from 0–19. In order to

create an accurate comparison of the location of the concentration of foldability values for
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each conservation index, the average foldability and standard deviation was calculated for each

interval of the conservation index. This data was plotted for each of the proteins (S1 Fig). In

addition, the Pearson’s r values ranged from 0.774 to 0.969.for the 9 proteins analyzed and

the average Pearson’s r was 0.91 ± 0.057, indicating a good linear relationship between the

parameters.

Next, a density plot was used for the highly conserved residues to show the distribution of

foldabilities with a conservation index of 9. For the 9 proteins analyzed, the density plot had a

bimodal distribution, a main peak around 18, indicating critical residues, and a smaller peak at

lower foldabilities (S2 Fig). This, however, is not the case when we observe the distribution of

conservation index values for the critical residues. For these density plots (S3 Fig), we observe

a single large peak in the conservation index region on 8–9. The discrepancies between the dis-

tributions may be explained by the notion that structure is more conserved than sequence[23].

Our comparison of foldabilites with conservation indices shows that there is a strong agree-

ment between the parameters. The more conserved a residue is the more likely it is to be a

critical residue, while critical residues are highly conserved over time. The area in which the

values differentiate can be explained by structure being more conserved that sequence, as we

see over time by the different rates of change.

Critical structure

Six crystal structures for myoglobin were obtained from RCSB protein databank and run

through UMS to identify critical residues to ensure that critical residues were consistent

among a number of species. The species used for comparison were human, horse, pig, sea tur-

tle, elephant, and sperm whale. Fig 1a shows the patterned foldability structures side by side.

To further quantify this data, we used a pair-wise comparison method shown in Fig 1b and

1c. Human myoglobin along the x-axis serves as a benchmark, while the other species are

plotted along the x-axis. The slope, y-intercept, and Pearson’s r are shown in the table. The

average Pearson’s r, slope, and y-intercept for the species were 0.840 ± 0.02, 0.862 ± 0.02, and

1.61 ± 0.2, respectively. For the species, we can see some deviations between foldabilities, how-

ever, in the critical region, the values show a strong liner relationship. 95% confidence intervals

are shown the black boxes to demonstrate where the majority of the values fall within the. For

the critical residue region of the graph, the intervals are along the lines of best fit.

The distribution of foldabilities for each species was also plotted in a density curve (Fig 1d).

The density curve shows that the distribution of foldability values is the same for each of the

species. This consistency of the critical residues across species not only shows that critical resi-

dues are highly conserved, but also demonstrates that only a single atomic structure is needed

to compute the critical residues for other proteins in the same family.

Protein structure modification

The importance of these critical residues for preserving protein structure was tested in silico.

Fig 2 details the computational procedure used for each of the proteins studied with this

Table 1. Comparison of the foldability and conservation index parameters.

Characteristic Foldability Conservation

Range 0–19 0–9 (integers only)

Method UMS MSA

Significance 17.1–19 Critical 9 Highly Conserved

Fundamental Theory Thermodynamics Statistics

https://doi.org/10.1371/journal.pone.0189064.t001
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Fig 1. Critical residue and foldability comparison across myoglobin for 6 species. A) The output colored structure from UMS

analysis of the 6 proteins. The red residues represent the critical residues, while the blue shows the residues that may be substituted

with other residues. B) Pairwise comparison of human myoglobin with the 5 other species. The black outlines represent a 95%

confidence interval for the data. The statistics of the graph are summarized in C). D) The density plot shows the distribution of

foldabilties in each of the structures.

https://doi.org/10.1371/journal.pone.0189064.g001
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analysis. Here we have created two different structures from a single template protein. In the

CS structure, the critical residues are kept in place while other residues in the structure are

mutated. In the ΔCS structure, the critical residues are mutated to alanine residues.

Using human myoglobin, p53, and domain S15 of complement factor H as benchmarks, we

tested the critical residue contribution to the protein’s structure. For the CS structures in Fig 3,

the critical residues were held in place, while ~50% of the total residues were altered. The non-

critical residues were mutated based on the allowed substitutions list (S4 Fig). After running

the CS proteins through ~100 ns of molecular dynamics, the structures were superimposed on

top of their WT structure. The RMSD of the simulation was calculated over the ~100 ns that

the simulation was run (S1–S6 Tables).

The procedure was repeated but rather than maintaining the critical residues, all of the criti-

cal residues were changed to alanine (ΔCS), which accounted for 15%-23% of the total resi-

dues. The same simulation was run for ~100ns. The ΔCS structure was superimposed on the

WT showing significant differences. From all three protein structures we can see that the

RMSD for the ΔCS protein was larger than that for the CS protein even though much fewer of

the residues were changed. The average difference between the RMSD values of the CS and

ΔCS over the 100ns was as follows; domain S15 of complement factor H: 1.64Å, p53: 1.49Å,

myoglobin: 1.37Å.

Following the MD simulation, both the CS proteins and the ΔCS proteins were run through

UMS to identify the critical residues. The critical residues for the WT, CS, and ΔCS are shown

in red on their corresponding structures (Fig 3). The superposition of these structures shows

that the critical residues for the WT and CS protein align, while the critical residues for the

Fig 2. Construction and testing of the critical structure (CS) and the changed critical structure (ΔCS)

proteins. A) The wild type protein structure is obtained from RCSB Protein Data Bank. B) The WT protein is

run through UMS to identify the critical residues (shown in red). C) For the CS protein, the critical residues are

kept in place and the remaining residues are mutated according to the rules of the allowed substitutions list

(S4 Fig). D) For the ΔCS protein, each of the critical residues is mutated to alanine. E) Both the CS and the

ΔCS structures were equilibrated in water for 100 ns as described in Methods section. F) The CS structure is

run through UMS to identify consistencies in critical residues. G) The ΔCS structure is run through UMS to

identify changes in critical residues.

https://doi.org/10.1371/journal.pone.0189064.g002
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WT and ΔCS structure do not, emphasizing the role of these critical residues in providing a

critical protein stability framework.

The differences between the CS and ΔCS proteins were tested using Ramachadran plots

and distance maps (Fig 4). From the Ramachadran plots, it is clear that the ΔCS structure has

lost much of its secondary structure and stability, while the CS structure remains stable. The

distance maps show the residue-residue distance between the template protein–myoglobin,

p53, and aromatase–and the modified structures (CS and ΔCS). We can see that the ΔCS struc-

ture distances are much larger than the CS. For myoglobin the distances ranged from -7.41Å
to 6.61Å for the CS and -12.66 Å to 10.57Å for the ΔCS. For p53–9.18Å to 9.50Å for the CS

and -18.24 Å to 10.38Å for the ΔCS. For domain S15 of complement factor H -6.05Å to 7.20Å
for the CS and -17.04 Å to 24.66Å for the ΔCS.

The structure and stability differences between the CS and ΔCS show that when the critical

residues are left in place, the protein can still show the proper fold even if a number of other

residues in the sequence are changed. However when only the critical residues were changed

there was increased stability and structure loss, despite significantly less residues being

mutated. This emphasizes the importance the critical residues and their contribution to the

protein’s fold.

Fig 3. Molecular dynamics (MD) were used to simulate the affect of mutating protiens to CS andΔCS. Critical residues for each of the

structure are red and were calculated independently. A) 52% of noncritical human myoglobin residues were changed. The CS structure is

superimposed on top of the WT human myoglobin structure. B) The critical residues of human myoglobin were changed to alanine residues,

accounting for 12% of the residues in the structure. The ΔCS protein is superimposed on top of the WT human myoglobin structure. C) The

RMSD for CS and ΔCS myoglobin is plotted for the MD simulation. D) The CS p53 with 53% of WT residues changed superimposed on the WT

protein. E) The ΔCS p53 with 15% of residues changed superimposed on the WT protein. F) The RMSD for CS and ΔCS p53 is plotted for the

MD simulation. G) The CS sushi domain 15 of complement factor H with 47% of WT residues changed superimposed on the WT protein. H)

The ΔCS sushi domain 15 of complement factor H with 23% of residues changed superimposed on the WT protein. I) The RMSD for CS and

ΔCS sushi domain 15 of complement factor H is plotted for the MD simulation.

https://doi.org/10.1371/journal.pone.0189064.g003
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Discussion

We used global computational mutagenesis to identify critical residues in protein structures.

Critical residues are amino acids in the protein sequence that may not be mutated to any other

amino acid without having a severe destabilizing effect of the protein structure. By iterating

through every possible missense mutation in a protein sequence, we are able to isolate residues

that may not be mutated to any other amino acid without leading to protein misfolding. We

have then proven, in silico, that critical residues form a network of interactions within the pro-

tein’s structure, the critical stability framework (Fig 5). We have also shown that critical resi-

dues are highly conserved between species, further demonstrating their importance to a

proteins structure.

In our studies we have examined both the critical residues’ contribution to the protein’s sta-

bility as well as the conservation of these critical residues over time. Our studies of the CS and

ΔCS RMSD, Ramachandran plots, and difference contact matrices have shown that the CS

remains stable supporting the stability contributions of the critical residues in creating a criti-

cal stability framework for the protein structure. Furthermore, our comparison of foldabilites

with conservation indices shows that there is a strong agreement between the parameters. The

more conserved a residue is the more likely it is to be a critical residue, while critical residues

are highly conserved over time between species. This consistency of the critical residues across

species also demonstrates that only a single atomic structure is needed to compute the critical

residues for other proteins in the same family.

Protein polypeptide folds in a native protein structure within ~1 to 30 ms[24]. Unfortu-

nately, simulations of protein folding for this range of time are computationally heavy and

Fig 4. Comparison of stability between the CS andΔCS proteins using Ramachandran plots and residue-residue

distances. A) The plots for both the CS and ΔCS myoglobin structures. B) The plots for both the CS and ΔCS p53 structures. C)

The plots for both the CS and ΔCS sushi domain 15 of complement factor H structures.

https://doi.org/10.1371/journal.pone.0189064.g004
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Fig 5. The critical residues frame for atomic protein structures. The A) p53, B) domain S15 of

complement factor H, C) alpha-tocopherol transfer proteins are shown. The red residues represent the critical

residues within the structures.

https://doi.org/10.1371/journal.pone.0189064.g005
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currently were performed just for a few proteins. In our work, the proteins were equilibrated

in water for ~100 ns. In this timespan only very earlier events of protein destabilization can be

modeled. However, in the 100ns the protein’s were modeled we were able to observe clear dif-

ferences between CS and delta ΔCS structures to draw conclusions regarding the critical resi-

dues’ roles in creating the critical stability framework.

Molecular dynamics is used to equilibrate the altered protein structure and show some pos-

sible stability changes within the first 100 ns of simulation. These short simulations are not

enough to see more significant differences, which we might expect at>30 millisecond simula-

tion for folding/unfolding processes. But a ‘theoretically perfect’ simulation technically is not

possible because of technical limitations and accuracy of current computational methods. In a

future, the role of the protein stability network in protein structure can be addressed experi-

mentally using multiple site mutagenesis. Recently, we used this method to a limited number

of amino acid residues to show a role of protein glycosylation in protein stability[25]. At pres-

ent, we are going to confirm the conclusions biochemically using multiple site directed muta-

genesis. These experiments also could explain any significance change in trajectories for a

particular molecule.

The attempt of identifying critical residues in protein structures has been implemented

before[26–28], but many of these experimental techniques require a prior knowledge of the

protein function and residue roles. The experimental methods involve mutating known resi-

dues involved in binding or located in active sites. The effect of these mutations is then moni-

tored using either activity or binding. Our approach differs in its use of global computational

mutagenesis based on the unfolding mutation screen. By using UMS, no prior knowledge of

the protein function is required. We are able to screen the entire protein structure and evaluate

any areas that may change protein stability as a result of a missense mutation.

Because the critical residue parameter has the potential to be more robust than the highly

conserved residues, the critical residues should remain the same for all proteins in the family.

In this study, myoglobin was used to demonstrate the robustness of the critical residue param-

eter amongst species. The stability network formed by the critical residues is essential to

understanding the folding of the protein. The scope of this tool is further expanded because

the critical residues have proven to be highly conserved among species. This means that even if

a structure is not available for a protein of interest, a familial protein may be used in its place

for the analysis.

In a traditional MSA, the similarity of amino acid changes is not considered, rather only the

identity of changes. This means that the conservation scores are calculated based on amino

acid frequencies at a certain position in the alignment. This is a problem because some changes

between similar residues maybe well tolerated. It is known that there is a strong conservation

of hydrophobicity in amino acid changes, excluding catalytic sites[29]. Another study consid-

ered frequencies in addition to physical chemistry and found that the method of scoring was

more robust especially for functional sites given that functional sites are more conserved due

to functional constraints[30]. Therefore it is important that amino acid similarities are given

the appropriate weight when looking at substitutions.

In this work we are using the unfolding mutation screen to evaluate the severity of a single

mutation to show an agreement of predicted values (~78%) with phenotypes from retinal dis-

ease and changes of protein stability for proteins from the ProTherm database [15]. The most

severe mutations cause a protein instability, which has the potential to lead to a complete loss

of protein function. These severe mutations make up the critical stability framework. The

selection of critical stability framework displays a stable structure that is not affected by evolu-

tionary changes in proteins from different species. Homologous proteins are good examples

with identical core of 25–30% or higher. Proteins from different species were selected to have a

Critical protein stability framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0189064 December 7, 2017 10 / 16

https://doi.org/10.1371/journal.pone.0189064


similar core structures by evolution. Derived from a single protein structure, the critical stabil-

ity framework could help for selection of residues maintaining protein function and stability.

This is important for better understanding of proteins from different species, de novo protein

design, and analysis of disease-causing mutations.

A knowledge of the critical stability framework can identify genetic mutations that will lead

to inherited disease based on stability and function, and more specifically identify what muta-

tions are loss of function mutations[14]. Because changing critical residue leads to loss of

protein stable structure, it is likely that these mutations lead to disease. Currently, proteins

showing the critical stability framework structures are included as a part into the database of

90 proteins from inherited eye disease (http://profold.nei.nih.gov).

In addition, critical core of protein could be used computationally as an alternative to over-

come the score constraint, by using a MSA that creates the alignments based on protein struc-

tural files (PDB), known as multiple-structure alignment [31]. This method has shown to be

more effective in computing more accurate multiple-sequence alignments, analyzing protein

conformational changes, and computation of amino acid structure-sequence conservation

with application to protein–protein docking prediction[24]. Using protein structure promises

to be a good alternative but is limited by the lack of available proteins structures for a family of

proteins.

It is known that structure is more conserved than sequence, which helps explain why criti-

cal residues are a more accurate method of describing protein stability and can be used to

predict future evolutionary changes. The discrepancies between critical residues and highly

conserved residues may highlight potential evolutionary changes structure is more conserved

than sequence[32]. Studies have shown that a new protein fold can take millions of years to

materialize in sequence space while new sequences develop in less than microseconds[33].

Structural cores are generally orders of magnitude more conserved than sequences[33]. By

using UMS to identify critical residues in protein structure, a single atomic structure is

required.

Possibly, that the method of determining template proteins is significantly less computa-

tionally expensive because rather than searching through sequence similarity for the entire

sequence, only the critical structure is searched.

By identifying critical residues in a protein’s structure, we open a world of possibilities for

modifying protein structure for improved binding. Small molecules have been used from can-

cer to genetic disease as a treatment[34, 35]. For enzymes this means a molecule that may res-

cue the enzymes activity[36]. By identifying the critical residues, we can better understand the

chemistry of the protein and locate areas of the structure that may be modified to improve the

binding chemistry of such small molecules. The idea of using mutagenesis to understand small

molecule has already been explored[37]. As a computational technique, using critical residues

can reduce the amount of time by identifying those residues that must remain in place for the

protein to fold.

The idea of a network formed by these critical residues could also give insight into the pro-

cess in which a protein folds. This network could be supported by the nucleation-condensation

model and may serve as a stable transition state that forms before the rest of the protein fold

into its native state. This topic has been extensively studied [38–40], but there are not compu-

tational tools that scan through the protein atomic structure to identify these networks. Previ-

ously, the importance of specific residues has been studied and determined to be an essential

part of fast folding to decrease the number of conformations that need to be tested[41]. We

plan to use this tool in the identification of protein transition states and nucleation sites in
vitro.
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The use of critical residues in the analysis of protein structures has a number of promising

applications. It has shown to be an effective alternative to MSA, where the values showed

agreement. Critical residues have also demonstrated that they create a critical stability frame-

work for the protein folds, allowing other residues to be changed, a conclusion, which leads to

a number of diverse applications.

Methods

Protein selection and alignment

The 9 eye disease-related proteins were selected based on previous studies using UMS[15].

Familial sequences for each protein were obtain from Uniprot[42] and downloaded in the

Fasta format. The protein alignments were computed for the sequences using PROMALS[22],

the conservation index is calculated as part of the online server. The scoring method used is

based on frequencies of an amino acid at a given location and range from 0 to 9, 9 being the

most conserved[43].

Conservation index vs. foldability

As previously stated, the conservation indices (CI) were computed using PROMALS[22]. The

foldabilities were calculated for the human proteins using UMS. Because the CIs range from 0

to 9 and are only integer values, they were plotted against the average foldability for the human

protein for each integer value of the CI. The Pearson’s r was computed for the data.

Next the distribution of the foldabilities that were highly conserved (CI = 9) was plotted on

a density plot generated using R. The distribution of the CIs for the critical residues (foldability

>17.1) was then plotted on a density plot as well.

Allowed substitutions

The allowed substitutions were calculated using a combination of experimental, computa-

tional, enzymatic, and physicochemical data. The experimental data was obtained from the

Protherm Database[44]. From the database, thermodynamic data was collect for missense

mutations using chemical denaturant methods[45]. The ΔΔG values collect from the database

were converted to unfolding propensities. The substitutions with unfolding propensities

between 0.3 and 0.6 were considered to be stable substitutions.

The computational data was based on 11 proteins from the UMS validation set[14] with a

total of 34,060 missense mutations. The mutations were used to construct and 20 x 20 muta-

tion matrix, where the middle diagonal cells of identical. Each cell contained the average

unfolding propensity from the 11 proteins. Safe mutations were said to have an unfolding pro-

pensity between 0.3 and 0.6.

The enzymatic data was taken from a study that focused on amino acid exchangeability

[46]. 9671 amino acid exchanges were studied; the exchangeability value was calculated from

the mutant activity. The method was then tested in its ability to predict the effect of missense

mutations, disease causing mutations, and model probability of fixed mutations in evolution.

Stable substitutions were those who had activity greater then 50%.

The physicochemical data was extracted from the Grantham Matrix[47]. The matrix gives

scores based on composition, polarity, and molecular volume. Values below 65 are considered

to be conserved substitutions. All four of these parameters were considered in creating the

list of allowed substitutions. A substitution was given a score of 1 for each test that was passed

as stable, giving a max score of 4 and min of 0. For the experimental section data some
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substitutions were missing, these were given a score of 0.5 because they can be neither credited

nor discredited.

The allowed substitutions had scores of 2.5 to 4.0 and are shown in Fig 1. After the allowed

substitutions were determined, a properties key was created to identify the similarities in the

amino acids being exchanged.

Computational mutagenesis

Three proteins were selected to undergo the mutagenesis method–myoglobin, p53, and the

15th sushi domain of complement factor H. For each of these template proteins, two new struc-

tures were created, the CS and the ΔCS structure. The CS structure uses the template protein

and keeps the critical residues in place, but changes the other residues in the structure accord-

ing the allowed substitution rules, resulting in a ~50% change in sequence. In the ΔCS struc-

ture, the critical residues of the template protein are changed to alanine, accounting for a

~15% change in sequence.

Both the CS and ΔCS structures were then equilibrated in water through 100 ns of molecu-

lar dynamics using a molecular-graphics, modeling, and simulation program Yasara[48],

which is available at (http://www.yasara.org). For the Yasara run, we were using a standard

macro ‘run_fast.mcr’ at the 2x2.5 fs simulation fast speed treating CS and Delta CS simulations

in same conditions. In the Yasara macro simulations were performed at a pressure 1 bar and

temperature 298K to achieve the experimentally determined water density of 0.997 g/ml. The

physiological pH was 7.4. Ions were placed at the locations of the lowest/highest electrostatic

potential until the cell is neutralized and the requested ion mass fraction 0.9% NaCl (153 mM)

is reached. The location of the counter ions does not matter in practice, since they randomly

diffuse away later (Yasara Structure manual). The AMBER14 forcefield was used with a peri-

odic cell boundary and the cubic simulation cell of 78.19 x 78.19 x 78.19 Å. Long range electro-

statics used a Particle Mesh Ewald algorithm with the 8.0 Å distance cutoff. The simulation

frames were saved every 250 ps. The size of the simulation cells and number of water molecules

per cell is shown in S7 Table. The resulting trajectories were analyzed using the Yasara macro

md_analyzemul.mcr. The output gave a table of energies and RMSD values.

Both the CS and ΔCS structures were run through UMS after the MD simulation to identify

critical residues for the modified structures to demonstrate that the critical stability network

would remain the same. The same procedure was followed for the three template proteins–

myoglobin, are p53, and the 15th sushi domain of complement factor H.

Supporting information

S1 Fig. Comparison of conservation index (CI) and foldability for 9 eye disease-related

proteins. The average foldability and standard deviation was calculated for each CI interval.

R2 values are displayed for each of the graphs.

(TIF)

S2 Fig. Density plots represent the distribution of foldabilities of highly conserved residues

(CI = 9) for the 9 eye disease-related proteins.

(TIF)

S3 Fig. Density plots represent the distribution of conserved indices for critical residues

(foldability>17.1) for the 9 eye disease related proteins.

(TIF)

S4 Fig. Allowed substitutions based on a combination of experimental, computational,

enzymatic, and physicochemical data of missense mutations. The similarities between the
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residues are shown in parenthesis and are explained with the properties keys. Those with no

substitutions listed did not show significant stability with any substitution.

(TIF)

S1 Table. The trajectories of the simulation for human myoglobin (CS structure).

(TAB)

S2 Table. The trajectories of the simulation for human myoglobin (deltaCS structure).

(TAB)

S3 Table. The trajectories of the simulation for p53 (CS structure).

(TAB)

S4 Table. The trajectories of the simulation for p53 (deltaCS structure).

(TAB)

S5 Table. The trajectories of the simulation for domain S15 of complement factor H (CS

structure).

(TAB)

S6 Table. The trajectories of the simulation for domain S15 of complement factor H (del-

taCS structure).

(TAB)

S7 Table. The dimensions of the simulations cells for each of the MD simulations. The cells

were cubes therefore the number indicates the length of each of the sides of the cell. The num-

ber of water molecules is shown as well.

(TIF)
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