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Abstract: Three novel fungal species, Talaromyces gwangjuensis, T. koreana, and T. teleomorpha were
found in Korea during an investigation of fungi in freshwater. The new species are described
here using morphological characters, a multi-gene phylogenetic analysis of the ITS, BenA, CaM,
RPB2 regions, and extrolite data. Talaromyces gwangjuensis is characterized by restricted growth on
CYA, YES, monoverticillate and biverticillate conidiophores, and globose smooth-walled conidia.
Talaromyces koreana is characterized by fast growth on MEA, biverticillate conidiophores, or sometimes
with additional branches and the production of acid on CREA. Talaromyces teleomorpha is characterized
by producing creamish-white or yellow ascomata on OA and MEA, restricted growth on CREA, and
no asexual morph observed in the culture. A phylogenetic analysis of the ITS, BenA, CaM, and RPB2
sequences showed that the three new taxa form distinct monophyletic clades. Detailed descriptions,
illustrations, and phylogenetic trees are provided.

Keywords: three new taxa; Trichocomaceae; morphology; phylogeny; taxonomy

1. Introduction

The genus Talaromyces was established by Benjamin (1955) [1] for a teleomorph of
Penicillium with Talaromyces vermiculatus (=T. flavus) as the type species. These species
are characterized by cleistothecial or gymnothecial ascomata, unitunicate eight-spored
asci, and unicellular ascospores with or without equatorial crests. The anamorphs have
predominantly biverticillate or rarely terverticillate conidiophores with acerose phialides
and narrow collulum [2,3]. In 2011, Samson et al. [2] transferred all accepted species of
Penicillium subgen. Biverticillium to Talaromyces on the basis of a two-gene phylogeny.
Subsequently, Yilmaz et al. [3] studied the taxonomy of Talaromyces in detail using the
polyphasic species concept. On the basis of multigene phylogeny, morphology, and physi-
ology, Yilmaz et al. [3] placed 88 accepted species in seven well-defined sections, namely,
Bacillispori, Helici, Islandici, Purpurei, Subinflati, Talaromyces, and Trachyspermi. However, the
lists are rapidly increasing with many new Talaromyces species recently described from all
over the world and added to sections Helici, Islandici, Purpurei, Subinflati, Talaromyces, and
Trachyspermi [4–27]. To date, 171 species have been reported in the genus Talaromyces [27],
of which only three species: Talaromyces angelicae, Talaromyces cnidii, and Talaromyces halophy-
torum were reported from Korea [28,29]. Recently, a new section Tenues was proposed [26].
Talaromyces contains species that play an important role in agriculture and biotechnology.
Talaromyces rugulosus (Basionym: Penicillum rugulosum) produces β-rutinosidase and phos-
phatase [30,31], T. pinophilus (Basionym: Penicillium pinophilum) produces endoglucanase
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and cellulase [32], and T. funiculosus (Basionym: Penicillium funiculosum) produces cellu-
lases [33]. Talaromyces purpureogenus can produce extracellular enzymes and red pigment
and also produces mycotoxin such as rubratoxin A and B and luteoskyrin [34]. Additionally,
red pigments produced in large amounts by T. atroroseus can be used as colorants in the food
industry [35]. Furthermore, the ability to produce various important compounds makes
them candidates for the biocontrol of soilborne fungal pathogens such as an antagonists of
T. flavus against Verticillium spp., Rhizoctonia solani, and Sclerotinia sclerotiorum [36–40]. In
addition, some species are medically important, such as T. wortmannii, which can produce
compound C that was found to be an effective antimicrobial against Propionibacterium
acnes and had anti-inflammatory properties and, thus, represents alternative treatments
for antibiotic or anti-inflammatory therapy for acne [41]. Talaromyces marneffei (Basionym:
Penicillium marneffei) causes a fatal mycosis in immunocompromised individuals [42,43].

Section Helici was proposed by Yilmaz et al. [3] with seven Talaromyces species divided
into two clades: a main clade containing T. helicus, T. boninensis, and T. varians and a
second clade containing T. cinnabarinus, T. aerugineus, T. bohemicus, and T. ryukyuensis. The
Talaromyces species included in this section are characterized by producing biverticillate
conidiophores occasionally consisting of solitary phialides with stipes generally pigmented,
yellowish-brown, or dark green reversed on CYA; grown at 37 ◦C, and the absence of acid
production on CREA [3]. Section Helici currently includes 13 species [27].

Section Purpurei was proposed by Stolk and Samson [44] to accommodate species
that produce synnemata after two to three weeks of incubation, with the exception of
T. rademirici, T. purpureus, and T. ptychoconidium. The species in this section generally
do not grow or grow poorly on creatine sucrose agar (CREA), and grow restrictedly on
Czapek yeast extract agar (CYA) and yeast extract sucrose agar (YES) and slightly faster
on malt extract agar (MEA) [3]. Ten species were accepted in the section Purpurei: T. ce-
cidicola, T. chloroloma, T. coalescens, T. dendriticus, T. pseudostromaticus, T. pittii, T. purpureus,
T. ptychoconidium, T. rademirici, and T. ramulosus [3], but it currently contains 12 species [27].

Freshwater fungi are an ubiquitous and diverse group of organisms and play an
important role in ecological systems [45]. Hawksworth [46] estimated that there are
approximately 1.5 million fungal species on Earth. However, an updated estimate of the
number of fungal species is between 2.2 and 3.8 million [47]. Of the ca. 150,000 known
sepecies, only around 3000 have been reported from aquatic habitats [48], with more than
600 species of ascomycetes reported in freshwater [49]. Thus, a large number of species are
still waiting to be discovered and described in freshwater habitats.

Up to now, only a few freshwater fungi, especially genus Talaromyces, have been
reported in Korea. The purpose of this study was to expand the present knowledge of
these fungal taxa in Korea. Here, we describe and illustrate three new Talaromyces species
from freshwater habitats in Korea.

2. Materials and Methods
2.1. Sampling and Isolation

In January and May 2017, freshwater samples were collected from the Wonhyo Valley
located at Mudeung Mt., Gwangju, and Jukrim Reservoir located in Yeosu, Korea. These
samples were transported to the laboratory in sterile 50-mL conical tubes and stored at 4 ◦C
pending examination. Before culture preparation, all samples were diluted with sterile
distilled water to reduce the density and improve strain recovery. Briefly, each sample was
shaken for 15 min at room temperature, and a 100-µL aliquot of each sample was mixed
with 9 mL of sterile distilled water. Then, serial dilutions of the mixture (from 10−1 to
10−4) were made. A 100-µL aliquot of each dilution was spread on potato dextrose agar
(PDA: 39 g of potato dextrose agar in 1 L of deionized water; Becton, Dickinson, and Co.,
Sparks, MD, USA) supplemented with the antibiotic streptomycin (final concentration,
50 ppm; Sigma-Aldrich, St. Louis, MO, USA). The petri plates were incubated at 25 ◦C
for 5–10 days. Pure isolates were obtained by selecting individual colonies of varied
morphologies, transferring them to PDA plates, and subculturing until pure cultures
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were obtained. Ex-type living cultures were deposited in the Environmental Microbiology
Laboratory Fungarium, Chonnam National University (CNUFC), Gwangju, Korea. Dried
cultures were deposited in the Herbarium Chonnam National University, Gwangju, Korea.

2.2. Morphology

The strains were three-point inoculated onto Czapek yeast autolysate agar (CYA),
malt extract agar (MEA), yeast extract sucrose agar (YES), oatmeal agar (OA), dichloran
18% glycerol (DG18) agar, CYA supplemented with 5% NaCl (CYAS), and creatine sucrose
agar (CREA). All petri dishes were incubated at 20, 25, 30, 35, 37, and 40 ◦C for 7 days.
Medium preparation and inoculation were performed according to the methods reported
by Yilmaz et al. [3]. Colony characters were recorded after 7 days. Lactic acid (60%) was
used as the mount fluid, and 96% ethanol was used to remove excess conidia. The Olympus
BX51 microscope with differential interference contrast optics (Olympus, Tokyo, Japan)
was used to obtain digital images. For scanning electron microscopy (SEM), the samples
were performed as described previously by Nguyen et al. [50].

2.3. DNA Extraction, PCR, and Sequencing

The fungal isolates were cultured on PDA overlaid with cellophane at 25 ◦C for
5–7 days. Genomic DNA was extracted using the SolgTM Genomic DNA Preparation
Kit (Solgent Co. Ltd., Daejeon, Korea). The ITS region was amplified using the primer
pairs ITS 1 and ITS 4 [51]. The beta-tubulin (BenA) was amplified using the primer pairs
T10 and Bt2b [52]. The calmodulin (CaM) gene was amplified using the primer pairs
CMD5/CMD6 and CF1/CF4 [53,54]. To amplify the RPB2 gene region, the primer pairs
RPB2-5F and RPB2-7cR were used [55]. PCR amplification was performed according to
the conditions described by Yilmaz et al. [3] and Houbraken and Samson [56]. The PCR
products were purified with the Accuprep PCR Purification Kit (Bioneer Corp., Daejeon,
Korea). Sequencing was performed using the same PCR primers and run on the ABI PRISM
3730XL Genetic Analyzer (Applied Biosystems, Foster City, CA, USA).

2.4. Molecular Analysis

Each generated sequence was checked for the presence of ambiguous bases and
assembled using the Lasergene SeqMan program from DNASTAR, Inc. (Madison, WI,
USA). Edited sequences were blasted against the NCBI GenBank nucleotide database
(https://blast.ncbi.nlm.nih.gov/Blast.cgi; 2 January 2021) to search for the closest rela-
tives. The sequences of all the accepted Talaromyces species were retrieved from GenBank.
The sequences were aligned using MAFFT (https://mafft.cbrc.jp/alignment/server; 9
March 2021) [57], and the resulting alignment was trimmed using trimAl [58] and subse-
quently combined with MEGA 7 [59]. The data were converted from a FASTA format to
nexus and phylip formats using the online tool Alignment Transformation Environment
(https://sing.ei.uvigo.es/ALTER/; 9 March 2021) [60]. Phylogenetic reconstructions by
maximum likelihood (ML) were carried out using RAxML-HPC2 on XSEDE on the on-
line CIPRES Portal (https://www.phylo.org/portal2; 9 March 2021) with 1000 bootstrap
replicates and the GTRGAMMA model of nucleotide substitution. A Bayesian inference
analysis was performed with MrBayes 3.2.2 [61] using a Markov Chain Monte Carlo
(MCMC) algorithm. The sample frequency was set to 100, and the first 25% of trees were
removed as burn-in. The trees were visualized using FigTree v. 1.3.1 [62]. Support values
were provided at the branches (ML bootstrap support (BS) and BI posterior probability
(PP)). Talaromyces tenuis CBS 141840 was chosen as the outgroup in the sections Helici and
Purpurei phylogenies. Trichocoma paradoxa CBS 788.83 was the outgroup for the combined
phylogeny of the species from Talaromyces. The newly obtained sequences were deposited
in the GenBank database under the accession numbers provided in Table 1.

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://mafft.cbrc.jp/alignment/server
https://sing.ei.uvigo.es/ALTER/
https://www.phylo.org/portal2
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Table 1. Accession numbers for the fungal strains used for the phylogenetic analysis.

Taxon Name Strain No.
GenBank Accession No.

References
ITS BenA CaM RPB2

T. aerugineus CBS 350.66 T AY753346 KJ865736 KJ885285 JN121502 [3]
T. apiculatus CBS 312.59 T JN899375 KF741916 KF741950 KM023287 [3]

T. atricola CBS 255.31 T KF984859 KF984566 KF984719 KF984948 [3]
T. atroroseus CBS 133442 T KF114747 KF114789 KJ775418 KM023288 [3]

T. austrocalifornicus CBS 644.95 T JN899357 KJ865732 KJ885261 MN969147 [3,27]
T. bacillisporus CBS 296.48 T KM066182 AY753368 KJ885262 JF417425 [3]
T. bohemicus CBS 545.86 T JN899400 KJ865719 KJ885286 JN121532 [3]
T. boninensis CBS 650.95 T JN899356 KJ865721 KJ885263 KM023276 [3]
T. borbonicus CBS 141340 T MG827091 MG855687 MG855688 MG855689 [20]

T. brunneosporus FMR 16566 T LT962487 LT962483 LT962488 LT962485 [24]
T. cecidicola CBS 101419 T AY787844 FJ753295 KJ885287 KM023309 [3]

T. cinnabarinus CBS 267.72 T JN899376 AY753377 KJ885256 JN121477 [3]
T. cinnabarinus CBS 357.72 – KM066134 – – [3]

T. chlamydosporus CBS 140635 T KU866648 KU866836 KU866732 KU866992 [5]
T. chlorolomus DAOM 241016 T FJ160273 GU385736 KJ885265 KM023304 [3,27]
T. chlorolomus DTO 180-F4 – FJ753294 – – [3]
T. chlorolomus DTO 182-A5 – JX091597 – – [3]

T. cnidii KACC 46617 T KF183639 KF183641 KJ885266 KM023299 [3,28]
T. cinnabarinus CBS 267.72 T JN899376 AY753377 KJ885256 JN121477 [3]
T. cinnabarinus CBS 357.72 – KM066134 – – [3]

T. coalescens CBS 103.83 T JN899366 JX091390 KJ885267 KM023277 [3]
T. columbinus NRRL 58811 T KJ865739 KF196843 KJ885288 KM023270 [3]
T. dendriticus CBS 660.80 T JN899339 JX091391 KF741965 KM023286 [3]
T. dendriticus DAOM 226674 – FJ753293 – – [3]
T. dendriticus DAOM 233861 – FJ753294 – – [3]

T. derxii CBS 412.89 T JN899327 JX494306 KF741959 KM023282 [3,27]
T. diversiformis CBS 141931 T KX961215 KX961216 KX961259 KX961274 [11]

T. diversus CBS 320.48 T KJ865740 KJ865723 KJ885268 KM023285 [3]
T. duclauxii CBS 322.48 T JN899342 JX091384 KF741955 JN121491 [3]
T. emodensis CBS 100536 T JN899337 KJ865724 KJ885269 JF417445 [27]

T. erythromellis CBS 644.80 T JN899383 HQ156945 KJ885270 KM023290 [3]
T. euchlorocarpius DTO 176-I3 T AB176617 KJ865733 KJ885271 KM023303 [3]

T. flavus CBS 310.38 T JN899360 JX494302 KF741949 JF417426 [3]
T. fusiformis CBS 140637 T KU866656 KU866843 KU866740 KU867000 [5]
T. georgiensis DI16-145 T LT558967 LT559084 – LT795606 [12]

T. gwangjuensis CNUFC WT19-1
T MK766233 MZ318448 – MK912174 This study

T. gwangjuensis CNUFC WT19-2 MK766234 MZ318449 – MK912175 This study
T. helicus CBS 335.48 T JN899359 KJ865725 KJ885289 KM023273 [3]
T. helicus CBS 134.67 – KM066133 – – [3]

T. iowaense NRRL 66822 T MH281565 MH282578 MH282579 MH282577 [17]
T. islandicus CBS 338.48 T KF984885 KF984655 KF984780 KF985018 [3]

T. korena CNUFC YJW2-13
T MZ315100 MZ318450 MZ332529 MZ332533 This study

T. korena CNUFC YJW2-14 MZ315101 MZ318451 MZ332530 MZ332534 This study
T. mimosinus CBS 659.80 T JN899338 KJ865726 KJ885272 MN969149 [3,27]
T. minioluteus CBS 642.68 T JN899346 MN969409 KJ885273 JF417443 [3]

T. palmae CBS 442.88 T JN899396 HQ156947 KJ885291 KM023300 [3]
T. piceus CBS 361.48 T KF984792 KF984668 KF984680 KF984899 [3]

T. pigmentosus CBS 142805 T MF278330 LT855562 LT855565 LT855568 [15]
T. pittii CBS 139.84 T JN899325 KJ865728 KJ885275 KM023297 [3]

T. proteolyticus CBS 303.67 T JN899387 KJ865729 KJ885276 KM023301 [3]
T. pseudostromaticus CBS 470.70 T JN899371 HQ156950 KJ885277 KM023298 [3]

T. ptychoconidius DAOM 241017 T FJ160266 GU385733 JX140701 KM023278 [3,27]
T. ptychoconidius DTO 180-E9 – GU385734 – – [3]
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Table 1. Cont.

Taxon Name Strain No.
GenBank Accession No.

References
ITS BenA CaM RPB2

T. ptychoconidius DTO 180-F1 – GU385735 – – [3]
T. purpureogenus CBS 286.36 T JN899372 JX315639 KF741947 JX315709 [3,27]

T. purpureus CBS 475.71 T JN899328 GU385739 KJ885292 JN121522 [3]
T. rademirici CBS 140.84 T JN899386 KJ865734 KM023302 [3]

T. radicus CBS 100489 T KF984878 KF984599 KF984773 KF985013 [3]
T. ramulosus DAOM 241660 T EU795706 FJ753290 JX140711 KM023281 [3]
T. ramulosus DTO 182-A6 – JX091631 – – [3]
T. ramulosus DTO 181-E3 – JX091626 – – [3]
T. ramulosus DTO 182-A3 – JX091630 – – [3]

T. reverso-olivaceus CBS 140672 T KU866646 KU866834 KU866730 KU866990 [5]
T. rotundus CBS 369.48 T JN899353 KJ865730 KJ885278 KM023275 [3]
T. rugulosus CBS 371.48 T KF984834 KF984575 KF984702 KF984925 [3]

T. ryukyuensis NHL 2917 T AB176628 – – – [3]
T. stipitatus CBS 375.48 T JN899348 KM111288 KF741957 KM023280 [3]

T. subinflatus CBS 652.95 T JN899397 MK450890 KJ885280 KM023308 [3,27]
T. tabacinus NRRL 66727 T MG182613 MG182627 MG182606 MG182620 [17]

T. tardifaciens CBS 250.94 T JN899361 KF984560 KF984682 KF984908 [27]
T. teleomorpha CNUFC YJW2-5 T MZ315102 MZ318452 MZ332531 MZ332535 This study
T. teleomorpha CNUFC YJW2-6 MZ315103 MZ318453 MZ332532 MZ332536 This study

T. tenuis CBS 141840 T MN864275 MN863344 MN863321 MN863333 [26]
T. trachyspermus CBS 373.48 T JN899354 KF114803 KJ885281 JF417432 [3]

T. tratensis CBS 133146 T KF984891 KF984559 KF984690 KF984911 [3]
T. ucrainicus CBS 162.67 T JN899394 KF114771 KJ885282 KM023289 [3]

T. unicus CBS 100535 T JN899336 KJ865735 KJ885283 MN969150 [27]
T. varians CBS 386.48 T JN899368 KJ865731 KJ885284 KM023274 [3]

T. verruculosus NRRL 1050 T KF741994 KF741928 KF741944 KM023306 [27]
T. viridulus CBS 252.87 T JN899314 JX091385 KF741943 JF417422 [3]

Trichocoma paradoxa CBS 788.83 T JN899398 KF984556 KF984670 JN121550 [3]

CBS: Culture collection of the Westerdijk Fungal Biodiversity Institute, The Netherlands. CNUFC: Chonnam National University Fun-
gal Collection, Gwangju, South Korea; DAOM: Agriculture Canada and Agri-Food Canada Culture Collection, Ottawa, ON, Canada;
DTO: Internal Culture Collection of the CBS-Fungal Biodiversity Centre; FMR: Facultat de Medicina i Ciencies de la Salut, Reus, Spain;
KACC: Korean Agricultural Culture Collection, Republic of Korea; NRRL: Agricultural Research Service Culture Collection, Peoria, IL,
USA; T: ex-type strain.

2.5. Extrolite Analysis

Extrolites were extracted from Talaromyces strains after growing on CYA, YES, and
MEA for 7–10 days at 25 ◦C. The extracts were prepared and analyzed as previously
described by Frisvad and Thrane [63], Nielsen et al. [64], and Houbraken et al. [65].

3. Results
3.1. Phylogenetic Analysis

Phylogenetic relationships within Talaromyces were studied using a concatenated
dataset of four loci (ITS, BenA, CaM, and RPB2) (Figure 1). The multigene analysis contained
67 taxa, including Trichocoma paradoxa CBS 788.83 as the outgroup taxon. The concatenated
alignment consisted of 2407 characters (including alignment gaps): 425, 443, 687, and
852 characters used in the ITS, BenA, CaM, and RPB2, respectively. Eight main lineages are
present within Talaromyces, which agrees with the sectional classification by Yilmaz et al. [3]
and Sun et al. [26]. In the phylogenetic analysis, a small clade containing T. brunneosporus
highlighted by asterisk could not be assigned to any known sections (Figure 1). Talaromyces
gwangjuensis, T. koreana, and T. teleomorpha belong to sections Purpurei and Helici, according
to our multigene analysis (Figure 1). In section Purpurei, T. gwangjuensis clustered close
to but separated from T. rademirici in the single (BenA, RPB2, and ITS) and combined
phylogenies (Figure 2 and Figures S1–S3). Talaromyces teleomorpha is close to T. helicus in
BenA, ITS, and combined phylogenies (Figure 3, Figures S4 and S5) but placed among
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T. helicus, T. koreana, T. reverso-olivaceus, and T. boninensis in the CaM and RPB2 phylogenies
(Figures S6 and S7). Talaromyces koreana was found to be related to T. reverso-olivaceus and
T. boninensis in BenA, CaM, RPB2, and the combined phylogenies (Figure 3, Figures S4,
S6, and S7). In the ITS phylogenetic analysis, T. koreana was close to only T. boninensis
(Figure S5).

Figure 1. Phylogram generated from the Maximum Likelihood (RAxML) analysis based on the combined ITS, BenA, CaM,
and RPB2 sequences data of Talaromyces. The red asterisk represents a separate lineage which is not assigned yet. The
branches with values = 100% ML BS and 1 PP are highlighted by thickened branches. The branches with values≥70% ML BS
and ≥0.95 PP indicated above or below branches. Trichocoma paradoxa CBS 788.83 was the group was used as the outgroup.
The newly generated sequences are indicated in blue. T = ex-type.
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Figure 2. Phylogram generated from the Maximum Likelihood (RAxML) analysis based on the combined ITS, BenA, CaM,
and RPB2 sequences data for species classified in Talaromyces section Purpurei. The branches with values = 100% ML BS and
1 PP are highlighted by thickened branches. The branches with values ≥70% ML BS and ≥0.95 PP indicated above or below
branches. Talaromyces tenuis CBS 141840 was used as the outgroup. The newly generated sequences are indicated in blue.
T = ex-type.

Figure 3. Phylogram generated from the Maximum Likelihood (RAxML) analysis based on combined the ITS, BenA, CaM,
and RPB2 sequence data for the species classified in Talaromyces section Helici. The branches with values = 100% ML BS and
1 PP are highlighted by thickened branches. The branches with values ≥70% ML BS and ≥0.95 PP indicated above or below
branches. Talaromyces tenuis CBS 141840 was used as the outgroup. The newly generated sequences are indicated in blue.
T = ex-type.
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3.2. Taxonomy

Talaromyces gwangjuensis Hyang B. Lee & T.T.T. Nguyen sp. nov.
Index Fungorum: IF554801 (Figure 4 and Table 2).

Figure 4. Morphology of Talaromyces gwangjuensis CNUFC WT19-1. (A,E) Colonies on Czapeck yeast autolysate agar (CYA).
(B,F) Malt extract agar (MEA). (C) Yeast extract sucrose agar (YES). (D) Oatmeal agar (OA). (G) Dichloran 18% glycerol agar
(DG 18). (H) Creatine sucrose agar (CREA). ((A–D,G,H) Obverse view and (E,F) reverse view). (I–L,N–Q) Conidiophores.
(M,R) Conidia. ((I–M) LM and (N–R) SEM). Scale bars: (I–M) = 20 µm, (N–Q) = 10 µm, and (R) = 5 µm.

Table 2. Morphological characteristics of Talaromyces gwangjuensis CNUFC WT19-1 compared with those of the reference
strain Talaromyces rademirici.

Characteristics CNUFC WT19-1 Isolated in This Study Talaromyces rademirici a

Size after 7 days at 25 ◦C (diameter)

<1 mm on CYA 5–6 mm on CYA
3–5 mm on YES 5–6 mm on YES

13–15 mm on MEA 14–16 mm on MEA
6–7 mm on OA 9–10 mm on OA

No growth on CREA No growth on CREA
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Table 2. Cont.

Characteristics CNUFC WT19-1 Isolated in This Study Talaromyces rademirici a

Size after 7 days at 37 ◦C on CYA
(diameter) No growth 3 mm

Conidiophores Biverticillate and monoverticillate,
39–174 × 1.5–3 µm

Biverticillate and monoverticillate; stipes
smooth-walled, 25–95 × 1.5–2.5 µm;

branches 10–15 µm

Metulae Two to six, 6–10 × 1.5–2.5 µm Two to five, divergent, 7–11 × 2–2.5 µm

Phialides Acerose, three to eight per metula,
5.5–10 × 1.5–2 µm

Acerose, two to six per metula,
7.5–11.5 × 1.5–3 µm

Conidia Globose, 1.5–2.0 µm, smooth-walled Ellipsoidal, 2.5–4 × 1.5–2.5 µm, smooth

Ascomata Absent Absent
a From the description by Yilmaz et al. [3].

Etymology: Referring to the name of the site where freshwater sample was obtained.
Type specimen: REPUBLIC OF KOREA, Jeonnam Province, Wonhyo Valley located

at Mudeung Mt., Gwangju (35◦9′1.18” N, 126◦59′24.62” E) from a freshwater sample, 3
January 2017, H.B. Lee (holotype CNUFC HT19191; ex-type culture CNUFC WT19-1).

Colony diam, 7 d (mm): CYA 25 ◦C < 1 mm, CYA 20 ◦C no growth; CYA 30 ◦C no
growth; CYA 37 ◦C no growth; MEA 25 ◦C 13–15; YES 25 ◦C 3–5; OA 25 ◦C 6–7; CREA
25 ◦C no growth; CYAS 25 ◦C no growth; DG18 25 ◦C 2–4.

Colony characters: CYA 25 ◦C, 7 d: Colonies low, plane; margins low, entire (<1 mm);
mycelia white; sporulation absent; soluble pigments absent; exudates absent; reverse white.
MEA 25 ◦C, 7 d: Colonies strong raised at the center; sporulating central area is dull green,
yellow towards the edge; exudate absent; soluble pigments absent; reverse brown-orange
center, light yellow near margin. YES 25 ◦C, 7 d: Sporulation absent, mycelium white;
exudate absent; soluble pigments absent; reverse white. OA 25 ◦C, 7 d: Colony surface
velutinous; dull green when sporulating; reverse white; soluble pigments absent; exudates
absent. CREA 25 ◦C, 7 d: No growth. DG18 25 ◦C, 7 d: No sporulation, mycelium white.

Micromorphology: Sclerotia absent. Conidiophores 39–174 × 1.5–3 µm, biverticillate
and monoverticillate. Metulae 2–6, 6–10 × 1.5–2.5 µm. Phialides acerose-shaped, 3–8 per
metula, 5.5–10 × 1.5–2 µm. Conidia globose, 1.5–2.0 µm, smooth-walled, conidial chains.
Ascomata not observed.

Extrolites: T. gwangjuensis (the ex-type strain) produced austin, austinol (and other
austins), mitorubrin, mitorubrinol, mitorubrinol acetate, mitorubrinic acid, and a purpactin.

Notes: Talaromyces gwangjuensis nested together with T. rademirici. However, T. gwangjuen-
sis differs morphologically from T. rademirici, as it forms smaller colonies on Czapek yeast
autolysate agar and yeast extract sucrose agar at 25 ◦C, and the number of phialides per metula
and metulae are larger than those of T. rademirici. Furthermore, T. gwangjuensis produces
globose conidia in contrast with the ellipsoid conidia of T. rademirici. Talaromyces rademirici
grew at 37 ◦C, whereas T. gwangjuensis did not.

Additional material examined: REPUBLIC OF KOREA, Jeonnam Province, Wonhyo
Valley located at Mudeung Mt., Gwangju (35◦9′1.18” N, 126◦59′24.62” E) from a freshwater
sample, 4 January 2017, H.B. Lee (culture CNUFC WT19-2).

Talaromyces koreana Hyang B. Lee sp. nov.
Index Fungorum: IF554802 (Figure 5 and Table 3).
Etymology: Referring to the country from which the species was first isolated (Korea).
Type specimen: REPUBLIC OF KOREA, Jeonnam Province, Jukrim reservoir located

in Yeosu (34◦45′37.72” N, 127◦37′43.46” E) from a freshwater sample, 26 May 2017, H.B. Lee
(CNUFC HT19213 holotype; ex-type culture CNUFC YJW2-13).

Colony diam, 7 d (mm): CYA 25 ◦C 25–28, CYA 20 ◦C 15–16, CYA 30 ◦C 28–31; CYA
37 ◦C 17–19; MEA 25 ◦C 41–45; YES 25 ◦C 21–24; OA 25 ◦C 36–39; CREA 25 ◦C 15–18; CYAS
25 ◦C no growth; DG18 25 ◦C no growth.
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Figure 5. Morphology of Talaromyces koreana CNUFC YJW2-13. (A,E) Colonies on Czapek yeast autolysate agar (CYA).
(B,F) Malt extract agar (MEA). (C) Yeast extract sucrose agar (YES). (D) Oatmeal agar (OA). (G) Dichloran 18% glycerol agar
(DG18). (H) Creatine sucrose agar (CREA). ((A–D,G,H) Obverse view and (E,F) reverse view). (I–L,N–Q) Conidiophores.
(M,R) Conidia. ((I–M) LM and (N–R) SEM). Scale bars: (I) = 100 µm, (J–L) = 20 µm, (M,Q) = 10 µm, (N–P) = 25 µm, and
(R) = 2 µm.

Table 3. Morphological characteristics of Talaromyces koreana CNUFC YJW2-13 compared with those of the reference strains
Talaromyces boninensis and Talaromyces reverso-olivaceus.

Characteristics CNUFC YJW2-13 Isolated in
This Study Talaromyces boninensis a Talaromyces

reverso-olivaceus b

Size after 7 days at 25 ◦C
(diameter)

25–28 mm on CYA 28 mm on CYA 19–23 mm on CYA

21–24 mm on YES NI 25–26 mm on YES

41–45 mm on MEA 30 mm on MEA 34–37 mm on MEA

36–39 mm on OA 32 mm on OA 33–36 mm on OA

15–18 mm CREA NI No growth on CREA



J. Fungi 2021, 7, 722 11 of 18

Table 3. Cont.

Characteristics CNUFC YJW2-13 Isolated in
This Study Talaromyces boninensis a Talaromyces

reverso-olivaceus b

Size after 7 days at 37 ◦C 17–19 mm on CYA NI 18–20 mm on CYA

Conidiophores

Biverticillate, sometimes with
additional branches, stipes
smooth, 15–194 × 2–4 µm,
branches 6–17 × 2–3 µm

Biverticillate; stipes finely
rough, 25–260 × 2.5–4 µm

Biverticillate, sometimes with
extra subterminal branches;

stipes smooth, 50–100 × 2.5–4
µm, branches 12–15 × 2–3 µm

Metulae Two to seven,
7.5–16 × 2–3 µm

Four to ten,
10–16(–20) × 2.5–3(–3.5) µm Three to five, 10–13 × 3–4 µm

Phialides Acerose, two to seven per
metula, 5.5–15 × 2–3 µm

Acerose, two to six per metula,
10–15 × 2–3.5 µm

Acerose, three to five per
metula,

10–12(–14) × 2.5–3 µm

Conidia Ellipsoidal to fusiform, finely
roughed, 2–3.5 × 1.5–2.5 µm

Ellipsoidal to fusiform,
sometimes globose, smooth,

2–4 × 1.5–2.5 µm

Ellipsoidal to fusiform, finely
roughed, 2.5–4.5 × 2.5–3 µm

Ascomata Absent
Grayish green, globose to

subglobose,
280–550 × 240–480 µm

Absent

a From the description by Yilmaz et al. [3]. b From the description by Chen et al. [5]. NI: No information.

Colony characters: CYA 25 ◦C, 7 d: Colonies sulcate, raised at the center; margins
entire, mycelia slightly murky white; texture floccose; reverse greyish green at the center
fading into ivory. MEA 25 ◦C, 7 d: Colonies low, plane; mycelia white; reverse beige. YES
25 ◦C, 7 d: Colonies irregularly deep sulcate, raised at the center; margins low, plane,
entire (2.5–3 mm); mycelia white; texture floccose; reverse deep olive green. OA 25 ◦C,
7 d: Colonies low, plane; margins plane, entire (2.5–3 mm); mycelia white; texture velvety;
reverse ivory to white. CREA 25 ◦C, 7 d: Acid production.

Micromorphology: Sclerotia absent. Conidiophores biverticillate, sometimes with
additional branches; stipes smooth, 15–194 × 2–4 µm, branches 6–17 × 2–3 µm. Metulae
acerose, two to seven, 7.5–16 × 2–3 µm. Phialides acerose, two to seven per metula,
5.5–15 × 2–3 µm. Conidia ellipsoidal to fusiform, finely roughed, 2–3.5 × 1.5–2.5 µm.
Ascomata not observed.

Extrolites: Cycloleucomelone, gregatin A, and purpactin A were detected in the
ex-type strain of T. koreana.

Notes: Talaromyces koreana belongs to section Helici and is phylogenetically related
to T. boninensis and T. reverso-olivaceus. Talaromyces koreana differs from T. boninensis and
T. reverso-olivaceus by having a higher number of phialides per metula. Talaromyces koreana
produces smaller conidia than those of T. boninensis and T. reverso-olivaceus. The maximum
colony diameter reported for the species of T. boninensis and T. reverso-olivaceus are 30 and
34–37 mm when cultivated on MEA at 25 ◦C in 7 days, while T. koreana is 41–45 mm.

Material examined: REPUBLIC OF KOREA, Jeonnam Province, Jukrim reservoir
located in Yeosu (34◦45′37.72” N, 127◦37′43.46” E) from a freshwater sample, 27 May 2017,
H.B. Lee (culture CNUFC YJW2-14).

Talaromyces teleomorpha Hyang B. Lee, Frisvad, P.M. Kirk, H.J. Lim & T.T.T. Nguyen
sp. nov.

Index Fungorum: IF554803 (Figure 6 and Table 4).
Etymology: Referring to the teleomorphic stage.
Type specimen: REPUBLIC OF KOREA, Jeonnam Province, Jukrim reservoir located

in Yeosu (34◦45′37.72” N, 127◦37′43.46” E) from a freshwater sample, 26 May 2017, H.B.
Lee (CNUFC HT19251 holotype; ex-type culture: CNUFC YJW2-5).

Colony diam, 7 d (mm): CYA 25 ◦C 26–29; CYA 20 ◦C 15–16; CYA 30 ◦C 34–36; CYA
37 ◦C 15–20; MEA 25 ◦C 45–48; YES 25 ◦C 29–33; OA 25 ◦C 32–34; CREA 25 ◦C 1–3; CYAS
25 ◦C no growth; DG18 25 ◦C no growth.
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Figure 6. Morphology of Talaromyces teleomorpha CNUFC YJW2-5. (A,E) Colonies on Czapek yeast autolysate agar
(CYA). (B,F) Malt extract agar (MEA). (C) Yeast extract sucrose agar (YES). (D) Oatmeal agar (OA). (G) Dichloran 18%
glycerol agar (DG18). (H) Creatine sucrose agar (CREA). ((A–D,G,H) Obverse view and (E,F) reverse view). (I,J) Ascomata.
(K–P) Asci and ascospores. ((I,J) Stereomicroscope, (K–M) LM and (N–P) SEM). Scale bars: (I,J) = 1 mm, (K–M) = 10 µm, and
(N–P) = 5 µm.

Table 4. Morphological characteristics of Talaromyces teleomorpha CNUFC YJW2-5 compared with those of the reference
strain Talaromyces helicus.

Characteristics CNUFC YJW2-5 Isolated in This Study Talaromyces helicus a

Size after 7 days at 25 ◦C (diameter)

26–29 mm on CYA 13–23 mm on CYA

29–33 mm on YES 14–22 mm on YES

45–48 mm on MEA 25–33 mm on MEA

32–34 mm on OA 23–35 mm on OA

1–3 on CREA No growth on CREA

Size after 7 days at 37 ◦C (diameter) 15–20 mm on CYA 10–18 mm on CYA
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Table 4. Cont.

Characteristics CNUFC YJW2-5 Isolated in This Study Talaromyces helicus a

Conidiophores Not observed Mono- to biverticillate, stipes smooth
walled, 30–60(–80) × 2–2.5 µm

Metulae Not observed Two to five, 12–15 × 2–2.5 µm

Phialides Not observed Acerose, two to four per metula,
8.5–12(–16) × 2.5–3 µm

Conidia Not observed Globose to subglobose, smooth,
2.5–3.5(–4.5) × 2.2–3.5 µm

Ascomata Creamish-white to yellow to reddish,
globose to subglobose, 200–800 µm

Yellow, pastel yellow and creamish-white,
globose to subglobose, 100–300 µm

Asci Ellipsoidal, globose to subglobose,
(5.5–)6.5–9 × (4.5–)6–7 µm 6–9 × 4.5–6 µm

Ascospores Ellipsoidal, smooth, 3–4 × 2–3 µm Ellipsoidal, smooth (some with minute
spines), 2.5–4 × 2–3 µm

a From the description by Yilmaz et al. [3].

Colony characters: CYA 25 ◦C, 7 d: Colonies raised at the center, slightly sulcate;
margins low, plane, entire (3 mm); mycelia white to light yellow; reverse ivory to light
yellow, slightly sunken at the center. MEA 25 ◦C, 7 d: colonies low, plane; mycelia white
to light yellow, hyaline; reverse light orange at the center. YES 25 ◦C, 7 d: Colonies raised
at the center, sulcate; margins low; mycelia white; reverse pale orange. OA 25 ◦C, 7 d:
Colonies low, plane; mycelia white to light yellow, hyaline, smooth or rough, studded.
CREA 25 ◦C, 7 d: Acid production absent.

Micromorphology: Ascomata maturing within 1 week on OA and MEA at 20–35 ◦C,
abundant, creamish-white to yellow to reddish after long time, usually globose to sub-
globose, 200–800 µm. Asci ellipsoidal, globose to subglobose, (5.5–)6.5–9 × (4.5–)6–7 µm.
Ascospores ellipsoidal, smooth, 3–4 × 2–3 µm.

Notes: Talaromyces teleomorpha can be distinguished easily from the closely related
species T. helicus by growing rapidly on CYA, YES, and MEA at 25 ◦C in 7 days. Ascomata
size of T. helicus are smaller than in T. teleomorpha. Talaromyces helicus does not grow on
CREA, whereas T. teleomorpha can grow on this medium. In addition, T. teleomorpha does
not produce the asexual morph, which is present in T. helicus.

Extrolites: Talaromyces teleomorpha produced helicusins formerly found in Talaromyces
helicus.

Material examined: REPUBLIC OF KOREA, Jeonnam Province, Jukrim reservoir
located in Yeosu (34◦45′37.72” N, 127◦37′43.46” E) from a freshwater sample, 27 May 2017,
H.B. Lee (Culture CNUFC YJW2-6).

4. Discussion

During a survey of fungi from a freshwater niche in Korea, three novel species were
identified, namely Talaromyces gwangjuensis, T. koreana, and T. teleomorpha.

In our phylogenetic analysis, Talaromyces gwangjuensis was classified in section Pur-
purei. This species is closely related to T. rademirici, which also has both monoverticillate and
biverticillate conidiophores and do not grow on CREA. However, Talaromyces gwangjuensis
has more restricted colonies on YES and CYA and larger numbers of metulae and phialides.
Growth on CYA at 37 ◦C and the conidial shape and size on MEA at 25 ◦C can be easily
used to distinguish between T. gwangjuensis and T. rademirici. Talaromyces rademirici grows
faster on CYA at all temperatures (CYA at 25 ◦C, 5–6; CYA at 30 ◦C, 5–7; CYA at 37 ◦C,
3), whereas Talaromyces gwangjuensis was unable to grow on CYA at 37 ◦C. Some species
in this section have been reported to not grow on CYA at 37 ◦C, including T. pittii and
T. purpureus [3]; however, T. pittii and T. purpureus produce ellipsoidal and subglobose to
ellipsoidal conidia compared with T. gwangjuensis that produces globose conidia.
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Talaromyces koreana and T. teleomorpha belong to the section Helici, which was estab-
lished by Yilmaz et al. [3]. The species in the section was not found to produce acid on
CREA medium [3]. However, recent studies showed that T. georgiensis and T. borbonicus
could produce acid on the medium [12,20]. In the present study, T. koreana was also found
to produce acid on the medium. The results suggest that the ability to produce acid on
CREA may not usually a key character to distinguish this section. It is a common character
for the species in the section Helici to be able to grow at 37 ◦C [3]. Our results are the same
as previous studies [3]. Interestingly, we found that T. koreana could grow at 40 ◦C on MEA
media (10–13 mm after 7 days), while not on other media. Our findings showed that the
medium composition might influence the maximum growth of fungi.

Talaromyces teleomorpha is closely related to T. helicus. However, T. helicus produces both
asexual and sexual morphs, whereas the asexual morph is not observed in T. teleomorpha [3].
Especially, T. teleomorpha can grow on CREA, while T. helicus is unable to grow on this
medium [3].

Although ITS is the barcoding marker for fungi [66], this locus is not sufficient to
differentiate all Talaromyces species. Yilmaz et al. [3] proposed using BenA as a secondary
molecular marker. In this study, T. gwangjuensis, T. koreana, and T. teleomorpha could be
separated via each single gene phylogram. Recently, T. brunneosporus was described as
a new species discovered from honey in Spain [24]. It was assigned to section Purpurei
using the ITS, BenA, CaM, and RPB2 concatenated dataset. The comparison of ITS, BenA,
CaM, and RPB2 sequences deposited in GenBank indicated that this species could not be
assigned to any known section based on our phylogenetic analyses (Figure 1). In each
single gene phylogeny (ITS, BenA, CaM, and RPB2), T. brunneosporus also formed a separate
lineage (data not shown). More strains are essential to confirm the taxonomic position of
T. brunneosporus.

Some members from the genus Talaromyces are of great interest to the biotechnology
industry in medial and food mycology because of their ability to produce a wide range
of metabolites [3]. The species of section Purpurei produce various extrolite profiles. For
example, T. cecidicola produces apiculides, pentacecilides, and thailandolides. Talaromyces
coalescens, T. dendriticus, and T. purpurogenus share productions of penicillides, purpactins,
and vermixocins. On the other hand, T. purpurogenus and T. pseudostromaticus produce the
extrolite mitorubin. Some Talaromyces species produce mycotoxins such as botryodiplodin
by T. coalescens, rugulovasine and luteoskyrin by T. purpurogenus, rubratoxins by T. purpuro-
genus and T. dendriticus, and secalonic acids D and F by T. pseudostromaticus. Talaromyces
gwangjuensis, described in this study, produces austin, austinol, mitorubrin, mitorubrinol,
mitorubrinol acetate, mitorubrinic acid, and a purpactin without any production of myco-
toxins. Some secondary metabolites were found in the section Helici, such as alternariol,
bacillisporin, and helicusins produced by T. helicus [3,67]. Talaromyces reverso-olivaceus
produced rugulovasine A [5], while talaroderxines is produced by T. boninensis [3]. In this
study, T. koreana produced cycloleucomelone, gregatin A, and purpactin A. Talaromyces
teleomorpha also produced helicusins, as described by Yoshida et al. [67].

Talaromyces species are geographically distributed in many kinds of substrates. The
species of section Helici have been reported to be isolated from soil, cotton yarn, debris,
clinical sources, indoor environments, and biomass of Arundo donax [3,5,12,15,20]. The
species of section Purpurei have been reported to be isolated from the air, wasp insect galls,
Eucalyptus, Protea repens infructescence, and other substrates such as apples [3,17,68–71]. In
this study, we isolated three novel species from freshwater. As far as we know, only species
belonging to section Talaromyces were reported from water [22,72–74]. It is interesting to
note that Talaromyces gwangjuensis, T. koreana, and T. teleomorpha were the first species in the
sections Purpurei and Helici isolated from freshwater. Our studies expanded our knowledge
on the substrates where Talaromyces species can occur. Further studies are needed for a
better understanding of the ecological roles of these species.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jof7090722/s1: Figure S1: Phylogram generated from the Maximum Likelihood (RAxML)
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analysis based on the BenA sequence data for species classified in Talaromyces section Purpurei.
The branches with values = 100% ML BS and 1 PP are highlighted by thickened branches. The
branches with values ≥ 70% ML BS and ≥ 0.95 PP indicated above or below branches. Talaromyces
tenuis CBS 141840 was used as the outgroup. The newly generated sequences are indicated in blue.
T = ex-type. Figure S2: Phylogram generated from the Maximum Likelihood (RAxML) analysis
based on the RPB2 sequence data for species classified in Talaromyces section Purpurei. The branches
with values = 100% ML BS and 1 PP are highlighted by thickened branches. The branches with
values≥ 70% ML BS and≥ 0.95 PP indicated above or below branches. Talaromyces tenuis CBS 141840
was used as the outgroup. The newly generated sequences are indicated in blue. T = ex-type. Figure
S3: Phylogram generated from the Maximum Likelihood (RAxML) analysis based on the ITS sequence
data for species classified in Talaromyces section Purpurei. The branches with values = 100% ML
BS and 1 PP are highlighted by thickened branches. The branches with values ≥ 70% ML BS
and ≥ 0.95 PP indicated above or below branches. Talaromyces tenuis CBS 141840 was used as the
outgroup. The newly generated sequences are indicated in blue. T = ex-type. Figure S4: Phylogram
generated from the Maximum Likelihood (RAxML) analysis based on the BenA sequences data for
species classified in Talaromyces section Helici. The branches with values = 100% ML BS and 1 PP
are highlighted by thickened branches. The branches with values ≥ 70% ML BS and ≥ 0.95 PP
indicated above or below branches. Talaromyces tenuis CBS 141840 was used as the outgroup. The
newly generated sequences are indicated in blue. T = ex-type. Figure S5: Phylogram generated from
the Maximum Likelihood (RAxML) analysis based on the ITS sequences data for species classified
in Talaromyces section Helici. The branches with values = 100% ML BS and 1 PP are highlighted by
thickened branches. The branches with values ≥ 70% ML BS and ≥ 0.95 PP indicated above or below
branches. Talaromyces tenuis CBS 141840 was used as the outgroup. The newly generated sequences
are indicated in blue. T = ex-type. Figure S6: Phylogram generated from the Maximum Likelihood
(RAxML) analysis based on the CaM sequence data for species classified in Talaromyces section Helici.
The branches with values = 100% ML BS and 1 PP are highlighted by thickened branches. The
branches with values ≥ 70% ML BS and ≥ 0.95 PP indicated above or below branches. Talaromyces
tenuis CBS 141840 was used as the outgroup. The newly generated sequences are indicated in blue.
T = ex-type. Figure S7: Phylogram generated from the Maximum Likelihood (RAxML) analysis
based on the RPB2 sequence data for species classified in Talaromyces section Helici. The branches
with values = 100% ML BS and 1 PP are highlighted by thickened branches. The branches with
values≥ 70% ML BS and≥ 0.95 PP indicated above or below branches. Talaromyces tenuis CBS 141840
was used as the outgroup. The newly generated sequences are indicated in blue. T = ex-type.
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