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Abstract: Urban forms and functions have critical impacts on urban heat islands (UHIs). The concept
of a “local climate zone” (LCZ) provides a standard and objective protocol for characterizing urban
forms and functions, which has been used to link urban settings with UHIs. However, only a
few structure types and surface cover properties are included under the same climate background
or only one or two time scales are considered with a high spatial resolution. This study assesses
multi-temporal land surface temperature (LST) characteristics across 18 different LCZ types in Beijing,
China, from July 2017 to June 2018. A geographic information system-based method is employed to
classify LCZs based on five morphological and coverage indicators derived from a city street map
and Landsat images, and a spatiotemporal fusion model is adopted to generate hourly 100-m LSTs
by blending Landsat, Moderate Resolution Imaging Spectroradiometer (MODIS), and FengYun-2F
LSTs. Then, annual and diurnal cycle parameters and heat island and cool island (HI or CI) frequency
are linked to LCZs at annual, seasonal, monthly, and diurnal scales. Results indicate that: (1) the
warmest zones are compact and mid and low-rise built-up areas, while the coolest zones are water
and vegetated types; (2) compact and open high-rise built-up areas and vegetated types have seasonal
thermal patterns but with different causes; (3) diurnal temperature ranges are the highest for compact
and large low-rise settings but the lowest for water and dense or scattered trees; and (4) HIs are
the most frequent summertime and daytime events, while CIs occur primarily during winter days,
making them more or less frequent for open or compact and high- or low-rise built-up areas. Overall,
the distinguishable LSTs or UHIs between LCZs are closely associated with the structure and coverage
properties. Factors such as geolocation, climate, and layout also interfere with the thermal behavior.
This study provides comprehensive information on how different urban forms and functions are
related to LST variations at different time scales, which supports urban thermal regulation through
urban design.
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1. Introduction

Rapid urbanization and intense human activities have significantly changed the land surface and
atmospheric conditions, leading to a series of urban environmental problems worldwide, including
urban heat islands (UHIs), which refer to higher urban temperatures compared to surrounding rural
ones [1–5]. Numerous studies have been conducted on UHIs considering their social, economic,
and environmental impacts (e.g., on human health, energy consumption, air pollution, and climate
change) [3–8], and main driving factors of UHIs are widely recognized, including, for example, land use
and land cover, urban geometry, building materials, landscape patterns, and human activities [4,5,9–11].
However, due to non-standardized quantification of the metadata to describe different urban and rural
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forms and functions, the comparison and communication of the findings and their applications in
climatology and urban planning have been greatly limited [12,13].

To address this problem, a local climate zone (LCZ) scheme has been developed to characterize the
urban and rural forms and functions under a standard, objective, and quantitative protocol. An LCZ
is an area of uniform surface structure, land cover, construction material, and metabolic activity at
a minimum radius of 200–500 m with a characteristic screen-height temperature regime [13]. The
standard LCZ set defines ten built-up (LCZ 1–10) and seven land cover (LCZ A–G) types with a list
of indicator ranges [13] (Table A1). The LCZ system offers a package of 10 basic descriptors of the
urban forms and functions (e.g., building height and coverage, pervious and impervious coverage, and
aspect ratio) and allows studies on the three-dimensional urban morphology and two-dimensional
surface cover in an integrated form. It further strengthens the inter-comparison of UHI studies, bridges
the urban fabric and local climate, and provides simple and reliable guidance for the urban planning
and management process [13].

Previous studies have adopted the LCZ system to link different urban settings with air temperatures
(ATs) and UHIs measured at fixed sites and vehicle traverses, or simulated by numerical models in
cities, such as Hong Kong, China [14], Dublin, Ireland [15], Nagano, Japan [16], Vancouver, Canada [16],
Uppsala, Sweden [16], Nancy, France [17], Szeged, Hungary [18], Nagpur, India [19], Berlin and Bavaria,
Germany [20,21], and Nanjing, China [22]. Findings reveal distinctive near-surface ATs for each LCZ
type under calm and clear weather conditions, which vary among cities with respect to their geolocation,
size, surroundings, and relief [17,23,24]. Even though ATs are optimal for distinguishing thermal
contrasts of LCZs [16,25], fixed sites are often insufficient in spatial representativeness, continuances,
and variability of temperatures over a wide area [26]. Moreover, fixed sites can only account for a
limited number of urban structure types and surface properties under the same climate background
and weather conditions [22]. Mobile surveys, on the other hand, require much time and labor, are
conducted above paved roads, and the quality and reliability of the observations are closely related
to the path chosen [16]. Model simulations (e.g., UrbClim, MUKLIMO_3, Envi-met, and Weather
Research and Forecasting model (WRF) [16,27–29]) have a solid foundation of physical theory, and
provides the spatial distribution of canyon thermal conditions; nevertheless, representation of a realistic
city is difficult, abundant parameters pose many challenges, and the reliability is highly dependent on
model assumptions and accuracy [16].

With the advantages of providing practical spatiotemporal thermal information over a wide
coverage area at a relatively low cost, remote sensing-derived land surface temperatures (LSTs) have
been recently adopted in correlation to LCZs in cities such as Dubai, United Arab Emirates [30], Prague
and Brno, Czech Republic [25], Yangtze River Delta and Pearl River Delta, China [31,32], and Phoenix
and Las Vegas, USA [33]. The results demonstrate distinctive surface temperatures for different LCZs.
The relationship between LSTs and ATs is very close and complicated in urban environments [3,34],
and the LST characteristics of LCZs have certain differences from the AT characteristics [33,35,36], both
spatially and temporally, which emphasizes the necessity of thermal investigation at varied spatial and
time scales. However, due to the trade-off between spatial and temporal resolutions and the influence of
cloud cover and heavy aerosols [37,38], previous studies that adopted high spatial resolution data (e.g.,
Landsat) have rarely examined multi-temporal, particularly diurnal, temperature effects (e.g., diurnal
temperature range) of various urban forms and functions, whereas high temporal resolution data (e.g.,
Moderate Resolution Imaging Spectroradiometer (MODIS) [30,32]) were not frequently used because
of the mismatch between their spatial resolution and LCZ maps, which limits the characterization of
internal thermal variability of LCZs and signal interference from neighborhoods [32]. Meanwhile, many
studies have utilized the remote sensing-based LCZ mapping approaches (typically the framework of
the World Urban Database and Access Portal Tools (WUDAPT) that includes Landsat thermal bands
for LCZ discrimination [39,40]) in correlation with the LSTs, which lose the independence between the
LCZ classification and LST regimes [25,33].
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The present study systematically investigates the LST characteristics across 18 different LCZ
classes in the sprawling metropolis of Beijing, China, at annual, seasonal, monthly, and diurnal scales
from July 2017 to June 2018. A geographic information system (GIS)-based method is used to classify
LCZs based on five morphological and coverage indicators derived from a city street map (CSM) and
Landsat images, and a spatiotemporal fusion model to generate hourly 100-m resolution LSTs by
blending Landsat, MODIS, and FengYun (FY)-2F LSTs. This study is different from previous studies in
that: (1) the methods cover as many LCZ types, spatial details, and time scales as possible and permit
independence between the LCZ mapping and LST derivation, and thus unbiased investigation of the
LCZ-LST correlation; and (2) the comprehensive impacts of urban morphology and surface cover are
focused at multi-temporal scales. The aim of this study is to assess how different urban forms and
functions are related to LST variations from a high spatiotemporal scale perspective [41] based on
the LCZ classification and ultimately provide insight into the most effective urban form and design
strategies for urban thermal regulation and sustainable planning.

2. Study Area and Data

2.1. Study Area

Beijing (39◦28′–41◦05′ N, 115◦25′–117◦30′ E) is the capital of China (Figure 1b), with a population
of 22 million and built-up areas of 1401 km2 in 2016 (cited from the statistical yearbook of Beijing, 2016).
The elevations range from 3 m in the southeastern plains to 2047 m in the northwestern mountains.
With a temperate monsoon climate, the city experiences hot, wet summers and cold, dry winters [42],
and with rapid urbanization, significant UHI events have been repeatedly reported [4,38,42,43].
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Figure 1. General view of the study area. (a) Administrative division of China. (b) Elevation of Beijing.
(c) Landsat-8 pseudo color composite image of the study area on September 12, 2017. (d) City street
map (CSM) of the subset area (c).

Due to the limited access to morphological data of the entire Beijing area, only the central area
within and around the 5th Ring Road of Beijing (Figure 1c), which has extensive human activities,
was selected for use in this study. The area has experienced more than 3000 years of change and
grown in concentric zones [4,44], with various forms and functions of buildings, including historic
sites (e.g., the Forbidden city), old (e.g., Hutong) and new residential buildings, modern commercial
centers, office buildings, industrial areas, transportation hubs, and allotments, located among roads,
lakes, rivers, parks, and parking lots (Figure 1d), contributing to the analysis of various types of LCZs.
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The elevation change in the study area is small (19–89 m), ensuring a simple relief for the analysis of
thermal characteristics of LCZs [13,16].

2.2. Data

The analyses of this study are based on a CSM, a land cover map, and multi-temporal Landsat,
MODIS, and FY-2F images. For the sake of brevity, an overview of the data is listed in Tables 1 and 2.
The three-dimensional CSM (e.g., Figure 1d, obtained from the NAVINFO, http://www.navinfo.com/

en/aboutus/index.aspx) provides crucial information on blocks, buildings, streets, water, and green
spaces that were used to characterize the urban morphology. This was in a vector format which
was then converted into a raster format with a spatial resolution of 15 m in this study to match with
the Landsat-8 Operational Land Imager (OLI) data. The Landsat-8 OLI data (downloaded from the
United States Geological Survey (USGS), http://earthexplorer.usgs.gov/) were mainly used to derive
surface coverage indicators and the land cover map (downloaded from the Tsinghua University,
http://data.ess.tsinghua.edu.cn/) was a supplement for distinguishing vegetation types (Section 3.1).

Table 1. Data used for local climate zone (LCZ) mapping.

Data Observation Time
(YYYY/MM/DD) Spatial Resolution (m) Layer/Band/Class

City street map (CSM) 2016/03 Vector→15 Block, building, street, water,
green space

Landsat-8 OLI 1 2016/05/04 15 Red and near infrared bands

Land cover map 2017 30
Forest, shrubland, cropland,

grassland, impervious land, bare
land, water, snow/ice

1 OLI: Operational Land Imager.

Table 2. Data used for land surface temperature (LST) fusion.

Date
(YYYY/MM/DD)

Landsat-8 TIRS 1 MODIS 2 FY-2F 3

(h)
Date

(YYYY/MM/DD)

Landsat-8
TIRS MODIS FY-2F

(h)

Observation Time (hh:mm) Observation Time (hh:mm)

2017/07/10 10:54 10:48 2018/01/11 - 11:39,12:33,22:00,01:33 24
2017/07/11 - 10:49,13:28,22:54,02:08 24 2018/01/13 - 11:30,12:27,21:54,02:47 24
2017/09/07 - 11:30,12:28,21:54,02:45 24 2018/02/03 10:54 11:10
2017/09/12 10:54 11:10 2018/02/05 - 11:32,12:30,21:58,02:51 24
2017/09/18 - 11:08,13:39,21:34,02:25 24 2018/02/12 - 11:39,12:33,22:00,01:19 24
2017/09/20 - 10:59,13:30,21:20,02:13 24 2018/02/16 - 11:17,12:16,21:35,02:34 24
2017/09/28 10:54 11:00 2018/03/02 - 11:30,12:27,21:54,02:44 24
2017/09/29 - 10:51,13:28,22:39,02:08 24 2018/03/25 - 11:33,12:30,21:58,02:52 24
2017/10/05 - 10:42,12:50,22:08,01:30 24 2018/04/08 10:54 10:50
2017/10/24 - 10:45,13:20,22:49,02:00 24 2018/04/11 - 10:36,13:10,22:39,01:57 24
2017/10/30 10:54 11:49,12:40,22:02,01:24 24 2018/04/16 - 11:00,13:30,21:20,02:17 24
2017/11/04 - 10:27,13:00,22:23,01:42 24 2018/04/27 - 10:37,13:10,22:39,01:57 24
2017/11/08 - 11:42,12:33,22:00,01:20 24 2018/05/23 - 11:19,13:41,21:38,02:34 24
2017/11/11 - 10:31,13:03,22:27,01:48 24 2018/05/28 - 11:33,12:30,21:59,02:37 24
2017/11/15 10:54 10:51 2018/05/31 - 10:30,13:00,22:25,01:43 24
2017/12/01 10:54 11:45,12:40,22:02,01:24 24 2018/06/20 - 11:41,12:33,22:01,01:20 24
2017/12/17 10:54 11:48,12:40,22:02,01:24 24 2018/06/27 10:54 11:36,12:43,22:06,01:24 24
2017/12/21 - 11:23,12:23,21:40,02:38 24

Spatial resolution (m) Source

100 1000 5000 USGS 4 EOSDIS 5 NSMC 6

1 TIRS: Thermal Infrared Sensor. 2 MODIS: Moderate Resolution Imaging Spectroradiometer. 3 FY-2F: FengYun-2F.
4 USGS: United States Geological Survey, http://earthexplorer.usgs.gov/. 5 EOSDIS: Earth Observing System
Data and Information System, http://earthdata.nasa.gov. 6 NSMC: National Satellite Meteorological Center,
http://satellite.nsmc.org.cn.

To analyze the thermal behavior of LCZs, LSTs were collected from Landsat-8 Thermal Infrared
Sensor (TIRS), Terra and Aqua MODIS, and FY-2F Stretched Visible and Infrared Spin Scan Radiometer
(SVISSR). The principles of data selection were as follows: (1) the LST observation time should be
close to the CSM measurement time (i.e., 2016) so that the LSTs correspond to the LCZs derived from
the CSM; (2) the Landsat and MODIS should form at least two pairs of clear reference images (cloud

http://www.navinfo.com/en/aboutus/index.aspx
http://www.navinfo.com/en/aboutus/index.aspx
http://earthexplorer.usgs.gov/
http://data.ess.tsinghua.edu.cn/
http://earthexplorer.usgs.gov/
http://earthdata.nasa.gov
http://satellite.nsmc.org.cn
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< 10%) in the study area within three months to preserve image similarity and derive conversion
coefficients (Equation (1)); (3) the MODIS and FY-2F should form at least three pairs of clear reference
images (cloud < 10%) in a diurnal cycle and the FY-2F should be clear for the rest of the day; and
(4) the datasets should span at least one year covering as many months as possible for annual and
monthly thermal analysis. Based on these principles, 10 Landsat, 122 MODIS, and 696 FY-2F scenes in
2017–2018 were chosen for use (Table 2).

Landsat-8 overpassed the study area at 10:54 every 16 days (the practical period of clear-sky
images may be longer due to cloud coverage), and the LSTs were retrieved from band 10 at a spatial
resolution of 100 m using a single-channel algorithm (Appendix B, errors < ±1.5 K when water vapor
content <3 g/cm2) [45,46]. MODIS overpassed the study area four times a day (at ~11:00, ~13:30, ~22:00
and ~02:00), and the LSTs were retrieved from bands 31 and 32 at a spatial resolution of 1 km using
a generalized split-window algorithm (errors < ±2.0 K in most cases) [47]. FY-2F provided hourly
thermal observations (during 00:00–23:00) at a spatial resolution of 5 km, and the LSTs were retrieved
using a split-window algorithm accounting for water vapor content (errors < ±2.0 K when water vapor
content <3 g/cm2) [48].

All the above data were co-registered and subset to the study area, while low-quality pixels
heavily affected by clouds, aerosols, and water vapor content were masked out.

3. Methods

The overall workflow of this study is shown in Figure 2. It consists of three major steps: (1) LCZ
mapping, (2) LST fusion, and (3) statistical analysis. The first involves indicator calculation, built-up
type classification (LCZs 1–10), and land cover type classification (LCZs A–G); and the second step
implements the annual fusion of Landsat and MODIS LSTs, which were then followed by the diurnal
fusion of Landsat-like and FY-2F LSTs to obtain hourly 100-m resolution LSTs. These two steps are
completely different in data and method in order to maintain independence between LCZs and LSTs.
In the final step, multi-temporal LST and UHI parameters were derived from the fused LSTs (step 2)
and correlated to the LCZs (step 1) to discover the effects of urban forms and functions on LSTs and
UHIs at varied time scales.

3.1. Local Climate Zone Mapping

Different types of urban forms and functions were systematically classified into the LCZ scheme
in this study, which was mapped using a GIS-based method developed by Quan [35] (flowchart in
Figure A1). This method was chosen because it is completely independent from thermal information
during the LCZ classification; it uses a clearly-defined decision-making algorithm requiring a small
number of indicators that are easy to calculate, and it had been validated in the Beijing area using field
samples (90% agreement) [35].

First, five morphological and coverage indicators defined by Stewart and Oke [13] were derived,
including the building height (BH), building surface fraction (BSF), sky view factor (SVF), pervious
surface fraction (PSF), and impervious surface fraction (ISF). BH and BSF were calculated based
on the building attributes (i.e., height and footprint) in the CSM; SVF was derived using the Relief
Visualization Toolbox based on the building height data added on the digital elevation model [35];
PSF was the sum of vegetation surface fraction (VSF), water surface fraction (WSF), and soil surface
fraction (SSF) [13,35], which were calculated from the Landsat-8 red and near infrared bands [49],
water layer of the CSM, and bare land class of the land cover map, respectively; and ISF was equal
to 100%–BSF–PSF [13]. All the indicators were obtained at the pixel level and then individually
aggregated in each block.
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Second, blocks with BSF values > 10% were classified into best-matching built-up types by
comparing the indicators with their typical ranges (Table A1 [13]) following a hierarchy (BH and BSF >

SVF > PSF and ISF [35]). Some blocks were found to have BH and BSF exceeding the range of any
standard LCZ [13]; therefore, built-up types of extremely compact low-rise (BH: 4–10 m, BSF: ≥ 70%,
labeled as LCZ 2.5), extremely open high-rise (BH: ≥25 m, BSF: 10–20%, labeled as LCZ 3.5), and
extremely open mid-rise (BH: 10–25 m, BSF: 10–20%, labeled as LCZ 4.5) were appended in this study
(Table A1). First, seven LCZs were identified solely by BH and BSF, including LCZs 1–2 (compact
high-/mid-rise), LCZs 3.5–5 (extremely open and open high-/mid-rise), and LCZ 9 (sparsely built).
Then, five low-rise LCZs were determined by combining BH, BSF, and one of the remaining indicators
(SVF, PSF, ISF), including LCZs 2.5–3 (extremely compact and compact low-rise) and LCZs 6–8 (open,
lightweight and large low-rise). LCZ 10 (heavy industries) was not specified because the study area
had eliminated most heavy industries, such as cement, steel, and coke before 2016, due to the City
Master Plan for 2004−2020.

Finally, blocks with BSF values < 10% were categorized into certain land cover types (LCZs A–G)
according to the land cover map and CSM. Specifically, due to the lack of tree geometry data, LCZ
A (dense trees) and LCZ B (scattered trees) were less distinguishable, and therefore merged as one
hybrid type: LCZ A/B, which corresponded to the forest class in the land cover map; shrublands,
croplands and grasslands, and bare lands in the land cover map were categorized as LCZs C, D, and F,
respectively; and streets and parking lots and water bodies from the CSM were used to determine LCZ
E (bare rock or paved) and LCZ G (water), respectively.

3.2. Land Surface Temperature Fusion

Hourly 100-m resolution LSTs were generated using a spatiotemporal fusion model termed
BLEnding Spatiotemporal Temperatures (BLEST) developed by Quan et al. [37] (flowchart in Figure A2).
BLEST was selected because it is suitable for heterogeneous landscapes by combining scale conversion
coefficients and suitable for a long time span (e.g., one year) by accounting for land cover type changes
through residual correction. The model had been evaluated in the Beijing area, demonstrating high
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performance (root mean square error (RMSE) < 1.0 K at the annual scale compared to Landsat images,
RMSE < 1.0 K at the diurnal scale compared to MODIS images, and RMSE = ~2.5 K at the diurnal scale
compared to in situ measurements [37]). BLEST involves two steps: BLEST_annual and BLEST_diurnal.

First, the Landsat and MODIS LSTs were blended at the annual scale to estimate Landsat-like
LSTs at three or more MODIS observation times on the target day using the BLEST_annual approach
(flowchart shown in Figure A2) [37]. The approach is based on the fact that the Landsat-like LST equals
the Landsat LST observed on the reference day added to the LST change adjusted from the MODIS
change and is weighted by all similar neighboring pixels, plus the downscaled residual (Equation (1)):

L̃dr(i, tM, d) =

L(i, tL, dr) +
S∑

s=1

w(s, tL, dr) × v(s, tL) × (M(i, tM, d) −M(i, tL, dr))

︸                                                                                   ︷︷                                                                                   ︸
primary estimate at an annual scale

+ Rdr(i, tM, d) (1)

where L̃dr(i, tM, d) is the Landsat-like LST of pixel i at the MODIS observation time tM on the target
day d estimated from the reference day dr; L and M are the Landsat and MODIS LSTs, respectively;
tL is the Landsat observation time; w is the weight or contribution of the thermally similar Landsat
pixel s to the target pixel i in a neighborhood, determined by the spatial distance between pixel s
and pixel i and the LST difference of pixel s between the Landsat and MODIS scales on dr; v(s, tL) is
the day-by-day conversion coefficient of the similar pixel s at tL between the Landsat and MODIS
scales, calculated using the linear regression between the Landsat and MODIS LSTs on both reference
days; R is the Landsat-scale residual downscaled from the MODIS-scale residual (i.e., the difference
between the MODIS LSTs and the primary estimates averaged at the MODIS scale) using the thin plate
spline algorithm.

To obtain higher accuracy, Landsat-like LSTs estimated from two reference days (̃Ldr1
(i, tM, d) and

L̃dr2(i, tM, d)) were combined:

L̃(i, tM, d) = W(dr1) × L̃dr1
(i, tM, d) + W(dr2) × L̃dr2(i, tM, d) (2)

where dr1/dr2 is the closet reference day before or after the target day; and W(dr1)/W(dr2) is the temporal
weight of the Landsat-like estimate from dr1/dr2, determined by the MODIS LST change from the
reference day to the target day.

Second, under the similar framework to the BLEST_annual (i.e., similar pixel weighting, residual
downscaling, and temporal weighting), hourly Landsat-like LSTs on the target day (̃L(i, tF, d)) were
estimated by blending the former Landsat-like LSTs (̃L(i, tM, d)) and the FY-2F LSTs (F) using the
BLEST_diurnal approach [37], as shown in Equations (3) and (4):

L̃(i, tF, d) = W(tM1) × L̃tM1(i, tF, d) + W(tM2) × L̃tM2(i, tF, d) (3)

with

L̃tM(i, tF, d) =

̃L(i, tM, d) +
S∑

s=1

w(s, tM, d) × v(s, d) × (F(i, tF, d) − F(i, tM, d))

︸                                                                              ︷︷                                                                              ︸
primary estimate at a diurnal scale

+ RtM(i, tF, d) (4)

where tF is the FY-2F observation time; L̃tM1(i, tF, d) and L̃tM2(i, tF, d) are the Landsat-like LSTs at tF

estimated from two reference times (tM1 and tM2) in Equation (4), respectively, and W(tM1) and W(tM1)

are their temporal weights, respectively; and v(s, d) is the diurnal conversion coefficient of pixel s on d
between the Landsat and FY-2F scales, derived from the linear regression between the Landsat-like and
FY-2F LSTs on both reference times. The calculation of weight w and residual R is similar to Equation
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(1) but at a diurnal scale between the Landsat-like and FY-2F images. More details on the selection of
similar pixels and calculation of day-by-day and diurnal conversion coefficients, weights, and residuals
can be found in a previous study [37].

3.3. Statistical Analysis

To quantitatively determine the thermal responses of LCZs at multiple time scales, parameters
that represent the annual, seasonal, monthly, and diurnal LST dynamics were derived from the
fused Landsat-like LSTs, including the annual, monthly, daily, daytime, nighttime, or hourly mean
temperatures (Tmean), annual temperature range (ATR), daily maximum or minimum temperature
(Tmax/Tmin) and its time (tmax/tmin), and diurnal temperature range (DTR) (Table 3). They were
calculated at each pixel and then overlaid with the LCZs, and their averages and standard deviations
(SDs) or box plots were demonstrated for each LCZ to indicate the inter- and intra-class differences,
respectively. One-way analysis of variance (ANOVA) was conducted on each LCZ pair for all the
parameters to evaluate the statistical significance of inter-LCZ temperature differences, based on the
non-parametric Kruskal-Wallis test [20,21,50], which was chosen over the parametric tests (e.g., t-test)
because of its loose requirement on the normal distribution of the tested data (Section 4.1) [21,50].

Table 3. Parameters used for thermal analysis of local climate zones (LCZs).

Parameter Definition and Calculation

Daily/daytime/nighttime Tmean Average of LSTs during a day/08:00–16:00/20:00–04:00
Annual/monthly Tmean Average of daily Tmean in one year/month
Hourly Tmean Average of LSTs at a certain hour in one year

Annual temperature range (ATR) Difference between the maximum and minimum daily Tmean
in one year

Daily Tmax/Tmin Maximum/minimum LST during 24 hours
Daily tmax/tmin Time when daily Tmax/Tmin occurs
Diurnal temperature range (DTR) Difference between daily Tmax and Tmin

Heat/cool island frequency (HIF/CIF) Rate at which a heat/cool island with a certain intensity occurs
during the year/season/daytime/nighttime

Furthermore, the heat island or cool island (HI or CI) intensity (HII or CII) was calculated as
the positive or negative LST difference of one LCZ type from the reference zone (i.e., LCZ D) and
categorized into multiple levels: extremely strong (|HII/CII| > 6.5 K), strong (4.5 < |HII/CII| ≤ 6.5 K),
moderate (2.5 < |HII/CII| ≤ 4.5 K), weak (0.5 < |HII/CII| ≤ 2.5 K), and neutral (|HII/CII| ≤ 0.5 K). Then,
the HI or CI frequency (HIF or CIF, Table 3) was determined as the rate at which a certain HII or CII
level occurs during the year, season, daytime, or nighttime. The HIF and CIF are comprehensive
indices used to measure how much and for how long the LST differences between LCZs occur [22].

4. Results

4.1. A General View of the Local Climate Zones and Land Surface Temperatures

An LCZ map was generated over the study area (Figure 3), showing diverse types of urban forms
and functions (Figure 3c) with different distribution patterns. The most frequent types are LCZ 5
(open mid-rise, 28.7%) and LCZ 6 (open low-rise, 12.8%), while the high-rise zones (LCZs 1, 3.5, and 4)
account for 8.4%. The study area, in general, exhibits an annular pattern of building height: low-rise
zones in the center (mainly historical buildings such as Hutongs and the Forbidden City), mid and
high-rise zones in the middle, and low-rise zones in the periphery, which is in accordance with the
concentric growth pattern of Beijing [44]. The compact built-up zones (LCZs 1–3, 12.0%) surround
the center of the city (within the third loop), while LCZ 9 (sparsely built, mainly warehouses and car,
furniture, or agricultural product markets) is typical of the outer part. The land cover types (LCZs
A–D (9.9%), F (6.6%), and G (1.8%)) are mainly located in the parks (e.g., the Olympic forest park),
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construction sites, and lakes and rivers (e.g., the Kunming Lake and Hucheng River), scattered around
the study area. Over 10% of the area is classified as three supplementary classes (LCZs 2.5, 3.5, and 4.5)
due to a significant deviation in BSF from the standard definition in LCZs 3–5. Their LST differences
from the standard ones were further explored. More details on the LCZ map can be found in a previous
study [35].Int. J. Environ. Res. Public Health 2019, 16, x 10 of 37 
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Hourly LSTs were generated at the 100-m spatial resolution on 29 days (Table 2) over the study
area. Figure 4 shows the spatial distributions of UHIs (i.e., LST differences from the reference zone (i.e.,
LCZ D)) on September 7, 2017, as an example, revealing that the spatial details and diurnal dynamics of
LSTs and UHIs were successfully reconstructed. The outer part of the study area was generally cooler
than the inside, and hotspots were often associated with dense built-up areas. The road network and
water boundaries were sharply demonstrated with deviated LSTs from the surroundings, particularly
during 10:00–16:00, which can hardly be detected by MODIS, FY-2F, or other moderate or low spatial
resolution images. The large forest parks exhibited lower LSTs than the built-up areas during the entire
diurnal cycle in September, while their spatial patterns gradually changed with the hour, suggesting
variations during the day and night.
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A certain degree of spatial correspondence was observed between the LCZs and LSTs according
to Figures 3 and 4. Figure 5 shows the amounts and distributions of all usable LST values for each
LCZ across the study area and period. In general, the amounts of LSTs of different LCZs followed the
same pattern as their portions in the study area (Figure 3b). For each LCZ, most LSTs were evenly
distributed in spring, autumn, and winter, while a relatively small amount was found in summer
when a large amount of rain and clouds formed in the Beijing urban area to contaminate the satellite
thermal observations [4], which could not be reconstructed by the fusion method in this study. This
resulted in left-skewed distributions of LSTs with lower means with respect to the medians, particularly
for the LCZs with larger summer-winter differences in the total amounts, such as LCZs 4.5, 5, 6, 9,
and E. Thus, methods such as the t-test that require normally distributed data were considered not
suitable to test the significance level in this study; instead, the non-parametric Kruskal-Wallis test [50]
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was used (Section 4.3). Moreover, no clear-sky LST images were available for the entire month of
August (Table 2), which led to the underestimation of the annual average considering higher LSTs in
August [38]. Nevertheless, this impact would be greatly reduced during the difference analysis within
or among LCZs. The details on the association between LSTs and LCZs at multi-temporal scales are
demonstrated in Sections 4.2–4.4.Int. J. Environ. Res. Public Health 2019, 16, x 12 of 37 
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Figure 5. Statistics of all usable LST values for each LCZ across the study area and period. Spring:
March–May; Summer: June–August; Autumn: September–November; Winter: December–February.

4.2. Annual and Monthly Land Surface Temperature Variations

The annual temperature parameters (i.e., annual Tmean and ATR) and monthly temperature
parameters (i.e., monthly Tmean (00:00–23:00), monthly daytime Tmean (08:00–16:00), and monthly
nighttime Tmean (20:00–04:00)) were plotted for different LCZs in Figures 6 and 7. As the LSTs of different
hours, days, and months were also affected by dynamic factors such as synoptic situations [25], the
rank order of 18 LCZs was derived for each parameter according to the mean values from high-to-low
to indicate the inter-LCZ differences at multi-temporal scales. Meanwhile, to evaluate the intra-LCZ
variability, the SDs of parameters for different LCZs were compared with each other.
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Figure 7. Monthly mean temperature (monthly Tmean) and its standard deviation (SD) for each LCZ in
the study area, calculated at (a,b) all hours (00:00–23:00), (c,d) daytime (08:00–16:00), and (e,f) nighttime
(20: 00–04:00). The red and blue numbers on the top axes of (a,c,e) express the sequence of each LCZ
from high-to-low in terms of monthly Tmean during April–September and October–March, respectively.
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Relatively large intra-LCZ variability was observed at the annual scale (Figure 6) considering both
spatial variations and temporal dynamics with high resolution. The smallest variations in the annual
Tmean were associated with LCZs 1–3 (compact high, mid, or low-rise and extremely compact low-rise),
LCZ 7 (lightweight low-rise), and LCZ C (bush, scrub) because of their small numbers of observations
and blocks compared to others (Figure 5). On average, annual Tmean and ATR demonstrated significant
differences among LCZs (up to 6.6 K for annual Tmean and 11.6 K for ATR; Figure 6) with higher values
in the built-up types and lower ones in the land cover types, which confirms the finding of [51] that
the annual mean and amplitude of LSTs can be used to distinguish diverse LCZs. The highest annual
Tmean was obtained for compact and mid- and low-rise building types with little vegetation, including
LCZ 7 (lightweight low-rise), LCZ 8 (large low-rise), LCZ 2 (compact mid-rise), and LCZ 3 (compact
low-rise) (in descending order), due to small SVF, high impermeability, and little vegetation, while
the lowest annual Tmean was associated with water and vegetated zones, including LCZ G (water),
LCZ A/B (dense or scattered trees), LCZ C (bush, scrub), and LCZ D (low plants) (in ascending order),
because extensive pervious surfaces lower surface temperatures. The remaining LCZs exhibited an
annual Tmean of 286.7–289.0 K. Among the built-up types, LCZ 3.5 (extremely open high-rise) and LCZ
4 (open high-rise) had the lowest annual Tmean, whereas among the land cover types, LCZ E (bare rock
or paved) had the highest annual Tmean, even higher than some built-up types (LCZ 3.5–4.5), primarily
caused by the low infiltration rate [33].

Similar to the annual Tmean, the lowest ATR emerged for the water and vegetated surface types
(LCZs A–D and G) and LCZ E had the highest ATR among the land cover types (Figure 6b). However,
different from the annual Tmean, the highest ATR emerged for the compact and high- and mid-rise
building types, including LCZ 1 (compact high-rise) and LCZ 2 (compact mid-rise), whereas LCZ 9
(sparsely built) had the lowest ATR among the built-up types because seasonal variations in abundant
vegetation covers greatly decrease LSTs through evapotranspiration and shades in the growing season
but slightly decrease or even increase LSTs during the defoliation period [22]. High-rise built-ups
(LCZs 1 and 4) were found to have lower annual Tmean (order = 7 and 12) but higher ATR (order = 1
and 3), probably owing to their thermal sensitivity to the seasonal changes in solar radiation angles
and intensities through shade effects and total surface gain.

Figure 7 demonstrates the monthly LSTs—the highest in June and July (excluding the August)
and the lowest in February. Strong inter-LCZ differences were observed during April–September
(6.7–9.4 K), with a similar pattern with the annual Tmean, where LCZ 9 had a lower order (order = 12,
indicating lower monthly Tmean) than that at the annual scale (order = 9), further revealing similar
seasonal variations to those in ATR. The other months, however, demonstrated weaker differences
among LCZs (3.0–5.3 K), because reduced solar radiation and vegetation cover weaken the differences
in warming and cooling rates among LCZs. The sequence of the LCZs also changed—LCZs A/B, C,
and D showed an increase in LSTs with respect to the built-up types due to the leaf abscission and
crop harvesting, which denote more thermal response from bare soils, contributing to the cool island
generation (Section 4.4). Meanwhile, LCZs 1 and 4 had a significant drop in the sequence (order = 15
and 16) during October–March, corresponding to their larger ATR.

The intra-LCZ variability is mainly attributed to the differences in location, surrounding, size,
layout, physical or functional properties (e.g., soil moisture, subclasses), surface relief, anthropogenic
heat (e.g., traffic load), and micro-climate of the LCZ units [16,18,27] in the wide area. As the impacts
of the above factors are generally enhanced with stronger insolation and disturbance during the
summer [17], larger heterogeneity was observed within the same LCZ type during summer months
(Figure 6b,d,f). The errors in LCZ mapping and LST fusion also contributed to the intra-LCZ differences
to some extent, which would be more pronounced in winter because the LCZ map was built upon the
summertime vegetation, water, and soil information [35], and the regression of the diurnal conversion
coefficients (v in Equation (4) for LST fusion) was less stable during the winter due to low diurnal
temperature variations [37]. Therefore, the impacts of the model errors may not be as significant as
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those of other factors in this study. Otherwise, irregular patterns of SDs were observed among LCZs
between different months.

4.3. Diurnal Land Surface Temperature Variations

Hourly Tmean values were averaged for one year and plotted in Figure 8a, which shows a typical
diurnal cycle with the highest LSTs around 13:00 and the lowest LSTs around sunrise. The inter-LCZ
differences in each hour generally followed the same pattern as the annual Tmean (Figure 6a)—greater
temperature contrasts corresponding to larger deviations in surface structure and cover [22]; higher
Tmean for compact zones than open or sparse zones; larger compact-open differences for mid-rise
buildings; and increases in LST with decreases in building height (except for the compact low-rise
that was warmer during the day but cooler at night than the compact mid-rise). Moreover, both the
inter- and intra-LCZ differences (Figure 8a,b) demonstrated diurnal patterns with higher intensities
during the day (5.2 (06:00)–7.9 (13:00) K) and lower intensities at night (5.2 (05:00)–5.4 (19:00) K).
Figure 8b shows that LCZ G (water) had the largest intra-class variations (SDs = 2.9–3.8 K). LCZ G
mainly includes lakes and rivers, located all around the study area and surrounded by forests, low
plants, bare soil, buildings, or roads (Figure 3). After separating the lakes and rivers, the SDs of LCZ G
became 1.8–2.8 K (only for lakes) and 2.3–2.9 K (only for rivers), where the mean LSTs of the lakes
were 4.0 (midnight)–6.0 K (noon) lower than those of the rivers. Diversities in the water depth, width
and rate of flow can also influence the water temperature variability [25]. This further underlines the
importance of exploring intra-LCZ differences and the necessity of local adjustment when adopting
the standard LCZ scheme.
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Diurnal parameters of each LCZ in one year and four seasons are demonstrated in Figure 9.
According to the annual averages, the ranking of the daily Tmax and Tmin was generally consistent
with the inter-LCZ pattern of annual Tmean but with weaker inter-LCZ variability at night, leading
to higher or lower DTRs for LCZs with higher or lower Tmax; i.e., LCZs 2.5, 3, and 8 had the highest
DTRs, while LCZs G and A/B had the lowest, and LCZs E and F had the highest DTRs among the land
cover zones, which is consistent with previous reports on annual DTR differences between built-up
and vegetated or water surfaces [52]. Each LCZ showed the largest DTR in summer and the lowest in
winter, where LCZs A–D had a weaker seasonal variability in DTR than the built-up zones, mainly due
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to the phenological changes. Both the daily Tmax and DTR demonstrated weaker differences among
LCZs in winter, while the daily Tmin registered significant inter-LCZ differences in winter than the
daily Tmax because the collective heating system of Beijing in winter increases the anthropogenic heat
output, which has a larger impact on LSTs at night [4,10]. The intra-LCZ variations in daily Tmax

and DTR were stronger than those in daily Tmin, consistent with the pattern in the one-year averaged
hourly Tmean (Figure 8b).
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Figure 9. Means and SDs of diurnal parameters for each LCZ averaged across one year or season in
the study area. (a) Daily maximum LST (daily Tmax); (b) daily minimum LST (daily Tmin); (c) diurnal
temperature range (DTR); (d) percentage of the time period of daily Tmax (tmax); (e) percentage of the
time period of daily Tmin (tmin). The blue numbers on the top axes (a–c) express the sequence of each
LCZ from high to low in terms of the averages in one year.
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Figure 9d shows that 45–50% of the pixels had tmax as 13:00 for each LCZ in summer and winter,
while 30–45% reached the daily Tmax at 14:00 in summer and 40–55% in winter. For each LCZ, the
average of tmax was earlier in summer than in winter. Moreover, winter had the latest time to start
warming up in the morning, i.e., mostly 5:00 or earlier in summer, ~6:00 in spring and autumn, and
mostly 7:00 or later in winter (Figure 9e), which corresponded to the time of sunrise in the annual
cycle. The difference among LCZs in the average of tmax/tmin was within 0.5 h (<1 h for tmax in
summer), which was shorter than the time interval of the fused Landsat-like LSTs, and thus, considered
insignificant (Figure 10).
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Figure 10. Results of Kruskal-Wallis tests for annual, seasonal, monthly, and diurnal parameters between
all LCZ pairs. For each parameter, each dot indicates that the corresponding LCZ is insignificantly
different (p > 0.05) from another LCZ represented with the dot of the same color. The number of dots in
each square indicates the times of the LCZ registering with insignificance for a certain parameter.

The Kruskal-Wallis test was conducted against each parameter between all LCZ pairs to explore
the significance of inter-LCZ differences. Each pair of “dots” in the same color in Figure 10, for a certain
parameter (i.e., in the same line), demonstrates an insignificant LST difference (p > 0.05) between the
corresponding pair of LCZs. In general, LCZ pairs with significant differences (p < 0.05) prevailed
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(95%), and none of the LCZs continued to show insignificant differences with any other LCZ for
varied parameters and time periods, suggesting that the LCZ scheme and the proposed method were
appropriate to delineate the multi-temporal LST characteristics.

The largest number of “dots” (insignificant differences) was registered for LCZ 2.5 (extremely
compact low-rise), followed by LCZ C (bush, scrub), LCZ 7 (lightweight low-rise), and LCZ 1 (compact
high-rise). This was mostly attributed to their relatively weak LST differences and small numbers of
pixels or blocks (i.e., small sample size) in the study area (<0.2%, Figure 3) [20]. Specifically, LCZs 1
and 2.5 had many small blocks (<100 m2), whose LST signals were likely mixed with the surrounding
areas. Considering that the existing LCZ scheme defines the zones spanning hundreds of meters to
several kilometers [13], some local adjustment is required to obtain a more appropriate description
of these blocks. In contrast, LCZ G (water) was the most distinguishable one, followed by LCZ A/B
(dense or scattered trees), LCZ 2 (compact mid-rise), and LCZ 3.5 (extremely open high-rise). This was
strongly supported by their large degree of LST differences from the other LCZs.

Second, the LCZ 7-LCZ 8 pair was registered the most with insignificant differences—20 out of 84
parameters were insignificant (p > 0.05), most likely due to their similar thermal responses (both very
high, e.g., Figure 6a, induced by little vegetation, prevailed impervious or soil surfaces with similar
building heights) and the limitation of the current method in correctly separating them by material and
building size [35]. On the contrary, the LCZs with different building heights but similar compactness
and surface covers (e.g., LCZs 1–3 or LCZs 4–6) showed more distinctive LST characteristics, indicating
that the building height and canyon structure have a decisive influence on the thermal behavior. In
comparison to the instantaneous nadir or near nadir observations (e.g., Landsat) that weaken the
impact of vertical surfaces, especially for dense buildings [25], the characterization of annual and
diurnal LST dynamics in this study (embodied in the BLEST model and thermal parameter calculation)
contributed to reflecting temporal changes in shaded areas (referring to the building height and direct
solar radiation) for varied solar radiation angles during the year. The characterization also helped to
suppress the impact of thermal anisotropy [53,54], considering that multiple view positions (MODIS)
were fused in BLEST and parameters were averaged at different time scales [25].

Finally, more insignificant differences among LCZs were observed during the winter (104 pairs)
and nighttime (78 pairs) than during the summer (62 pairs) and daytime (52 pairs). The annual
parameters (e.g., annual Tmean, ATR) were better differentiated among various LCZs than the diurnal
parameters, confirming the role of the annual parameters in classifying LCZs [39,51] but suggesting
less effective diurnal parameters. There was, however, one exception—the annually averaged DTR
referred to both the diurnal thermal properties and annual cycle information and had only two LCZ
pairs with insignificant differences. Therefore, the annually averaged DTR (some may also consider
related factors such as annually averaged thermal inertia) could be a good candidate contributing to
the LCZ classification.

4.4. Frequencies of Heat Islands and Cool Islands at Multi-Temporal Scales

The HIFs and CIFs of different LCZs were calculated using LCZ D as a reference (Figure 11) to
provide a more comprehensive analysis of the intensity and frequency of the inter-LCZ differences
(represented as HIs and CIs). In general (Figure 11a–e), built-up zones in the study area presented
more hours of HIs (44.4–83.4%) than CIs (7.6–43.0%) in a year, where compact built-up zones formed
more frequent HIs (67.7–77.7%) than open built-up zones (44.4–68.0%). Specifically, LCZs 2, 7, and
8 had about 80% of the time in a year generating weak (0.5–2.5 K)–extremely strong (≥6.5 K) HIIs,
forming the most intense local HIs. On the contrary, LCZs G and A/B formed local CIs (< -0.5 K) for
over half of the time (58.8% and 51.9%) and indicated stable cooling effects; LCZ G generated intense
CIs (< -4.5 K) for 21.1% of the time. LCZ 4 showed the most similar HIF and CIF pattern to LCZ D; i.e.,
40–45% of the time, LCZ 4 generated His and CIs, and 15% of the time, it was neutral.



Int. J. Environ. Res. Public Health 2019, 16, 2140 18 of 35
Int. J. Environ. Res. Public Health 2019, 16, x 19 of 37 

 

 

Figure 11. Frequencies of heat and cool islands (HIF and CIFs) at different intensities for each LCZ, 
calculated over different time periods: (a) One year; (b) spring; (c) summer; (d) autumn; (e) winter; 
(f–j) one year and four seasons during the daytime (08:00–16:00); (k–o) one year and four seasons 
during the nighttime (20:00–04:00). 

Figure 11. Frequencies of heat and cool islands (HIF and CIFs) at different intensities for each LCZ,
calculated over different time periods: (a) One year; (b) spring; (c) summer; (d) autumn; (e) winter; (f–j)
one year and four seasons during the daytime (08:00–16:00); (k–o) one year and four seasons during
the nighttime (20:00–04:00).
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Seasonal and diurnal variations were also observed. In summer (Figure 11c), HIs dominated
the most LCZs (except for LCZs A/B, D, and G) from 59.1% (LCZ F) to 93.7% (LCZ 2) of the total
hours (5.5% to 50.4% at extremely high intensity, i.e., >6.5 K). LCZ 3.5 (extremely open high rise)
recorded the lowest HIFs (64.3%) among the built-up types, followed by LCZ 9 (sparsely built) at 69.4%.
Surprisingly, LCZs A/B and G were warmer than LCZ D for 35.8% and 36.5% of the total hours (mostly
at night). This was also reported in some of the previous studies based on the AT measurements
and explained by their large heat capacity that decreases the cooling rate of the close atmosphere
at night [22]. Comparatively, CIFs increased greatly in winter (Figure 11e) mostly during the day
(Figure 11j) for all the built-up zones (39.2–79.5%), primarily due to the reduced solar radiation gain in
winter and seasonal changes in LCZ D [55,56], e.g., the surface coverage, morphology, and moisture
that enhance its warming and cooling rate in winter [57] (also seen in Figure 9c that the DTRs of most
built-up zones were lower than that of LCZ D in winter [52]). The total hours of CIs were longer for
open and high-rise built-up zones but shorter for compact and low-rise built-up zones. However, with
specific types, daytime CIs have very complex mechanisms that are yet to be fully understood [22,58].
HIs were rather weak (0.5–2.5 K) in winter and 12.7–22.6% of the hours had neutral events (-0.5–0.5 K).
This seasonal pattern compared well with the previous studies that documented strong HIs in summer
and CIs in winter in Beijing [56,57,59]. The sequence of the HIFs or CIFs for different LCZs during the
day or night was similar to that at the annual scale. However, larger discrepancies among LCZs were
recorded during the day, especially for the extremely intense HIs (>6.5 K), i.e., 4.9 (LCZ 4)–33.2% (LCZ
2), which were more than twice that at night (1.9–14.8%).

5. Discussion

5.1. Relationship between Land Surface Temperatures and Morphological and Coverage Indicators

To discover driving mechanisms underlying LST and UHI differences among LCZs, Spearman’s
rank correlation analysis was conducted between ten primary thermal parameters (i.e., annual Tmean,
ATR, summer or winter and daytime or nighttime Tmean, summer or winter DTR, and annual HIF or CIF,
Section 3.3) and five key morphological and coverage indicators of LCZs (i.e., SVF, BH, BSF, VSF, and
ISF, Section 3.1), where water bodies were excluded to facilitate unbiased correlation [4,60,61]. Table 4
shows the Spearman’s rank correlation coefficient (ρ) for each LST-indicator pair, which was selected
over widely used Pearson’s correlation because it is a non-parametric measure with no assumptions
on the data frequency distribution [60,62].

Table 4. Spearman’s rank correlation coefficients (ρ) between ten thermal parameters and five
morphological and coverage indictors 1.

Parameter SVF 2 BH 3 BSF 4 VSF 5 ISF 6

Annual Tmean −0.12 −0.26 (+0.16) +0.24 −0.32 +0.03 (+0.32)
Annual temperature range (ATR) −0.41 +0.10 (+0.31) +0.32 −0.52 +0.03 (+0.40)

Summer daytime Tmean −0.40 −0.13 (+0.35) +0.41 −0.49 +0.01 (+0.49)
Winter daytime Tmean +0.19 −0.33 (−0.08) +0.01 +0.21 +0.00 (+0.03)

Summer nighttime Tmean −0.29 −0.09 (+0.27) +0.31 −0.35 −0.00 (+0.36)
Winter nighttime Tmean +0.16 −0.27 (−0.06) +0.01 +0.19 −0.01 (+0.01)

Summer diurnal temperature range
(DTR) −0.29 −0.03 (+0.24) +0.27 −0.37 +0.02 (+0.36)

Winter DTR +0.08 +0.00 (−0.07) −0.06 +0.02 +0.07 (+0.03)
Annual heat island frequency (HIF) −0.18 −0.25 (+0.20) +0.27 −0.32 +0.02 (+0.32)
Annual cool island frequency (CIF) +0.14 +0.24 (−0.16) −0.22 +0.26 −0.03 (−0.26)

1 All values are significant at the 0.01 level. 2 SVF (sky view factor) here refers to the ground SV. 3 BH represents
building height, where values in the brackets were obtained when non-built-up areas were included in the correlation
analysis. 4 Building surface fraction. 5 Vegetation surface fraction. 6 ISF represents impervious surface fraction,
where values in the brackets were obtained when ISF and BSF were combined in the correlation analysis.
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The relationship between LST parameters and LCZ indicators significantly varies with time
(Table 4). For summer parameters (i.e., summer daytime or nighttime Tmean and summer DTR),
VSF yields the highest negative correlations (−0.49 ≤ ρ ≤ −0.35) among the five indicators, which
is resulted from the well-established mechanism that the vegetation increases latent heat fluxes via
evapotranspiration and casts shadows via tree canyons, generating a cooling effect especially during the
daytime with respect to the nighttime when the evapotranspiration and shades disappeared [5,9–11,60].
However, due to the vegetation phenology and seasonal insolation variation (e.g., intensity and angle),
the vegetation cooling effect is greatly reduced and even inversed (i.e., positive correlation due to the
increased bare soil contribution) in cold (leaf-off) winter (0.02 ≤ ρ ≤ 0.21) [9,10]. Hence, it is reasonable
to find that smaller ATR and annual Tmean correspond to a larger VSF. This mainly explains the seasonal
thermal differences between the vegetated types (LCZs A–D) and built-up types (LCZs 1–9), as shown
in Figures 6, 7 and 9.

For winter parameters (i.e., winter daytime or nighttime Tmean), BH yields the strongest negative
correlation (ρ = −0.33 and −0.27) for the built-up areas. This is primarily caused by the decreased
solar altitude in winter accompanied with reduced solar radiation, increased building shadows,
and furthermore weakened total surface gain and enhanced convective heat dissipation during the
day [10,63–67], which eventually leads to less thermal release at night [4,10]; this effect is reduced in
hot summer (ρ = −0.13 and −0.09). This mechanism primarily explains the lower thermal responses
of high-rise buildings (LCZs 1, 3.5 and 4) compared to low-rise buildings (LCZs 2.5, 3, and 6) with
similar compactness (Figures 6 and 7). Due to the similar impacts during the day and night, the
DTR-BH relationship is rather slight (ρ = ~0.00). Note that when non-built-up areas were included in
the correlation analysis, ρ became significantly positive in summer (0.35 and 0.27, also reported in [60])
but negligible in winter (0.08 and −0.06), most likely because the overall warming or cooling trend
from the vegetated to built-up surfaces in summer or winter dominated the overall relationship.

Among the five indicators, BSF shows the most important heating effect (0.24≤ ρ≤ 0.41), consistent
with previous studies [60,68]: with a larger BSF, more heat is trapped in the canyons and stored by
building materials, while less heat is lost due to decreased vertical flux change during the day [69],
further leading to higher thermal energy released at night [4,10]. Moreover, a larger BSF is often
accompanied with a larger population and more anthropogenic heat release. Considering a stronger
heating effect during the day and summer than during the night and winter, diurnal and annual
variations (DTR and ATR) are enlarged with BSFs (ρ = 0.27 and 0.32). This mechanism supports higher
LST responses of compact built-up zones (LCZs 1–3 and 7) than open built-up zones (LCZs 3.5–6 and
9), with similar BH (Figures 6–9).

SVF, closely related to BH, BSF, and building layout, can also regulate LSTs. A higher SVF may be
associated with lower BH or BSF—the former generates higher LSTs (especially in winter; positive
ρ of 0.16–0.19), while the latter forms lower LSTs (especially in summer; negative ρ of 0.29–0.40), as
described above. Moreover, different building typologies (e.g., pavilions, terraces, or courts) may
have similar SVFs but rather different thermal patterns [27], demonstrating an insignificant LST–SVF
relationship [70]. The large low-rise (LCZ 8) and sparsely built (LCZ 9) areas are also examples
of insignificance—both showing SVF ≥ 0.7, they presented the highest and lowest LSTs among the
built-up zones, respectively (Figure 6; Figure 7). Therefore, the contribution of SVF is mainly attributed
to the relative strength of the above influences [66] under changing space and time.

It is surprising that ISF barely correlates with the LST parameters (ρ = ~0.00). This is because the
ISF used for correlation was calculated by 100%–BSF–VSF–WSF–SSF (Section 3.1) at a Landsat pixel
scale (i.e., 30 m), resulting in a significant surface heterogeneity (or sharp gradient). For example, a
block consists of very low ISF over buildings and very high ISF just near the buildings, and yet the LST
characteristic does not change dramatically within the same block. Moreover, low ISF can be associated
with high BSF, VSF, or others that have contradictory effects on thermal formation. That is one of the
reasons that ISF was treated as the lowest rank among the five indicators during the LCZ classification
in this study (Section 3.1). It should be clarified that ISF in the LCZ system is different from the
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impervious surface area (ISA), an indicator describing the ratio of area covered by buildings and
impervious surfaces [5,71]. ISA is often derived by spectral unmixing or subpixel classification [72,73],
and reported to be strongly and positively correlated with LSTs via trapping, storing, and releasing
heat [5,67,74]. A combination of ISF and BSF is close to ISA by definition, therefore greatly increasing
the correlation coefficient (ρ = 0.26–0.49).

Under the same mechanisms as describe above, VSF, BH, and SVF have negative or positive
influences on the annual HIF or CIF, while BSF has a reversed impact. However, only part of the
spatiotemporal LST and UHI variability can be explained by the five indicators of LCZs, which are
especially insufficient in winter. As a matter of fact, a variety of additional factors have impacts on
LSTs and UHIs, including albedo, landscape pattern, anthropogenic heat release, elevation, urban
size, population density, atmospheric condition, and climatology [5]. Some of them are defined in the
LCZ system, which mainly drive the general inter-LCZ differences (e.g., Table 4), while some are not,
which induce great intra-LCZ differences (e.g., Figure 7) and inter-city and region differences (e.g.,
Section 5.2). Therefore, a spatiotemporal analysis of driving mechanisms considering various factors
(relating to two-dimension and three-dimension, composition and configuration, and regional and
local characteristics) needs to be undertaken comprehensively and systematically, which is currently
under preparation by Jingling Quan.

5.2. Comparisons with Previous Studies

To enhance the inter-site or inter-city comparability for UHI studies and generalize common
findings [13], the results for Beijing in this study was evaluated with respect to those of the previous
studies conducted for other cities. Those studies were divided into two categories: remotely sensed
LST-based and in situ (fixed-site/mobile), AT-based studies (Table 5 [15–18,22,25,31,33,41]). The study
regions include Asian, European, and North American cities with varied climates (e.g., temperate
monsoon, arid desert, and oceanic climates) and population ranging from 0.16 to 24 million; the
observation period lasted from one day to over a year. Only the results on the ideal days were included
in the comparison. The number of standard LCZ types was 7–18 in each LST-based study, while it was
4–14 (six subclasses) in each AT-based study; this study in Beijing had the most types (18, including
15 standard and 3 supplementary classes) because the study area involved complex morphologies
due to a long history and rapid urbanization, and the remotely sensed LSTs provided coverage over
the entire study area. This contributed to the assessment of the practical thermal behavior of as many
LCZs as possible under the same regional conditions. Previous LST-based studies investigated the
inter- or intra- LCZ differences, with 2–8 scenes focusing on the instantaneous, seasonal, or day-night
patterns, while the AT-based ones were based on 3–78 ideal days (little wind or precipitation, clear
skies), focusing on annual and diurnal patterns. This study, using a spatiotemporal fusion model, built
LST datasets (hourly frequency on 29 days) that were comparable to the AT datasets from the time
scale or period aspect, with a high spatial resolution (100 m), facilitating the examination of inter- and
intra-LCZ variability at multiple (i.e., annual, seasonal, monthly, and diurnal) scales.
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Table 5. Comparisons of this study to previous studies. The “H1–H4 and C1–C4” denote the first–fourth hottest and coldest LCZs, respectively. The “x” indicates that
the corresponding LCZ type was not included in the study.

Category Remotely Sensed LST-Based Studies In situ air Temperature (AT)-Based Studies

Source/Reference This Study [41] [25] [31] [31] [33] [33] [15] [16] [17] [18] [22]

Study area

City
Country Beijing China Szeged

Hungary

Prague and
Brno

Czech Republic

Shanghai
China

Hangzhou
China

Phoenix
USA

Las Vegas
USA

Dublin
Ireland

Vancouver
Canada

Nancy
France

Szeged
Hungary

Nanjing
China

Latitude
Longitude

40◦N
116◦E

46◦N
20◦E

50◦N and 49◦N
14◦E and 16◦E 30◦N 121◦E 29◦N

119◦E
33◦N

112◦W
36◦N

115◦W
54◦N
7◦E

49◦N
123◦E

49◦N
6◦E

46◦N
20◦E

32◦N
119◦E

Population (million) 22 0.16 1.3 and 0.4 24 9.8 1.5 0.5 1.2 2 0.3 0.16 8.3

Data
Acquisition method

Landsat,
MODIS 1 and

FY 2 fusion

Airborne
thermal
camera

Landsat and
ASTER 3 ASTER ASTER ASTER ASTER Fixed sites

and mobile Mobile Mobile Fixed
sites

Fixed
sites

Time period (number
of days)

1 year, hourly
(29)

Summer
night (2)

Spring, summer
and autumn day
(8 for each city)

Summer and
autumn
night (2)

Summer and
autumn
night (2)

Spring day and
night (2)

Spring day and
summer night (2) Summer (3) Spring (4) Summer

(9–17)

1
year
(32)

>1 year (78)

Result

Number of LCZs
(sub-/supplementary

class)
18 (3) 7 (0) 15 (0) 17 (0) 17 (0) 14 (0) 14 (0) 4 (0) 8 (1) 5 (0) 7 (0) 14 (6)

Annual/seasonal
pattern Y N Y N N N N N N N Y Y

Diurnal pattern Y (diurnal
parameter) N N N N Y (day-night) Y (day-night) N Y (DTR 4)

Y
(day-night) Y Y

Period of statistics Annual Night Day Night Night Day Night Day Night Night Night Night Day Day Night
LCZ 1 x x H3 H2 x x x x x H1 x x x x
LCZ 2 H3 H1 H3 x x x x H1 x H1 H1 H3 H2
LCZ 3 H4 H3 H2 x x x x H2 x x H1 x x
LCZ 4 x H4 H2 H2 x H2 x x C4 H4
LCZ 5 H4 H3 x x H2 H2 H4 C3
LCZ 6 C3 H3 C4 H4 H4 x x
LCZ 7 H1 x x H1 x x x x x x
LCZ 8 H2 H2 H4 H2 H3 H2 H1 x H3 H3 H3 H1 x
LCZ 9 C2 C1 C2 x H4 x C2 C1

LCZ 10 x x H1 H4 H3 H4 H4 x x x x H2 H1
LCZ A

C2
C1 C2 C2 C2 C4 C3 C4 x C2 x x C1 C3

LCZ B x C3 C3 C3 C1 x C3 x x C3
LCZ C C3 x C4 C1

C4
H4 H3 C3 x x x x x x

LCZ D C4 x C3 C2 C1 C2 C2 C1 C1 C1 C1 C3 C2
LCZ E x H2 H1 H1 x x x x x x
LCZ F x C4 C3 H3 H4 C4 x x x x x x
LCZ G C1 x C1 H1 H1 C1 C4 C1 x x x x C2 H3

1 MODIS: Moderate Resolution Imaging Spectroradiometer. 2 FY: FengYun. 3 ASTER: Advanced Spaceborne Thermal Emission and Reflection Radiometer. 4 DTR: diurnal temperature range.
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Direct comparisons of the specific results between cities and studies are quite challenging because
of the differences in city selection, climate, weather condition, instrument, data quality, observation
period, spatiotemporal resolution and frequency, and the nature of LCZs [15,22]. Therefore, general
trends, rather than values in degree, were analyzed based on the rank order of LCZs in terms of mean
values and deviations of temperatures.

First, the built-up zones were typically warmer than the land cover zones—LCZ 10 (heavy
industry), LCZ 7 (lightweight low-rise), and LCZ 8 (large low-rise) were mostly recognized as the
warmest due to the large anthropogenic heat release and high fractions of impervious and building
surfaces and roofs, followed by LCZs 1–3 (compact high-, mid-, or low-rise), while the vegetated types
(LCZs A–D) generated lower temperatures due to evapotranspiration and shade, further underlining
the role of vegetation in cooling, which was weakened with the defoliation and crop harvesting
(consistent between this study and previous studies, Table 5). Regarding LCZ G (water), in comparison
to other built-up types, Cai et al. and Yang et al. reported higher ATs and LSTs at night in Shanghai,
Hangzhou, and Nanjing (Yangtze River Delta, south of China), explained by the large heat capacity
slowing down the nighttime cooling [22,31]. However, this study showed LCZ G to be consistently
cooler in Beijing (north of China, much drier than Yangtze River Delta), although its magnitude of
difference from other LCZs was reduced at night due to the smaller cooling rate (reaching a consensus
on the lowest DTR of LCZ G with previous studies [38,75]). Similarly, Wang et al. recorded LCZ G as
the coolest zone during both the day (10:30 am) and night (10:30 pm) in Las Vegas, an arid city in the
United States [33], while the LSTs of LCZ G in the Pearl River Delta (south of China) were shown as
moderate at night (10:30 pm) [32]. Therefore, the thermal contrast of LCZ G can also be attributed to
different geolocations and surroundings, climates (especially relative humidity), and the surface–air
interactions within a diurnal cycle, besides the water properties, which require further investigation.

Second, compact built-up zones were basically warmer than open built-up zones because of a larger
amount of heat trapped in the canyons and anthropogenic heat continually produced [68]. Among the
standard built-up zones, LCZ 4 (open high-rise) was mostly documented to have lower temperatures
during the day due to the open canyons, vegetation, shade, and wind pathways that contribute to heat
dissipation [22,30,33,35,64,65,76], while LCZ 3.5 (extremely open high-rise), a supplementary class
defined in this study, showed even lower LSTs than LCZ 4 in Beijing (Figure 6). A similar trend was
also observed between LCZ 4.5 (extremely open mid-rise) and LCZ 5 (open mid-rise), confirming that a
lower building density with more pervious surfaces helps ventilation and temperature cooling [16,31].
However, LCZ 2.5 (extremely compact low-rise) showed lower, rather than higher, LSTs than LCZ
3 (compact low-rise) in this study (Figure 6), owing to the effects of building typology. Specifically,
LCZ 2.5 mainly has an aligned-terrace typology within the third loop in Beijing [35], which generates
lower temperatures than the pavilion, semi-court, and court typologies [27] that are the primary layout
patterns in LCZ 3 in Beijing [35]. Regarding the building height, the ranking of LCZs 1–3 or 4–6 was
quite variable among cities. Some showed a warming trend with the building height [18,77], whereas
some exhibited a gradual temperature increase from high-rise to low-rise zones during the day but a
reversed sequence at night because of a larger cooling rate of the lower building height with higher
SVFs [33]. Some reported higher LSTs for mid-rise zones than the high- or low-rise zones during the
day and night (this study and [25,41]), due to less shade than in high-rise zones and lower SVFs than
in low-rise zones, which hinder surface cooling. Moreover, the sequence of the high-, mid-, or low-rise
zones may differ seasonally, as shown in this study (Figure 7). Despite these differences, a similar DTR
pattern was derived, i.e., lower or higher DTRs corresponded to high- or low-rise buildings (this study
and [16]). Further research, such as numerical model simulations, should be conducted to facilitate the
understanding of the comprehensive effects of building height and density (commonly combined with
materials) on daily and annual temperature cooling and warming patterns, which would support the
three-dimensional land planning, while decreasing UHI effects.

Third, intra-LCZ differences were commonly found in different cities at varied intensities.
In general, stronger variability emerged during the summer and the day than during the winter and
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the night (consistent between this study and previous trends [17,18]). Geletič et al. reported that LCZ 8
had the largest spatial variability attributed to varied thermal properties of the large roof materials in
Brno and Prague, Czech Republic [25], while this study found LCZ G with the strongest intra-class
variability because of the significantly different thermal behavior of lakes and rivers, as well as different
water characteristics (e.g., depth, rate of flow) in Beijing. Except the above mentioned trends, no clear
pattern was detectable for intra-LCZ variability in this study and the other studies that were based
on realistic measurements. This is because the factors and mechanisms are very complex, including
not only the limitations of the LCZ scheme in distinguishing the configurations of elements [27], but
also the environmental differences of each LCZ unit, such as the relief, traffic, coast, and adjacent
land use [16,18,27], and the uncertainties induced by model errors (e.g., LCZ classification and LST
fusion and retrieval), missing data, and weather. Note that the impact of thermal anisotropy [53,54]
was suppressed to some extent in this study due to the diurnal modeling and multi-temporal average
process that integrated varied viewing geometry and solar angles [25]. The intra-LCZ differences lead
to varied UHI intensities when selecting different monitoring samples of the same class, which conflicts
with the original purpose of the LCZ design; therefore, deeper examination on the multiple aspects of
the intra-LCZ variability is under preparation.

Finally, the LST-based studies (including this one) revealed a higher magnitude of differences
among LCZs than the AT-based studies [41], owing to the greater heterogeneity of surface temperatures
responding to strong heat flux with larger fluctuations over varied thermal properties of the
surface [78,79], particularly at a high spatial resolution. This also led to larger LST variability
among LCZs during the day than at night (except in winter) (this study and [32,33]), whereas a
contrast day-night pattern emerged for the inter-LCZ differences in ATs, i.e., stronger after sunset
when different cooling rates are pronounced and weaker during the daytime when advection is
pronounced [18,22]. These diurnal variations in the LST-AT relationship further explain why this
study, in terms of LSTs, found that the compact built-up zones (LCZs 1–3) had individually larger
DTRs than the open built-up zones (LCZs 4–6) at the same height, while Oke and Stewart found
the opposite for the ATs [16], considering that the compact zones are often warmer than the open
zones during day and night [17,22,25,41]. Additionally, distinct methodology (i.e., remote sensing
over Beijing (this study) versus a model simulation over a simplified city [16]) may also contribute to
this disagreement. Even though DTRs have been correlated to factors such as the climate, vegetation
fraction (negative), impervious surface fraction (positive), soil moisture (negative), canyon aspect ratio
(negative), and synoptic condition (e.g., cloud and precipitation, negative) [2,58,79], examination of
their combined impacts is still rare. In particular, limited research has documented DTRs of different
LCZs (combination of multiple indicators) from the aspect of LSTs; hence, further comparisons are
not available in this study. Note that the remotely sensed LST-based studies cannot be compared
equally to the in situ AT-based studies because the LSTs and ATs can be greatly different both in space
and time [36], attributed to different driving mechanisms and measurement tools. This study does
not attempt to replace the AT-based studies but to provide valuable references for understanding the
surface temperature distribution and generation, and more ATs from vehicle traverses, automatic
weather stations, or volunteered measurements would be greatly helpful. The LST–AT relationship
over LCZs is far more complicated than described above, which requires further research but is beyond
the scope of the current study.

Overall, this study integrated the advantages of diversity in LCZ, spatial continuity in temperature,
and varied time scales characterizing the annual and diurnal temperature dynamics. The results agree
with the previous LST-based and AT-based studies in general; however, some differences were detected
due to varied climate features, morphologies, methods, data used, and surface-air interactions in
individual cities and studies. Therefore, further tests, model development, and local modifications at
different spatial and temporal scales are required.
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5.3. Implications for Public Health

UHIs lead to environmental changes, such as the regional temperature and precipitation, water
and air quality, and vegetation growth [5,8,11,80–82], which significantly affect public health, such as
the thermal comfort, mental health, direct heat-related mortality, and incidence of climate-mediated
and triggered diseases [6,83–89], particularly for the elderly, outdoor workers, and singles and in
population-concentrated areas [83]. Urban forms and functions (e.g., compactness and greenness) are
key factors driving the spatiotemporal variation of UHIs [4,5,9–11] (as demonstrated in this study),
and thus most likely pose significant influences on public health [90]. However, this study does not try
to quantify the morphology–health or coverage–health, or LST–health or UHI–health relationships, but
only attempts to discover the multi-temporal morphology/coverage–LST/UHI relationship to better
guide urban planning and management for minimizing the negative thermal impacts of urbanization
that include those on public health.

Results indicate that the compact built-up (LCZs 1–3 and 7) and large low-rise (LCZ 8) types
generate the strongest UHIs, which should be paid more attention during the urban planning process,
while the sparsely built (LCZ 9) area is the most favorable type, showing the weakest UHIs among
the built-up types. Green spaces (LCZs A–D) and water bodies (LCZ G) can mitigate the UHI
phenomenon but are less effective during the winter and nighttime. It should be clarified that this
study is mainly concentrated on LSTs and surface UHIs rather than ATs and atmospheric UHIs that
are widely considered in relation to the health issues. However, given the close interactions between
LSTs and ATs, these general findings may also be applied to the outdoor thermal comfort (consistent
with [91,92]), but with a stronger intra-LCZ variability due to microclimatic impacts [27]. Studies also
reveal that high outdoor temperatures increase indoor temperatures in general [93–95]. However, the
relationship is very complex and affected by factors such as the type of buildings, socioeconomic status,
individual behaviors, neighborhoods, and elevations [93]. Therefore, the findings of this study can only
provide ambient temperature conditions at the block level for the indoor thermal comfort estimation.

As a matter of fact, satellite-derived LSTs can be adopted to estimate spatial distributions of ATs
using physical or statistical models [26,96–100], which can then be used for assessing their impacts
to public health quantitatively. However, this study lacks statistical data on disease incidence and
mortality rate occurring in the study area (confidential to publics) to connect LSTs or LST-estimated
ATs with actual health outcome data in different urban settings, even though it could provide a deeper
understanding of the spatiotemporal influence of urban factors on public health at the local scale.

Furthermore, heat risk may be estimated using the LST and UHI data as a hazard layer and the
buildings (e.g., CSM or LCZ map) and demographic and socioeconomic data (e.g., age, education,
occupation, income, marital status, life style, and cooling devices) as exposure and vulnerability
layers [101,102]. Unfortunately, the demographic and socioeconomic data are only partially available
at a district level, which hardly supports this study at a local scale. This is why this study mainly
focuses on analyzing the climatic prerequisites [89] in different urban settings, which helps indicate
areas of higher or lower heat exposure and potentially refer to areas of higher or lower heat risk when
the socioeconomic vulnerability is considered average. For example, compact built-up zones (LCZs
1–3) with the highest HIFs (67.7–77.7%, Figure 11) could increase health threats and overall energy
demand due to longer duration of exposure to warm and hot temperatures [103]. This is particularly
useful for public health preparedness during the extreme heat events [103].

Finally, several limitations exist when using satellite-derived LSTs for health studies. (1)
Satellite-derived LSTs are only proxies for heat exposure rather than actual heat exposure at the
height (i.e., 1.5 m above the ground) relevant to human health [103]. This differences are less important
over a long time frame and at night but more significant over a short term particularly during the
daytime [103] (also discussed in Section 5.2). Therefore, the implications of this study for public health
should be restricted to the nighttime findings at the annual, seasonal, and monthly scales. (2) The data
availability often limits the use of satellite-derived LSTs, considering the trade-off between spatial and
temporal resolutions, cloud contamination, and systematic errors [37]. This is particularly problematic
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in summer [4,37], when heat exposure is high. Although this study constructed hourly LST data by
blending multi-source satellite images, it did not recover cloud-contaminated pixels, and thus only
scenes on 29 dates were usable throughout a year, excluding the entire month of August (Table 2).
(3) Satellite-derived LSTs have been used to estimate daily maximum and minimum ATs [99,100,104]
that health-related exposure studies mainly focus on [105]. However, hour-specific ATs are rarely
mapped using LSTs at a high spatial resolution. Considering that some health-related indicators (e.g.,
blood pressure and pulse rate) are variable at a fine time scale (e.g., hourly) [103], the hourly 100-m
LST data of this study could be useful for the hourly estimation of ATs (by integrating time-varying
coefficients and predictor-related diurnal temperature parameters) [26], and further correlation with
such indicators [103].

6. Conclusions

Thermal characteristics of different LCZs were investigated in Beijing, China, at multiple time
scales (i.e., annual, seasonal, monthly, and diurnal). A total of 18 LCZs (including 15 standard and 3
supplementary classes) were constructed at the block level using a GIS-based method [35]. Hourly
LST datasets with a spatial resolution of 100 m were generated on 29 days in 2017–2018 by blending
Landsat, MODIS, and FY-2F LST data [37], based on which annual and diurnal cycle parameters of
LSTs, as well as HIF and CIFs, were calculated to quantify the inter- and intra-LCZ differences.

The results show comprehensive information on the multi-temporal thermal behavior of different
urban settings, which are mainly associated with the urban structure and surface cover properties. The
key findings can be summarized as follows: (1) in general, the warmest zones were identified as the
compact and mid or low-rise built-up types with little vegetation (LCZs 7, 8, 2, and 3), while the coolest
zones were recorded as the water and vegetated zones (LCZs G, A/B, C, and D); (2) LCZs 9, A/B, C, and
D showed a general seasonal pattern with smaller ATRs due to leaf abscission, crop harvesting, and
irrigation schedule, while the high-rise built-up zones (LCZs 1 and 4) had higher ATRs owing to the
seasonal changes in solar radiation through shade effects and convective heat dissipation ability; (3)
each LCZ exhibited the largest and smallest DTR in summer and winter, and the DTR was the highest
and lowest for the LCZs 2.5, 3, and 8 and A, B, and G, respectively; (4) both the inter- and intra-LCZ
differences were stronger during the summer and the day than during the winter and the night; and
(5) HIs were the most frequent summertime and daytime events for most built-up zones, while CIs
were more frequent in winter daytime and for the high-rise built-up zones (LCZs 1, 3.5, and 4). These
findings provide insight into climate-friendly urban planning towards sustainable city development.

Considering the significant but irregular intra-LCZ variability (e.g., Figure 7), partial explanation
of driving mechanisms by the five indicators (Section 5.1), and differences in inter-LCZ pattern from
previous studies (Section 5.2), further research may explore the physical mechanisms of the LCZ
behavior with advanced numerical models concerning the impacts of regional climates and weather
conditions, comprehensive effects of building density and height (and materials and layout), intra-LCZ
variability, and surface-air temperature interactions. Uncertainties related to the model errors and
missing data also remain open to further research.
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Appendix A

Table A1. Definition and indicators of each local climate zone (LCZ) [13,35]. The indicators used in this
study include sky view factor (SVF), building height (BH), building surface fraction (BSF), pervious
surface fraction (PSF), and impervious surface fraction (ISF).

LCZ Indicators LCZ Indicators

1 Compact high-rise

 

 

LCZ Indicators LCZ Indicators 
1   Compact high-rise 

 

SVF: 0.2–0.4 
BH(m): ≥25 
BSF(%): 40–60 
PSF%): <10 
ISF(%): 40–60 

8 Large low-rise SVF: ≥0.7 
BH(m): 3–10 
BSF(%): 30–50 
PSF(%): <20 
ISF(%): 40–50 

2   Compact mid-rise 

 

SVF: 0.3–0.6 
BH(m): 10–25 
BSF(%): 40–70 
PSF(%): <20 
ISF(%): 30–50 

9  Sparsely built SVF: ≥0.8 
BH(m): 3–10 
BSF(%): 10–20 
PSF(%): 60–80 
ISF(%): <20 

2.5 1 Extremely compact low-rise 

 

BH(m): 4–10 
BSF(%): ≥70 

10  Heavy industry SVF: 0.6–0.9 
BH(m): 5–15 
BSF(%): 20–30 
PSF(%): 40–50 
ISF(%): 20–40 

3   Compact low-rise 

 

SVF: 0.2–0.6 
BH(m): 3–10 
BSF(%): 40–70 
PSF(%): <30 
ISF(%): 20–50 

A  Dense trees SVF: <0.4 
BH(m): 3–30 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

3.5 1 Extremely open high-rise 

 

BH(m): ≥25 
BSF(%): 10–20 

B  Scattered trees SVF: 0.5–0.8 
BH(m): 3–15 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

4   Open high-rise 

 

SVF: 0.5–0.7 
BH(m): ≥25 
BSF(%): 20–40 
PSF(%): 30–40 
ISF(%): 30–40 

C  Bush, scrub SVF: 0.7–0.8 
BH(m): <2 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

4.5 1 Extremely open mid-rise 

 

BH(m): 10–25 
BSF(%): 10–20 

D  Low plants SVF: ≥0.9 
BH(m): <1 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

5   Open mid-rise 

 

SVF: 0.5–0.8 
BH(m): 10–25 
BSF(%): 20–40 
PSF(%): 20–40 
ISF(%): 30–50 

E  Bare rock/paved SVF: ≥0.9 
BH(m): <0.25 
BSF(%): <10 
PSF(%): <10 
ISF(%): ≥90 

6   Open low-rise 

 

SVF: 0.6–0.9 
BH(m): 3–10 
BSF(%): 20–40 
PSF(%): 30–60 
ISF(%): 20–50 

F  Bare soil or sand SVF: ≥0.9 

BH(m): <0.25 

BSF(%): <10 

PSF(%): ≥90 
ISF(%): <10 

7   Lightweight low-rise SVF: 0.2–0.5 
BH(m): 2–4 
BSF(%): 60–90 

G  Water SVF: ≥0.9 

BH(m): - 

SVF: 0.2–0.4
BH(m): ≥25
BSF(%): 40–60
PSF%): <10
ISF(%): 40–60

8 Large low-rise

 

 

LCZ Indicators LCZ Indicators 
1   Compact high-rise 

 

SVF: 0.2–0.4 
BH(m): ≥25 
BSF(%): 40–60 
PSF%): <10 
ISF(%): 40–60 

8 Large low-rise SVF: ≥0.7 
BH(m): 3–10 
BSF(%): 30–50 
PSF(%): <20 
ISF(%): 40–50 

2   Compact mid-rise 

 

SVF: 0.3–0.6 
BH(m): 10–25 
BSF(%): 40–70 
PSF(%): <20 
ISF(%): 30–50 

9  Sparsely built SVF: ≥0.8 
BH(m): 3–10 
BSF(%): 10–20 
PSF(%): 60–80 
ISF(%): <20 

2.5 1 Extremely compact low-rise 

 

BH(m): 4–10 
BSF(%): ≥70 

10  Heavy industry SVF: 0.6–0.9 
BH(m): 5–15 
BSF(%): 20–30 
PSF(%): 40–50 
ISF(%): 20–40 

3   Compact low-rise 

 

SVF: 0.2–0.6 
BH(m): 3–10 
BSF(%): 40–70 
PSF(%): <30 
ISF(%): 20–50 

A  Dense trees SVF: <0.4 
BH(m): 3–30 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

3.5 1 Extremely open high-rise 

 

BH(m): ≥25 
BSF(%): 10–20 

B  Scattered trees SVF: 0.5–0.8 
BH(m): 3–15 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

4   Open high-rise 

 

SVF: 0.5–0.7 
BH(m): ≥25 
BSF(%): 20–40 
PSF(%): 30–40 
ISF(%): 30–40 

C  Bush, scrub SVF: 0.7–0.8 
BH(m): <2 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

4.5 1 Extremely open mid-rise 

 

BH(m): 10–25 
BSF(%): 10–20 

D  Low plants SVF: ≥0.9 
BH(m): <1 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

5   Open mid-rise 

 

SVF: 0.5–0.8 
BH(m): 10–25 
BSF(%): 20–40 
PSF(%): 20–40 
ISF(%): 30–50 

E  Bare rock/paved SVF: ≥0.9 
BH(m): <0.25 
BSF(%): <10 
PSF(%): <10 
ISF(%): ≥90 

6   Open low-rise 

 

SVF: 0.6–0.9 
BH(m): 3–10 
BSF(%): 20–40 
PSF(%): 30–60 
ISF(%): 20–50 

F  Bare soil or sand SVF: ≥0.9 

BH(m): <0.25 

BSF(%): <10 

PSF(%): ≥90 
ISF(%): <10 

7   Lightweight low-rise SVF: 0.2–0.5 
BH(m): 2–4 
BSF(%): 60–90 

G  Water SVF: ≥0.9 

BH(m): - 

SVF: ≥0.7
BH(m): 3–10
BSF(%): 30–50
PSF(%): <20
ISF(%): 40–50

2 Compact mid-rise

 

 

LCZ Indicators LCZ Indicators 
1   Compact high-rise 

 

SVF: 0.2–0.4 
BH(m): ≥25 
BSF(%): 40–60 
PSF%): <10 
ISF(%): 40–60 

8 Large low-rise SVF: ≥0.7 
BH(m): 3–10 
BSF(%): 30–50 
PSF(%): <20 
ISF(%): 40–50 

2   Compact mid-rise 

 

SVF: 0.3–0.6 
BH(m): 10–25 
BSF(%): 40–70 
PSF(%): <20 
ISF(%): 30–50 

9  Sparsely built SVF: ≥0.8 
BH(m): 3–10 
BSF(%): 10–20 
PSF(%): 60–80 
ISF(%): <20 

2.5 1 Extremely compact low-rise 

 

BH(m): 4–10 
BSF(%): ≥70 

10  Heavy industry SVF: 0.6–0.9 
BH(m): 5–15 
BSF(%): 20–30 
PSF(%): 40–50 
ISF(%): 20–40 

3   Compact low-rise 

 

SVF: 0.2–0.6 
BH(m): 3–10 
BSF(%): 40–70 
PSF(%): <30 
ISF(%): 20–50 

A  Dense trees SVF: <0.4 
BH(m): 3–30 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

3.5 1 Extremely open high-rise 

 

BH(m): ≥25 
BSF(%): 10–20 

B  Scattered trees SVF: 0.5–0.8 
BH(m): 3–15 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

4   Open high-rise 

 

SVF: 0.5–0.7 
BH(m): ≥25 
BSF(%): 20–40 
PSF(%): 30–40 
ISF(%): 30–40 

C  Bush, scrub SVF: 0.7–0.8 
BH(m): <2 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

4.5 1 Extremely open mid-rise 

 

BH(m): 10–25 
BSF(%): 10–20 

D  Low plants SVF: ≥0.9 
BH(m): <1 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

5   Open mid-rise 

 

SVF: 0.5–0.8 
BH(m): 10–25 
BSF(%): 20–40 
PSF(%): 20–40 
ISF(%): 30–50 

E  Bare rock/paved SVF: ≥0.9 
BH(m): <0.25 
BSF(%): <10 
PSF(%): <10 
ISF(%): ≥90 

6   Open low-rise 

 

SVF: 0.6–0.9 
BH(m): 3–10 
BSF(%): 20–40 
PSF(%): 30–60 
ISF(%): 20–50 

F  Bare soil or sand SVF: ≥0.9 

BH(m): <0.25 

BSF(%): <10 

PSF(%): ≥90 
ISF(%): <10 

7   Lightweight low-rise SVF: 0.2–0.5 
BH(m): 2–4 
BSF(%): 60–90 

G  Water SVF: ≥0.9 

BH(m): - 

SVF: 0.3–0.6
BH(m): 10–25
BSF(%): 40–70
PSF(%): <20
ISF(%): 30–50

9 Sparsely built

 

 

LCZ Indicators LCZ Indicators 
1   Compact high-rise 

 

SVF: 0.2–0.4 
BH(m): ≥25 
BSF(%): 40–60 
PSF%): <10 
ISF(%): 40–60 

8 Large low-rise SVF: ≥0.7 
BH(m): 3–10 
BSF(%): 30–50 
PSF(%): <20 
ISF(%): 40–50 

2   Compact mid-rise 

 

SVF: 0.3–0.6 
BH(m): 10–25 
BSF(%): 40–70 
PSF(%): <20 
ISF(%): 30–50 

9  Sparsely built SVF: ≥0.8 
BH(m): 3–10 
BSF(%): 10–20 
PSF(%): 60–80 
ISF(%): <20 

2.5 1 Extremely compact low-rise 

 

BH(m): 4–10 
BSF(%): ≥70 

10  Heavy industry SVF: 0.6–0.9 
BH(m): 5–15 
BSF(%): 20–30 
PSF(%): 40–50 
ISF(%): 20–40 

3   Compact low-rise 

 

SVF: 0.2–0.6 
BH(m): 3–10 
BSF(%): 40–70 
PSF(%): <30 
ISF(%): 20–50 

A  Dense trees SVF: <0.4 
BH(m): 3–30 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

3.5 1 Extremely open high-rise 

 

BH(m): ≥25 
BSF(%): 10–20 

B  Scattered trees SVF: 0.5–0.8 
BH(m): 3–15 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

4   Open high-rise 

 

SVF: 0.5–0.7 
BH(m): ≥25 
BSF(%): 20–40 
PSF(%): 30–40 
ISF(%): 30–40 

C  Bush, scrub SVF: 0.7–0.8 
BH(m): <2 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

4.5 1 Extremely open mid-rise 

 

BH(m): 10–25 
BSF(%): 10–20 

D  Low plants SVF: ≥0.9 
BH(m): <1 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

5   Open mid-rise 

 

SVF: 0.5–0.8 
BH(m): 10–25 
BSF(%): 20–40 
PSF(%): 20–40 
ISF(%): 30–50 

E  Bare rock/paved SVF: ≥0.9 
BH(m): <0.25 
BSF(%): <10 
PSF(%): <10 
ISF(%): ≥90 

6   Open low-rise 

 

SVF: 0.6–0.9 
BH(m): 3–10 
BSF(%): 20–40 
PSF(%): 30–60 
ISF(%): 20–50 

F  Bare soil or sand SVF: ≥0.9 

BH(m): <0.25 

BSF(%): <10 

PSF(%): ≥90 
ISF(%): <10 

7   Lightweight low-rise SVF: 0.2–0.5 
BH(m): 2–4 
BSF(%): 60–90 

G  Water SVF: ≥0.9 

BH(m): - 

SVF: ≥0.8
BH(m): 3–10
BSF(%): 10–20
PSF(%): 60–80
ISF(%): <20

2.5 1 Extremely compact low-rise

 

 

LCZ Indicators LCZ Indicators 
1   Compact high-rise 

 

SVF: 0.2–0.4 
BH(m): ≥25 
BSF(%): 40–60 
PSF%): <10 
ISF(%): 40–60 

8 Large low-rise SVF: ≥0.7 
BH(m): 3–10 
BSF(%): 30–50 
PSF(%): <20 
ISF(%): 40–50 

2   Compact mid-rise 

 

SVF: 0.3–0.6 
BH(m): 10–25 
BSF(%): 40–70 
PSF(%): <20 
ISF(%): 30–50 

9  Sparsely built SVF: ≥0.8 
BH(m): 3–10 
BSF(%): 10–20 
PSF(%): 60–80 
ISF(%): <20 

2.5 1 Extremely compact low-rise 

 

BH(m): 4–10 
BSF(%): ≥70 

10  Heavy industry SVF: 0.6–0.9 
BH(m): 5–15 
BSF(%): 20–30 
PSF(%): 40–50 
ISF(%): 20–40 

3   Compact low-rise 

 

SVF: 0.2–0.6 
BH(m): 3–10 
BSF(%): 40–70 
PSF(%): <30 
ISF(%): 20–50 

A  Dense trees SVF: <0.4 
BH(m): 3–30 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

3.5 1 Extremely open high-rise 

 

BH(m): ≥25 
BSF(%): 10–20 

B  Scattered trees SVF: 0.5–0.8 
BH(m): 3–15 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

4   Open high-rise 

 

SVF: 0.5–0.7 
BH(m): ≥25 
BSF(%): 20–40 
PSF(%): 30–40 
ISF(%): 30–40 

C  Bush, scrub SVF: 0.7–0.8 
BH(m): <2 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

4.5 1 Extremely open mid-rise 

 

BH(m): 10–25 
BSF(%): 10–20 

D  Low plants SVF: ≥0.9 
BH(m): <1 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

5   Open mid-rise 

 

SVF: 0.5–0.8 
BH(m): 10–25 
BSF(%): 20–40 
PSF(%): 20–40 
ISF(%): 30–50 

E  Bare rock/paved SVF: ≥0.9 
BH(m): <0.25 
BSF(%): <10 
PSF(%): <10 
ISF(%): ≥90 

6   Open low-rise 

 

SVF: 0.6–0.9 
BH(m): 3–10 
BSF(%): 20–40 
PSF(%): 30–60 
ISF(%): 20–50 

F  Bare soil or sand SVF: ≥0.9 

BH(m): <0.25 

BSF(%): <10 

PSF(%): ≥90 
ISF(%): <10 

7   Lightweight low-rise SVF: 0.2–0.5 
BH(m): 2–4 
BSF(%): 60–90 

G  Water SVF: ≥0.9 

BH(m): - 

BH(m): 4–10
BSF(%): ≥70

10 Heavy industry

 

 

LCZ Indicators LCZ Indicators 
1   Compact high-rise 

 

SVF: 0.2–0.4 
BH(m): ≥25 
BSF(%): 40–60 
PSF%): <10 
ISF(%): 40–60 

8 Large low-rise SVF: ≥0.7 
BH(m): 3–10 
BSF(%): 30–50 
PSF(%): <20 
ISF(%): 40–50 

2   Compact mid-rise 

 

SVF: 0.3–0.6 
BH(m): 10–25 
BSF(%): 40–70 
PSF(%): <20 
ISF(%): 30–50 

9  Sparsely built SVF: ≥0.8 
BH(m): 3–10 
BSF(%): 10–20 
PSF(%): 60–80 
ISF(%): <20 

2.5 1 Extremely compact low-rise 

 

BH(m): 4–10 
BSF(%): ≥70 

10  Heavy industry SVF: 0.6–0.9 
BH(m): 5–15 
BSF(%): 20–30 
PSF(%): 40–50 
ISF(%): 20–40 

3   Compact low-rise 

 

SVF: 0.2–0.6 
BH(m): 3–10 
BSF(%): 40–70 
PSF(%): <30 
ISF(%): 20–50 

A  Dense trees SVF: <0.4 
BH(m): 3–30 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

3.5 1 Extremely open high-rise 

 

BH(m): ≥25 
BSF(%): 10–20 

B  Scattered trees SVF: 0.5–0.8 
BH(m): 3–15 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

4   Open high-rise 

 

SVF: 0.5–0.7 
BH(m): ≥25 
BSF(%): 20–40 
PSF(%): 30–40 
ISF(%): 30–40 

C  Bush, scrub SVF: 0.7–0.8 
BH(m): <2 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

4.5 1 Extremely open mid-rise 

 

BH(m): 10–25 
BSF(%): 10–20 

D  Low plants SVF: ≥0.9 
BH(m): <1 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

5   Open mid-rise 

 

SVF: 0.5–0.8 
BH(m): 10–25 
BSF(%): 20–40 
PSF(%): 20–40 
ISF(%): 30–50 

E  Bare rock/paved SVF: ≥0.9 
BH(m): <0.25 
BSF(%): <10 
PSF(%): <10 
ISF(%): ≥90 

6   Open low-rise 

 

SVF: 0.6–0.9 
BH(m): 3–10 
BSF(%): 20–40 
PSF(%): 30–60 
ISF(%): 20–50 

F  Bare soil or sand SVF: ≥0.9 

BH(m): <0.25 

BSF(%): <10 

PSF(%): ≥90 
ISF(%): <10 

7   Lightweight low-rise SVF: 0.2–0.5 
BH(m): 2–4 
BSF(%): 60–90 

G  Water SVF: ≥0.9 

BH(m): - 

SVF: 0.6–0.9
BH(m): 5–15
BSF(%): 20–30
PSF(%): 40–50
ISF(%): 20–40

3 Compact low-rise

 

 

LCZ Indicators LCZ Indicators 
1   Compact high-rise 

 

SVF: 0.2–0.4 
BH(m): ≥25 
BSF(%): 40–60 
PSF%): <10 
ISF(%): 40–60 

8 Large low-rise SVF: ≥0.7 
BH(m): 3–10 
BSF(%): 30–50 
PSF(%): <20 
ISF(%): 40–50 

2   Compact mid-rise 

 

SVF: 0.3–0.6 
BH(m): 10–25 
BSF(%): 40–70 
PSF(%): <20 
ISF(%): 30–50 

9  Sparsely built SVF: ≥0.8 
BH(m): 3–10 
BSF(%): 10–20 
PSF(%): 60–80 
ISF(%): <20 

2.5 1 Extremely compact low-rise 

 

BH(m): 4–10 
BSF(%): ≥70 

10  Heavy industry SVF: 0.6–0.9 
BH(m): 5–15 
BSF(%): 20–30 
PSF(%): 40–50 
ISF(%): 20–40 

3   Compact low-rise 

 

SVF: 0.2–0.6 
BH(m): 3–10 
BSF(%): 40–70 
PSF(%): <30 
ISF(%): 20–50 

A  Dense trees SVF: <0.4 
BH(m): 3–30 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

3.5 1 Extremely open high-rise 

 

BH(m): ≥25 
BSF(%): 10–20 

B  Scattered trees SVF: 0.5–0.8 
BH(m): 3–15 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

4   Open high-rise 

 

SVF: 0.5–0.7 
BH(m): ≥25 
BSF(%): 20–40 
PSF(%): 30–40 
ISF(%): 30–40 

C  Bush, scrub SVF: 0.7–0.8 
BH(m): <2 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

4.5 1 Extremely open mid-rise 

 

BH(m): 10–25 
BSF(%): 10–20 

D  Low plants SVF: ≥0.9 
BH(m): <1 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

5   Open mid-rise 

 

SVF: 0.5–0.8 
BH(m): 10–25 
BSF(%): 20–40 
PSF(%): 20–40 
ISF(%): 30–50 

E  Bare rock/paved SVF: ≥0.9 
BH(m): <0.25 
BSF(%): <10 
PSF(%): <10 
ISF(%): ≥90 

6   Open low-rise 

 

SVF: 0.6–0.9 
BH(m): 3–10 
BSF(%): 20–40 
PSF(%): 30–60 
ISF(%): 20–50 

F  Bare soil or sand SVF: ≥0.9 

BH(m): <0.25 

BSF(%): <10 

PSF(%): ≥90 
ISF(%): <10 

7   Lightweight low-rise SVF: 0.2–0.5 
BH(m): 2–4 
BSF(%): 60–90 

G  Water SVF: ≥0.9 

BH(m): - 

SVF: 0.2–0.6
BH(m): 3–10
BSF(%): 40–70
PSF(%): <30
ISF(%): 20–50

A Dense trees

 

 

LCZ Indicators LCZ Indicators 
1   Compact high-rise 

 

SVF: 0.2–0.4 
BH(m): ≥25 
BSF(%): 40–60 
PSF%): <10 
ISF(%): 40–60 

8 Large low-rise SVF: ≥0.7 
BH(m): 3–10 
BSF(%): 30–50 
PSF(%): <20 
ISF(%): 40–50 

2   Compact mid-rise 

 

SVF: 0.3–0.6 
BH(m): 10–25 
BSF(%): 40–70 
PSF(%): <20 
ISF(%): 30–50 

9  Sparsely built SVF: ≥0.8 
BH(m): 3–10 
BSF(%): 10–20 
PSF(%): 60–80 
ISF(%): <20 

2.5 1 Extremely compact low-rise 

 

BH(m): 4–10 
BSF(%): ≥70 

10  Heavy industry SVF: 0.6–0.9 
BH(m): 5–15 
BSF(%): 20–30 
PSF(%): 40–50 
ISF(%): 20–40 

3   Compact low-rise 

 

SVF: 0.2–0.6 
BH(m): 3–10 
BSF(%): 40–70 
PSF(%): <30 
ISF(%): 20–50 

A  Dense trees SVF: <0.4 
BH(m): 3–30 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

3.5 1 Extremely open high-rise 

 

BH(m): ≥25 
BSF(%): 10–20 

B  Scattered trees SVF: 0.5–0.8 
BH(m): 3–15 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

4   Open high-rise 

 

SVF: 0.5–0.7 
BH(m): ≥25 
BSF(%): 20–40 
PSF(%): 30–40 
ISF(%): 30–40 

C  Bush, scrub SVF: 0.7–0.8 
BH(m): <2 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

4.5 1 Extremely open mid-rise 

 

BH(m): 10–25 
BSF(%): 10–20 

D  Low plants SVF: ≥0.9 
BH(m): <1 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

5   Open mid-rise 

 

SVF: 0.5–0.8 
BH(m): 10–25 
BSF(%): 20–40 
PSF(%): 20–40 
ISF(%): 30–50 

E  Bare rock/paved SVF: ≥0.9 
BH(m): <0.25 
BSF(%): <10 
PSF(%): <10 
ISF(%): ≥90 

6   Open low-rise 

 

SVF: 0.6–0.9 
BH(m): 3–10 
BSF(%): 20–40 
PSF(%): 30–60 
ISF(%): 20–50 

F  Bare soil or sand SVF: ≥0.9 

BH(m): <0.25 

BSF(%): <10 

PSF(%): ≥90 
ISF(%): <10 

7   Lightweight low-rise SVF: 0.2–0.5 
BH(m): 2–4 
BSF(%): 60–90 

G  Water SVF: ≥0.9 

BH(m): - 

SVF: <0.4
BH(m): 3–30
BSF(%): <10
PSF(%): ≥90
ISF(%): <10

3.5 1 Extremely open high-rise

 

 

LCZ Indicators LCZ Indicators 
1   Compact high-rise 

 

SVF: 0.2–0.4 
BH(m): ≥25 
BSF(%): 40–60 
PSF%): <10 
ISF(%): 40–60 

8 Large low-rise SVF: ≥0.7 
BH(m): 3–10 
BSF(%): 30–50 
PSF(%): <20 
ISF(%): 40–50 

2   Compact mid-rise 

 

SVF: 0.3–0.6 
BH(m): 10–25 
BSF(%): 40–70 
PSF(%): <20 
ISF(%): 30–50 

9  Sparsely built SVF: ≥0.8 
BH(m): 3–10 
BSF(%): 10–20 
PSF(%): 60–80 
ISF(%): <20 

2.5 1 Extremely compact low-rise 

 

BH(m): 4–10 
BSF(%): ≥70 

10  Heavy industry SVF: 0.6–0.9 
BH(m): 5–15 
BSF(%): 20–30 
PSF(%): 40–50 
ISF(%): 20–40 

3   Compact low-rise 

 

SVF: 0.2–0.6 
BH(m): 3–10 
BSF(%): 40–70 
PSF(%): <30 
ISF(%): 20–50 

A  Dense trees SVF: <0.4 
BH(m): 3–30 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

3.5 1 Extremely open high-rise 

 

BH(m): ≥25 
BSF(%): 10–20 

B  Scattered trees SVF: 0.5–0.8 
BH(m): 3–15 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

4   Open high-rise 

 

SVF: 0.5–0.7 
BH(m): ≥25 
BSF(%): 20–40 
PSF(%): 30–40 
ISF(%): 30–40 

C  Bush, scrub SVF: 0.7–0.8 
BH(m): <2 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

4.5 1 Extremely open mid-rise 

 

BH(m): 10–25 
BSF(%): 10–20 

D  Low plants SVF: ≥0.9 
BH(m): <1 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

5   Open mid-rise 

 

SVF: 0.5–0.8 
BH(m): 10–25 
BSF(%): 20–40 
PSF(%): 20–40 
ISF(%): 30–50 

E  Bare rock/paved SVF: ≥0.9 
BH(m): <0.25 
BSF(%): <10 
PSF(%): <10 
ISF(%): ≥90 

6   Open low-rise 

 

SVF: 0.6–0.9 
BH(m): 3–10 
BSF(%): 20–40 
PSF(%): 30–60 
ISF(%): 20–50 

F  Bare soil or sand SVF: ≥0.9 

BH(m): <0.25 

BSF(%): <10 

PSF(%): ≥90 
ISF(%): <10 

7   Lightweight low-rise SVF: 0.2–0.5 
BH(m): 2–4 
BSF(%): 60–90 

G  Water SVF: ≥0.9 

BH(m): - 

BH(m): ≥25
BSF(%): 10–20

B Scattered trees

 

 

LCZ Indicators LCZ Indicators 
1   Compact high-rise 

 

SVF: 0.2–0.4 
BH(m): ≥25 
BSF(%): 40–60 
PSF%): <10 
ISF(%): 40–60 

8 Large low-rise SVF: ≥0.7 
BH(m): 3–10 
BSF(%): 30–50 
PSF(%): <20 
ISF(%): 40–50 

2   Compact mid-rise 

 

SVF: 0.3–0.6 
BH(m): 10–25 
BSF(%): 40–70 
PSF(%): <20 
ISF(%): 30–50 

9  Sparsely built SVF: ≥0.8 
BH(m): 3–10 
BSF(%): 10–20 
PSF(%): 60–80 
ISF(%): <20 

2.5 1 Extremely compact low-rise 

 

BH(m): 4–10 
BSF(%): ≥70 

10  Heavy industry SVF: 0.6–0.9 
BH(m): 5–15 
BSF(%): 20–30 
PSF(%): 40–50 
ISF(%): 20–40 

3   Compact low-rise 

 

SVF: 0.2–0.6 
BH(m): 3–10 
BSF(%): 40–70 
PSF(%): <30 
ISF(%): 20–50 

A  Dense trees SVF: <0.4 
BH(m): 3–30 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

3.5 1 Extremely open high-rise 

 

BH(m): ≥25 
BSF(%): 10–20 

B  Scattered trees SVF: 0.5–0.8 
BH(m): 3–15 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

4   Open high-rise 

 

SVF: 0.5–0.7 
BH(m): ≥25 
BSF(%): 20–40 
PSF(%): 30–40 
ISF(%): 30–40 

C  Bush, scrub SVF: 0.7–0.8 
BH(m): <2 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

4.5 1 Extremely open mid-rise 

 

BH(m): 10–25 
BSF(%): 10–20 

D  Low plants SVF: ≥0.9 
BH(m): <1 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

5   Open mid-rise 

 

SVF: 0.5–0.8 
BH(m): 10–25 
BSF(%): 20–40 
PSF(%): 20–40 
ISF(%): 30–50 

E  Bare rock/paved SVF: ≥0.9 
BH(m): <0.25 
BSF(%): <10 
PSF(%): <10 
ISF(%): ≥90 

6   Open low-rise 

 

SVF: 0.6–0.9 
BH(m): 3–10 
BSF(%): 20–40 
PSF(%): 30–60 
ISF(%): 20–50 

F  Bare soil or sand SVF: ≥0.9 

BH(m): <0.25 

BSF(%): <10 

PSF(%): ≥90 
ISF(%): <10 

7   Lightweight low-rise SVF: 0.2–0.5 
BH(m): 2–4 
BSF(%): 60–90 

G  Water SVF: ≥0.9 

BH(m): - 

SVF: 0.5–0.8
BH(m): 3–15
BSF(%): <10
PSF(%): ≥90
ISF(%): <10

4 Open high-rise

 

 

LCZ Indicators LCZ Indicators 
1   Compact high-rise 

 

SVF: 0.2–0.4 
BH(m): ≥25 
BSF(%): 40–60 
PSF%): <10 
ISF(%): 40–60 

8 Large low-rise SVF: ≥0.7 
BH(m): 3–10 
BSF(%): 30–50 
PSF(%): <20 
ISF(%): 40–50 

2   Compact mid-rise 

 

SVF: 0.3–0.6 
BH(m): 10–25 
BSF(%): 40–70 
PSF(%): <20 
ISF(%): 30–50 

9  Sparsely built SVF: ≥0.8 
BH(m): 3–10 
BSF(%): 10–20 
PSF(%): 60–80 
ISF(%): <20 

2.5 1 Extremely compact low-rise 

 

BH(m): 4–10 
BSF(%): ≥70 

10  Heavy industry SVF: 0.6–0.9 
BH(m): 5–15 
BSF(%): 20–30 
PSF(%): 40–50 
ISF(%): 20–40 

3   Compact low-rise 

 

SVF: 0.2–0.6 
BH(m): 3–10 
BSF(%): 40–70 
PSF(%): <30 
ISF(%): 20–50 

A  Dense trees SVF: <0.4 
BH(m): 3–30 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

3.5 1 Extremely open high-rise 

 

BH(m): ≥25 
BSF(%): 10–20 

B  Scattered trees SVF: 0.5–0.8 
BH(m): 3–15 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

4   Open high-rise 

 

SVF: 0.5–0.7 
BH(m): ≥25 
BSF(%): 20–40 
PSF(%): 30–40 
ISF(%): 30–40 

C  Bush, scrub SVF: 0.7–0.8 
BH(m): <2 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

4.5 1 Extremely open mid-rise 

 

BH(m): 10–25 
BSF(%): 10–20 

D  Low plants SVF: ≥0.9 
BH(m): <1 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

5   Open mid-rise 

 

SVF: 0.5–0.8 
BH(m): 10–25 
BSF(%): 20–40 
PSF(%): 20–40 
ISF(%): 30–50 

E  Bare rock/paved SVF: ≥0.9 
BH(m): <0.25 
BSF(%): <10 
PSF(%): <10 
ISF(%): ≥90 

6   Open low-rise 

 

SVF: 0.6–0.9 
BH(m): 3–10 
BSF(%): 20–40 
PSF(%): 30–60 
ISF(%): 20–50 

F  Bare soil or sand SVF: ≥0.9 

BH(m): <0.25 

BSF(%): <10 

PSF(%): ≥90 
ISF(%): <10 

7   Lightweight low-rise SVF: 0.2–0.5 
BH(m): 2–4 
BSF(%): 60–90 

G  Water SVF: ≥0.9 

BH(m): - 

SVF: 0.5–0.7
BH(m): ≥25
BSF(%): 20–40
PSF(%): 30–40
ISF(%): 30–40

C Bush, scrub

 

 

LCZ Indicators LCZ Indicators 
1   Compact high-rise 

 

SVF: 0.2–0.4 
BH(m): ≥25 
BSF(%): 40–60 
PSF%): <10 
ISF(%): 40–60 

8 Large low-rise SVF: ≥0.7 
BH(m): 3–10 
BSF(%): 30–50 
PSF(%): <20 
ISF(%): 40–50 

2   Compact mid-rise 

 

SVF: 0.3–0.6 
BH(m): 10–25 
BSF(%): 40–70 
PSF(%): <20 
ISF(%): 30–50 

9  Sparsely built SVF: ≥0.8 
BH(m): 3–10 
BSF(%): 10–20 
PSF(%): 60–80 
ISF(%): <20 

2.5 1 Extremely compact low-rise 

 

BH(m): 4–10 
BSF(%): ≥70 

10  Heavy industry SVF: 0.6–0.9 
BH(m): 5–15 
BSF(%): 20–30 
PSF(%): 40–50 
ISF(%): 20–40 

3   Compact low-rise 

 

SVF: 0.2–0.6 
BH(m): 3–10 
BSF(%): 40–70 
PSF(%): <30 
ISF(%): 20–50 

A  Dense trees SVF: <0.4 
BH(m): 3–30 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

3.5 1 Extremely open high-rise 

 

BH(m): ≥25 
BSF(%): 10–20 

B  Scattered trees SVF: 0.5–0.8 
BH(m): 3–15 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

4   Open high-rise 

 

SVF: 0.5–0.7 
BH(m): ≥25 
BSF(%): 20–40 
PSF(%): 30–40 
ISF(%): 30–40 

C  Bush, scrub SVF: 0.7–0.8 
BH(m): <2 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

4.5 1 Extremely open mid-rise 

 

BH(m): 10–25 
BSF(%): 10–20 

D  Low plants SVF: ≥0.9 
BH(m): <1 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

5   Open mid-rise 

 

SVF: 0.5–0.8 
BH(m): 10–25 
BSF(%): 20–40 
PSF(%): 20–40 
ISF(%): 30–50 

E  Bare rock/paved SVF: ≥0.9 
BH(m): <0.25 
BSF(%): <10 
PSF(%): <10 
ISF(%): ≥90 

6   Open low-rise 

 

SVF: 0.6–0.9 
BH(m): 3–10 
BSF(%): 20–40 
PSF(%): 30–60 
ISF(%): 20–50 

F  Bare soil or sand SVF: ≥0.9 

BH(m): <0.25 

BSF(%): <10 

PSF(%): ≥90 
ISF(%): <10 

7   Lightweight low-rise SVF: 0.2–0.5 
BH(m): 2–4 
BSF(%): 60–90 

G  Water SVF: ≥0.9 

BH(m): - 

SVF: 0.7–0.8
BH(m): <2
BSF(%): <10
PSF(%): ≥90
ISF(%): <10

4.5 1 Extremely open mid-rise

 

 

LCZ Indicators LCZ Indicators 
1   Compact high-rise 

 

SVF: 0.2–0.4 
BH(m): ≥25 
BSF(%): 40–60 
PSF%): <10 
ISF(%): 40–60 

8 Large low-rise SVF: ≥0.7 
BH(m): 3–10 
BSF(%): 30–50 
PSF(%): <20 
ISF(%): 40–50 

2   Compact mid-rise 

 

SVF: 0.3–0.6 
BH(m): 10–25 
BSF(%): 40–70 
PSF(%): <20 
ISF(%): 30–50 

9  Sparsely built SVF: ≥0.8 
BH(m): 3–10 
BSF(%): 10–20 
PSF(%): 60–80 
ISF(%): <20 

2.5 1 Extremely compact low-rise 

 

BH(m): 4–10 
BSF(%): ≥70 

10  Heavy industry SVF: 0.6–0.9 
BH(m): 5–15 
BSF(%): 20–30 
PSF(%): 40–50 
ISF(%): 20–40 

3   Compact low-rise 

 

SVF: 0.2–0.6 
BH(m): 3–10 
BSF(%): 40–70 
PSF(%): <30 
ISF(%): 20–50 

A  Dense trees SVF: <0.4 
BH(m): 3–30 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

3.5 1 Extremely open high-rise 

 

BH(m): ≥25 
BSF(%): 10–20 

B  Scattered trees SVF: 0.5–0.8 
BH(m): 3–15 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

4   Open high-rise 

 

SVF: 0.5–0.7 
BH(m): ≥25 
BSF(%): 20–40 
PSF(%): 30–40 
ISF(%): 30–40 

C  Bush, scrub SVF: 0.7–0.8 
BH(m): <2 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

4.5 1 Extremely open mid-rise 

 

BH(m): 10–25 
BSF(%): 10–20 

D  Low plants SVF: ≥0.9 
BH(m): <1 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

5   Open mid-rise 

 

SVF: 0.5–0.8 
BH(m): 10–25 
BSF(%): 20–40 
PSF(%): 20–40 
ISF(%): 30–50 

E  Bare rock/paved SVF: ≥0.9 
BH(m): <0.25 
BSF(%): <10 
PSF(%): <10 
ISF(%): ≥90 

6   Open low-rise 

 

SVF: 0.6–0.9 
BH(m): 3–10 
BSF(%): 20–40 
PSF(%): 30–60 
ISF(%): 20–50 

F  Bare soil or sand SVF: ≥0.9 

BH(m): <0.25 

BSF(%): <10 

PSF(%): ≥90 
ISF(%): <10 

7   Lightweight low-rise SVF: 0.2–0.5 
BH(m): 2–4 
BSF(%): 60–90 

G  Water SVF: ≥0.9 

BH(m): - 

BH(m): 10–25
BSF(%): 10–20

D Low plants
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SVF: 0.2–0.4 
BH(m): ≥25 
BSF(%): 40–60 
PSF%): <10 
ISF(%): 40–60 

8 Large low-rise SVF: ≥0.7 
BH(m): 3–10 
BSF(%): 30–50 
PSF(%): <20 
ISF(%): 40–50 

2   Compact mid-rise 

 

SVF: 0.3–0.6 
BH(m): 10–25 
BSF(%): 40–70 
PSF(%): <20 
ISF(%): 30–50 

9  Sparsely built SVF: ≥0.8 
BH(m): 3–10 
BSF(%): 10–20 
PSF(%): 60–80 
ISF(%): <20 
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BSF(%): 10–20 

B  Scattered trees SVF: 0.5–0.8 
BH(m): 3–15 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

4   Open high-rise 

 

SVF: 0.5–0.7 
BH(m): ≥25 
BSF(%): 20–40 
PSF(%): 30–40 
ISF(%): 30–40 

C  Bush, scrub SVF: 0.7–0.8 
BH(m): <2 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

4.5 1 Extremely open mid-rise 

 

BH(m): 10–25 
BSF(%): 10–20 

D  Low plants SVF: ≥0.9 
BH(m): <1 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

5   Open mid-rise 

 

SVF: 0.5–0.8 
BH(m): 10–25 
BSF(%): 20–40 
PSF(%): 20–40 
ISF(%): 30–50 

E  Bare rock/paved SVF: ≥0.9 
BH(m): <0.25 
BSF(%): <10 
PSF(%): <10 
ISF(%): ≥90 

6   Open low-rise 

 

SVF: 0.6–0.9 
BH(m): 3–10 
BSF(%): 20–40 
PSF(%): 30–60 
ISF(%): 20–50 

F  Bare soil or sand SVF: ≥0.9 

BH(m): <0.25 

BSF(%): <10 

PSF(%): ≥90 
ISF(%): <10 

7   Lightweight low-rise SVF: 0.2–0.5 
BH(m): 2–4 
BSF(%): 60–90 

G  Water SVF: ≥0.9 

BH(m): - 

SVF: ≥0.9
BH(m): <1
BSF(%): <10
PSF(%): ≥90
ISF(%): <10

5 Open mid-rise
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1   Compact high-rise 

 

SVF: 0.2–0.4 
BH(m): ≥25 
BSF(%): 40–60 
PSF%): <10 
ISF(%): 40–60 

8 Large low-rise SVF: ≥0.7 
BH(m): 3–10 
BSF(%): 30–50 
PSF(%): <20 
ISF(%): 40–50 

2   Compact mid-rise 

 

SVF: 0.3–0.6 
BH(m): 10–25 
BSF(%): 40–70 
PSF(%): <20 
ISF(%): 30–50 

9  Sparsely built SVF: ≥0.8 
BH(m): 3–10 
BSF(%): 10–20 
PSF(%): 60–80 
ISF(%): <20 

2.5 1 Extremely compact low-rise 

 

BH(m): 4–10 
BSF(%): ≥70 

10  Heavy industry SVF: 0.6–0.9 
BH(m): 5–15 
BSF(%): 20–30 
PSF(%): 40–50 
ISF(%): 20–40 

3   Compact low-rise 

 

SVF: 0.2–0.6 
BH(m): 3–10 
BSF(%): 40–70 
PSF(%): <30 
ISF(%): 20–50 

A  Dense trees SVF: <0.4 
BH(m): 3–30 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

3.5 1 Extremely open high-rise 

 

BH(m): ≥25 
BSF(%): 10–20 

B  Scattered trees SVF: 0.5–0.8 
BH(m): 3–15 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

4   Open high-rise 

 

SVF: 0.5–0.7 
BH(m): ≥25 
BSF(%): 20–40 
PSF(%): 30–40 
ISF(%): 30–40 

C  Bush, scrub SVF: 0.7–0.8 
BH(m): <2 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

4.5 1 Extremely open mid-rise 

 

BH(m): 10–25 
BSF(%): 10–20 

D  Low plants SVF: ≥0.9 
BH(m): <1 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

5   Open mid-rise 

 

SVF: 0.5–0.8 
BH(m): 10–25 
BSF(%): 20–40 
PSF(%): 20–40 
ISF(%): 30–50 

E  Bare rock/paved SVF: ≥0.9 
BH(m): <0.25 
BSF(%): <10 
PSF(%): <10 
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6   Open low-rise 

 

SVF: 0.6–0.9 
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BSF(%): 20–40 
PSF(%): 30–60 
ISF(%): 20–50 

F  Bare soil or sand SVF: ≥0.9 

BH(m): <0.25 

BSF(%): <10 

PSF(%): ≥90 
ISF(%): <10 

7   Lightweight low-rise SVF: 0.2–0.5 
BH(m): 2–4 
BSF(%): 60–90 

G  Water SVF: ≥0.9 

BH(m): - 

SVF: 0.5–0.8
BH(m): 10–25
BSF(%): 20–40
PSF(%): 20–40
ISF(%): 30–50

E Bare rock/paved

 

 

LCZ Indicators LCZ Indicators 
1   Compact high-rise 

 

SVF: 0.2–0.4 
BH(m): ≥25 
BSF(%): 40–60 
PSF%): <10 
ISF(%): 40–60 

8 Large low-rise SVF: ≥0.7 
BH(m): 3–10 
BSF(%): 30–50 
PSF(%): <20 
ISF(%): 40–50 

2   Compact mid-rise 

 

SVF: 0.3–0.6 
BH(m): 10–25 
BSF(%): 40–70 
PSF(%): <20 
ISF(%): 30–50 

9  Sparsely built SVF: ≥0.8 
BH(m): 3–10 
BSF(%): 10–20 
PSF(%): 60–80 
ISF(%): <20 

2.5 1 Extremely compact low-rise 

 

BH(m): 4–10 
BSF(%): ≥70 

10  Heavy industry SVF: 0.6–0.9 
BH(m): 5–15 
BSF(%): 20–30 
PSF(%): 40–50 
ISF(%): 20–40 

3   Compact low-rise 

 

SVF: 0.2–0.6 
BH(m): 3–10 
BSF(%): 40–70 
PSF(%): <30 
ISF(%): 20–50 

A  Dense trees SVF: <0.4 
BH(m): 3–30 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

3.5 1 Extremely open high-rise 

 

BH(m): ≥25 
BSF(%): 10–20 

B  Scattered trees SVF: 0.5–0.8 
BH(m): 3–15 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

4   Open high-rise 

 

SVF: 0.5–0.7 
BH(m): ≥25 
BSF(%): 20–40 
PSF(%): 30–40 
ISF(%): 30–40 

C  Bush, scrub SVF: 0.7–0.8 
BH(m): <2 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

4.5 1 Extremely open mid-rise 

 

BH(m): 10–25 
BSF(%): 10–20 

D  Low plants SVF: ≥0.9 
BH(m): <1 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

5   Open mid-rise 

 

SVF: 0.5–0.8 
BH(m): 10–25 
BSF(%): 20–40 
PSF(%): 20–40 
ISF(%): 30–50 

E  Bare rock/paved SVF: ≥0.9 
BH(m): <0.25 
BSF(%): <10 
PSF(%): <10 
ISF(%): ≥90 

6   Open low-rise 

 

SVF: 0.6–0.9 
BH(m): 3–10 
BSF(%): 20–40 
PSF(%): 30–60 
ISF(%): 20–50 

F  Bare soil or sand SVF: ≥0.9 

BH(m): <0.25 

BSF(%): <10 

PSF(%): ≥90 
ISF(%): <10 

7   Lightweight low-rise SVF: 0.2–0.5 
BH(m): 2–4 
BSF(%): 60–90 

G  Water SVF: ≥0.9 

BH(m): - 

SVF: ≥0.9
BH(m): <0.25
BSF(%): <10
PSF(%): <10
ISF(%): ≥90
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Table A1. Cont.

LCZ Indicators LCZ Indicators

6 Open low-rise

 

 

LCZ Indicators LCZ Indicators 
1   Compact high-rise 

 

SVF: 0.2–0.4 
BH(m): ≥25 
BSF(%): 40–60 
PSF%): <10 
ISF(%): 40–60 

8 Large low-rise SVF: ≥0.7 
BH(m): 3–10 
BSF(%): 30–50 
PSF(%): <20 
ISF(%): 40–50 

2   Compact mid-rise 

 

SVF: 0.3–0.6 
BH(m): 10–25 
BSF(%): 40–70 
PSF(%): <20 
ISF(%): 30–50 

9  Sparsely built SVF: ≥0.8 
BH(m): 3–10 
BSF(%): 10–20 
PSF(%): 60–80 
ISF(%): <20 

2.5 1 Extremely compact low-rise 

 

BH(m): 4–10 
BSF(%): ≥70 

10  Heavy industry SVF: 0.6–0.9 
BH(m): 5–15 
BSF(%): 20–30 
PSF(%): 40–50 
ISF(%): 20–40 

3   Compact low-rise 

 

SVF: 0.2–0.6 
BH(m): 3–10 
BSF(%): 40–70 
PSF(%): <30 
ISF(%): 20–50 

A  Dense trees SVF: <0.4 
BH(m): 3–30 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

3.5 1 Extremely open high-rise 

 

BH(m): ≥25 
BSF(%): 10–20 

B  Scattered trees SVF: 0.5–0.8 
BH(m): 3–15 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

4   Open high-rise 

 

SVF: 0.5–0.7 
BH(m): ≥25 
BSF(%): 20–40 
PSF(%): 30–40 
ISF(%): 30–40 

C  Bush, scrub SVF: 0.7–0.8 
BH(m): <2 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

4.5 1 Extremely open mid-rise 

 

BH(m): 10–25 
BSF(%): 10–20 

D  Low plants SVF: ≥0.9 
BH(m): <1 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

5   Open mid-rise 

 

SVF: 0.5–0.8 
BH(m): 10–25 
BSF(%): 20–40 
PSF(%): 20–40 
ISF(%): 30–50 

E  Bare rock/paved SVF: ≥0.9 
BH(m): <0.25 
BSF(%): <10 
PSF(%): <10 
ISF(%): ≥90 

6   Open low-rise 

 

SVF: 0.6–0.9 
BH(m): 3–10 
BSF(%): 20–40 
PSF(%): 30–60 
ISF(%): 20–50 

F  Bare soil or sand SVF: ≥0.9 

BH(m): <0.25 

BSF(%): <10 

PSF(%): ≥90 
ISF(%): <10 

7   Lightweight low-rise SVF: 0.2–0.5 
BH(m): 2–4 
BSF(%): 60–90 

G  Water SVF: ≥0.9 

BH(m): - 

SVF: 0.6–0.9
BH(m): 3–10
BSF(%): 20–40
PSF(%): 30–60
ISF(%): 20–50

F Bare soil or sand

 

 

LCZ Indicators LCZ Indicators 
1   Compact high-rise 

 

SVF: 0.2–0.4 
BH(m): ≥25 
BSF(%): 40–60 
PSF%): <10 
ISF(%): 40–60 

8 Large low-rise SVF: ≥0.7 
BH(m): 3–10 
BSF(%): 30–50 
PSF(%): <20 
ISF(%): 40–50 

2   Compact mid-rise 

 

SVF: 0.3–0.6 
BH(m): 10–25 
BSF(%): 40–70 
PSF(%): <20 
ISF(%): 30–50 

9  Sparsely built SVF: ≥0.8 
BH(m): 3–10 
BSF(%): 10–20 
PSF(%): 60–80 
ISF(%): <20 

2.5 1 Extremely compact low-rise 

 

BH(m): 4–10 
BSF(%): ≥70 

10  Heavy industry SVF: 0.6–0.9 
BH(m): 5–15 
BSF(%): 20–30 
PSF(%): 40–50 
ISF(%): 20–40 

3   Compact low-rise 

 

SVF: 0.2–0.6 
BH(m): 3–10 
BSF(%): 40–70 
PSF(%): <30 
ISF(%): 20–50 

A  Dense trees SVF: <0.4 
BH(m): 3–30 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

3.5 1 Extremely open high-rise 

 

BH(m): ≥25 
BSF(%): 10–20 

B  Scattered trees SVF: 0.5–0.8 
BH(m): 3–15 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

4   Open high-rise 

 

SVF: 0.5–0.7 
BH(m): ≥25 
BSF(%): 20–40 
PSF(%): 30–40 
ISF(%): 30–40 

C  Bush, scrub SVF: 0.7–0.8 
BH(m): <2 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

4.5 1 Extremely open mid-rise 

 

BH(m): 10–25 
BSF(%): 10–20 

D  Low plants SVF: ≥0.9 
BH(m): <1 
BSF(%): <10 
PSF(%): ≥90 
ISF(%): <10 

5   Open mid-rise 

 

SVF: 0.5–0.8 
BH(m): 10–25 
BSF(%): 20–40 
PSF(%): 20–40 
ISF(%): 30–50 

E  Bare rock/paved SVF: ≥0.9 
BH(m): <0.25 
BSF(%): <10 
PSF(%): <10 
ISF(%): ≥90 

6   Open low-rise 

 

SVF: 0.6–0.9 
BH(m): 3–10 
BSF(%): 20–40 
PSF(%): 30–60 
ISF(%): 20–50 

F  Bare soil or sand SVF: ≥0.9 

BH(m): <0.25 

BSF(%): <10 

PSF(%): ≥90 
ISF(%): <10 

7   Lightweight low-rise SVF: 0.2–0.5 
BH(m): 2–4 
BSF(%): 60–90 

G  Water SVF: ≥0.9 

BH(m): - 

SVF: ≥0.9
BH(m): <0.25
BSF(%): <10
PSF(%): ≥90
ISF(%): <10

7 Lightweight low-rise
 

 

 

PSF(%): <30 
ISF(%): <20 

BSF(%): <10 

PSF(%): ≥90 
ISF(%): <10 

1 Supplementary classes defined in this study and classified merely by BH and BSF. LCZ 2.5 
(extremely compact low-rise) represents extremely dense mix of low-rise buildings on impervious 
cover; LCZ 3.5 (extremely open high-rise) represents extremely open arrangement of tall buildings on 
abundant pervious cover; LCZ 4.5 (extremely open mid-rise) represents extremely open arrangement 
of mid-rise buildings on abundant pervious cover. 

Appendix B 

The single-channel algorithm (used in this study) was developed by Jimenez-Munoz et al. [45,46]: 
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where T   is the surface temperature, BT   is the at-sensor brightness temperature in Kelvin, 2K  
equals 1321.08 K, Lλ  is the top of the atmosphere (TOA) spectral radiance (unit: W/(m2srµm)), equal 
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where 1K = 774.89 W/(m2srµm). 
The surface emissivity ε  was determined based on the normalized difference vegetation index 

( NDVI ) according to [106]: 

( )

0.9925 0
0.9230, 0 0.15

=
1.0094 0.047 ln , 0.15 0.727
0.9860, 0.727

NDVI
NDVI

NDVI NDVI
NDVI

ε

≤
 < ≤
 + < ≤
 >

，

 (A3) (A3) 

where NDVI  is derived from the corresponding Landsat-8 OLI data after atmospheric correction 
(the atmospheric profile parameters were estimated from the NASA Atmospheric Correction 
Parameter Calculator, https://atmcorr.gsfc.nasa.gov/). 

The three atmospheric functions 1 2 3, ,ψ ψ ψ   were determined statistically by the water vapor 
content (obtained from the MODIS water vapor products, http://earthdata.nasa.gov) according to a 
previous study [45]: 
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SVF: 0.2–0.5
BH(m): 2–4
BSF(%): 60–90
PSF(%): <30
ISF(%): <20

G Water
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1 Supplementary classes defined in this study and classified merely by BH and BSF. LCZ 2.5 
(extremely compact low-rise) represents extremely dense mix of low-rise buildings on impervious 
cover; LCZ 3.5 (extremely open high-rise) represents extremely open arrangement of tall buildings on 
abundant pervious cover; LCZ 4.5 (extremely open mid-rise) represents extremely open arrangement 
of mid-rise buildings on abundant pervious cover. 
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where NDVI  is derived from the corresponding Landsat-8 OLI data after atmospheric correction 
(the atmospheric profile parameters were estimated from the NASA Atmospheric Correction 
Parameter Calculator, https://atmcorr.gsfc.nasa.gov/). 

The three atmospheric functions 1 2 3, ,ψ ψ ψ   were determined statistically by the water vapor 
content (obtained from the MODIS water vapor products, http://earthdata.nasa.gov) according to a 
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SVF: ≥0.9
BH(m): -
BSF(%): <10
PSF(%): ≥90
ISF(%): <10

1 Supplementary classes defined in this study and classified merely by BH and BSF. LCZ 2.5 (extremely compact
low-rise) represents extremely dense mix of low-rise buildings on impervious cover; LCZ 3.5 (extremely open
high-rise) represents extremely open arrangement of tall buildings on abundant pervious cover; LCZ 4.5 (extremely
open mid-rise) represents extremely open arrangement of mid-rise buildings on abundant pervious cover.

Appendix B

The single-channel algorithm (used in this study) was developed by Jimenez-Munoz et al. [45,46]:

T =
T2

B
K2Lλ

[1
ε
(ψ1Lλ +ψ2) +ψ3

]
+ TB −

T2
B

K2
(A1)

where T is the surface temperature, TB is the at-sensor brightness temperature in Kelvin, K2 equals
1321.08 K, Lλ is the top of the atmosphere (TOA) spectral radiance (unit: W/(m2srµm)), equal to
DN10 × 3.3420 × 10−4+0.1− 0.29 (DN10 is the digital number of Landsat-8 band 10), ε is the surface
emissivity, and ψ1,ψ2,ψ3 are three atmospheric functions.

The brightness temperature TB was calculated according to the calibration parameters provided
in the metadata of Landsat images:

TB =
K2

ln(K1/Lλ + 1)
(A2)

where K1 = 774.89 W/(m2srµm).
The surface emissivity ε was determined based on the normalized difference vegetation index

(NDVI) according to [106]:

ε =


0.9925, NDVI ≤ 0
0.9230, 0 < NDVI ≤ 0.15
1.0094 + 0.047 ln(NDVI), 0.15 < NDVI ≤ 0.727
0.9860, NDVI > 0.727

(A3)

where NDVI is derived from the corresponding Landsat-8 OLI data after atmospheric correction (the
atmospheric profile parameters were estimated from the NASA Atmospheric Correction Parameter
Calculator, https://atmcorr.gsfc.nasa.gov/).

The three atmospheric functions ψ1,ψ2,ψ3 were determined statistically by the water vapor
content (obtained from the MODIS water vapor products, http://earthdata.nasa.gov) according to a
previous study [45]: 

ψ1

ψ2

ψ3

 =


0.04019 0.02916 1.01523
−0.38333 −1.50294 0.20324
0.00918 1.36072 −0.27514



ω2

ω
1

 (A4)

https://atmcorr.gsfc.nasa.gov/
http://earthdata.nasa.gov
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Figure A2. Flowchart of the BLEnding Spatiotemporal Temperature (BLEST) model [37]. (a) Two 
general steps: BLEST_annual and BLEST_diurnal; (b) the processes of BLEST_annual in details. 
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