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Abstract: Background: Adverse Childhood Experiences (ACEs), which include traumatic injury, are 
associated with poor health outcomes in later life, yet the biological mechanisms mediating this asso-
ciation are unknown. Neurocircuitry, immune system and hormone regulation differ from normal in 
adults reporting ACEs. These systems could be affected by epigenetic changes, including methylation 
of cytosine (5mC) in genomic DNA, activated by ACEs. Since 5mC levels influence gene expression 
and can be long-lasting, altered 5mC status at specific sites or throughout the genome is hypothesized 
to influence mental and physical outcomes after ACE(s). Human and animal studies support this, with 
animal models allowing experiments for attributing causality. Here we provide a lengthy introduction 
and background on 5mC and the impact of early life adversity. 
Objective: Next we address the issue of a mixture of cell types in saliva, the most accessible bio-
specimen for 5mC analysis. Typical human bio-specimens for 5mC analysis include saliva or buccal 
swabs, whole blood or types of blood cells, tumors and post-mortem brain. In children saliva is the 
most accessible biospecimen, but contains a mixture of keratinocytes and white blood cells, as do buc-
cal swabs. Even in saliva from the same individual at different time points, cell composition may dif-
fer widely. Similar issues affect analysis in blood, where nucleated cells represent a wide array of 
white blood cell types. Unless variations in ratios of these cells between each sample are included in 
the analysis, results can be unreliable. 
Methods: Several different biochemical assays are available to test for site-specific methylation levels ge-
nome-wide, each producing different information, with high-density arrays being the easiest to use, and bi-
sulfite whole genome sequencing the most comprehensive. We compare results from different assays and 
use high-throughput computational processing to deconvolve cell composition in saliva samples. 
Results: Here we present examples demonstrating the critical importance of determining the relative con-
tribution of blood cells versus keratinocytes to the 5mC profile found in saliva. We further describe a 
strategy to perform a reference-based computational correction for cell composition, and therefore to 
identify differential methylation patterns due to experience, or for the diagnosis of phenotypes that corre-
late between traits, such as hormone levels, trauma status and various mental health outcomes.  
Conclusion: Specific sites that respond to adversity with altered methylation levels in either blood 
cells, keratinocytes or both can be identified by this rigorous approach, which will then be useful as 
diagnostic biomarkers and therapeutic targets. 

Keywords: Adverse Childhood Experience (ACE), Illumina methylation BeadChip array, Methyl-binding pull-down, Bisulfite 
sequencing, Saliva cell composition, DNA methylation, Pediatric trauma. 

1. INTRODUCTION 

 The Adverse Childhood Experience study (ACE) demon-
strated that many types of childhood adverse experiences 
correlate with a multitude of chronic diseases in the adult 
leading to early death [1-4] (Fig. 1). ACEs include various 
forms of child abuse and household dysfunction, including 
intentional physical harm. Another form of negative early 
life experience is accidental traumatic injury. Traumatic  
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injury in children is common, the leading cause of death, and 
accounts for 34% to 39% of all deaths in children ages 1 to 
14 years [5]. Like ACE, survivors of accidental trauma can 
have dramatically altered mental and physical health 
throughout the lifespan [6]. Thus, abuse-inflicted trauma has 
particularly egregious effects, but injury regardless of inten-
tion may also lead to many types of mental disorders, such as 
Post-Traumatic Stress Disorder (PTSD) during childhood [6, 
7], or increased risk of PTSD as an adult [8, 9].  
 The biological basis for the long-term consequences of 
ACEs and traumatic injury is unknown, yet it seems logical 
to propose adverse experiences activate a biological program 
that plays out over the lifespan [10], such as the epigenetic 
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program, one component of which is DNA methylation. As 
proposed by Bruce McEwen in his "allostatic load" model 
[11], physiological systems likely to be impacted by early 
trauma are: brain circuitry, hormonal balance, and immune 
system (Fig. 2). Biomarkers have been sought for each of the 
systems involved [12], yet the fundamental underlying 
mechanism for trauma’s impact is unknown. In this paper, 
we will focus on one specific epigenetic event, methylation 
of cytosine (5mC), or DNA methylation, in the genome. 
 

 
Fig. (1). The ACE pyramid. This diagram shows relationships 
between Adverse Childhood Experience (ACE) and diseases, dis-
covered by Felitti et al. in their landmark 1998 paper [3], modified 
in Bearer et al. [10] and further re-designed here. These associa-
tions have been confirmed by 100s of subsequent studies. More 
information is posted on the website for the U.S. Centers for Dis-
ease Control (https://www.cdc.gov/violenceprevention/acestudy/). 
The biological basis by which ACE increases risk for disease across 
the lifespan is unknown (indicated by unknown link and gray ar-
rows), but epigenetic events, such as changes in DNA methylation 
levels of specific genes involved in immunity, hormone regulation 
and neurosystem development, are expected to occur. 

 During childhood, brain circuitry, hormonal balance and 
the immune system are still developing. This development 
involves the unfurling of a discrete program of epigenetic 
events, a fundamental element of which is DNA methylation. 
"Epigenetic" refers to chemical modifications of the genome 
that alter gene expression without changing the DNA se-
quence. This chemistry includes histone modifications, 
chromatin packaging alterations, transcription factor activa-
tion and repression, microRNA dynamics and DNA methyla-
tion levels. Here we focus on DNA methylation as it is 
proximal to the other epigenetic processes and is among the 
most accessible of the epigenetic events responsive to expe-
rience which influence gene expression [13, 14]. DNA 
methylation involves the enzymatic addition or removal of a 
covalently bound methyl group on the 5 position of the 
pyrimidine ring in cytosine within the genomic DNA se-
quence (Fig. 3; described in more detail below). 
 This epigenetic program occurs in all systems, with a 
common event being enzymatic methylation and demethyla-
tion of cytosines in nuclear DNA. Methylation is most dy-
namic during development, and changes may endure 
throughout the lifespan [15]. Dynamics during childhood 
makes DNA methylation particularly vulnerable to abnormal 
childhood experiences, such as ACEs or traumatic injury, 
with potentially different outcomes depending on the devel-
opmental stage of the epigenetic program at the time of in-
sult. Thus, such experience could interfere with the normal 
epigenetic program, and this interference may underlie the 
lifelong impact of traumatic experience in childhood.  
 In 2004 we proposed that a complex interplay between 
experience and genetics created a dynamical system: experi-
ence would trigger altered gene expression, which then af-
fects neurocircuitry formation, which then reciprocally influ-
ences both gene expression and behavior [16-18]. These 
ideas were inspired by work of Stephen Suomi [19, 20] and 
of Gilbert Gottlieb, reviewed in Bearer 2010 [21]. In the 
early 21st century, exploration of these ideas was empowered 
by the emerging sequence of the complete human genome, 

 
Fig. (2). Diagram of biological system interconnectivity. Adverse childhood experience including physical injury (trauma) are hypothe-
sized to alter DNA methylation and lead to negative outcomes. Biological systems most likely to be impacted by trauma include hormonal 
regulation and the immune and neural systems, all of which are inter-related and affect each other; and all of which are developing in early 
childhood. 
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its large amount of un-transcribed regions, and new informa-
tion about how gene expression is regulated by epigenetic 
events [22-24]. Another technical advance in the last 20 
years is the ability to image activity and track circuitry in the 
living brain with magnetic resonance imaging (MRI) in hu-
man, non-human primates and rodents. We demonstrated 
structural alterations of neuro-circuitry in the mesocortical 
limbic system in adult mice after life-long deregulation of 
the monoamine systems (serotonergic, dopaminergic and 
noradrenergic) through genetic manipulation of their re-
uptake transporters, targets of cocaine and of drugs for de-
pression, such as serotonin reuptake inhibitors [25-27]. 
These circuits and neuronal activity within the limbic system 
altered by early life stress in mouse experimental systems 
(Barto and Bearer et al., MS in preparation). In human, al-
terations in limbic system activity and volume of brain re-
gions have been found in adults who report abuse in child-
hood, reviewed in Hart [28]. Correlations between early life 
stress, brain activity patterns and epigenetic changes are an 
exciting frontier. 
 Studies in humans of the biological impact of childhood 
adversity are complicated by three major considerations: 
First, different types of adversity, such as neglect, abuse and 

trauma, are not well defined. As an example, for childhood 
maltreatment/abuse, there are at least 5 different types, al-
though the more abused children often suffer from more than 
one type [29]. Sexual abuse probably activates a different set 
of biological events than neglect [30, 31], the age of the 
child, the child’s relationship to the person inflicting harm, 
the timing and chronicity of abuse all influence outcomes in 
complicated ways, but many of these types of influence are 
difficult to document. Pediatric traumatic injury may be ac-
cidental or non-accidental (NAT) yet produce similar types 
of injuries, and conversely, different injuries may activate 
different processes thereby producing different outcomes. 
Abuse may be chronic, with multiple events occurring re-
peatedly over time, and thus resulting in a complex outcome 
dissimilar from a one-time accidental injury. ACEs include 
domestic violence and criminality, not often considered in 
the list of types of child abuse. Witnessing traumatic events 
or experiencing natural disasters is also traumatic. If there 
are common biological pathways leading to responses to 
trauma regardless of type of insult is unknown. Mitigating 
influences on the degree of a child's response to trauma, in-
cluding natural resiliency or context of the event, are just 
beginning to be defined, and often not included in reports of 
traumatic events. 

 
Fig. (3). Biochemical basis of DNA Methylation. DNA Methylation is one of the biochemical events that are changed by experience and 
affect gene expression. A. Methyl groups are added to the 5' position on cytosine in DNA from a methyl donor (i.e. SAM) by at least three 
enzymes, DNMT 1, 2 and 3. Removal of methyl groups is initiated by oxidation mediated by any of the TET enzymes converting the 5' 
methyl cytosine to 5' hydroxyl-cytosine. The hydroxyl-cytosine is subsequently removed by other enzymes. Some investigators argue that 
additional enzymes may initiate the removal process, or that removal may involve excision of the methylated cytosine from the DNA strand 
and replacement with an un-methylated cytosine via DNA repair enzymes. Importantly, methylation for some sites appears to be dynamic. 
This dynamic reversibility makes DNA methylation sites promising biomarkers of experience, and as targets for theoretical interventions.  
B. Methylation in promoter and enhancer regions influences gene expression by recruiting methyl-binding proteins that may interfere with 
transcription. Methyl-binding proteins may also recruit histones and lead to other mechanisms of transcriptional repression, including chro-
matin packaging. Methyl-binding domains from these proteins are useful in isolating methylated DNA from a mixture of DNA fragments 
useful for reduced representation whole genome methylation analysis. 
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 Second, the timing of the trauma probably influences the 
type and extent of the biological impact, yet often these are 
poorly reported and frequently rely on self-reports and anec-
dotal evidence rather than objective measures obtained at the 
time of trauma. We need better recording of traumatic events 
and biological measures at the time of injury.  
 Third, we still know very little about the time course of 
biological responses, i.e. how soon after the event(s) do they 
occur, how long do they last, do they resolve to the pre-
existing state or evolve to some other state. Little is known 
either about the impact of trauma on the methylome in the 
acute phase, or about the dynamics of 5mC status during 
recovery. 

2. BACKGROUND 
2.1. Evidence that 5mC is Altered by Early Life Experi-
ence 
 In this section, we will not attempt to provide a compre-
hensive literature review, but rather focus on a subset of 
studies that serve to exemplify the questions being addressed 
and ideas for next steps. Please refer to Table S1 in Supple-
mental Materials for a list of examples of human and animal 
studies that report 5mC changes with experience. Until re-
cently, studies performed with saliva as source have not been 
corrected for cell composition and thus may be unreliable 
[32]. In some cases, 5mC patterns identified in saliva were 
also found in separate, validation experiments performed 
with blood, and further confirmed in brain samples from a 
new cohort [33, 34], and thus these results are more likely to 
report reliable information. Altered methylation is expected 
to affect gene function based on many other studies [35]. 
While methylated genes are expected to be "turned off" and 
un-methylated to be expressed, this may not always be the 
case. In a few studies, correlation of methylated sites with 
RNA expression has been examined, and the degree of 
methylation in mammals does not consistently correlate with 
expression levels [36]. Rigorous verification of the effect of 
methylation of specific sites reportedly affected by early life 
adversity is lacking. Such verification would include cell 
culture experiments with methylated and un-methylated ex-
pression vectors, as has been done for methylation sites cor-
relating with diabetes metabolic memory [37]. 
 With these caveats in mind, much evidence supports the 
notion that child maltreatment alters 5mC profiles in children 
[38-42]. Early studies focused on individual candidate genes, 
while the recent explosion of NexGen sequencing and high-
density arrays is now allowing Epigenome-Wide Association 
Studies (EWAS) of 5mC sites throughout the genome. An 
initial focus was on promoters for genes involved in stress 
responses, particularly the glucocorticoid system and the 
hypothalamic-adrenal-pituitary axis (the glucocorticoid re-
ceptor (GR/NR3C1), the glucocorticoid releasing fac-
tor/hormone (CRF/CRH), and FKBP5, the FK506 binding 
protein 5, implicated in feedback regulation of GR with mu-
tations associated with PTSD and other mental health out-
comes after stress, including childhood trauma) and the sero-
tonergic system (serotonin transporter: SERT /5HTT), since 
stress is thought to be a major factor in outcomes of ACE. 
 A "conserved transcriptional response to adversity" in 
circulating leukocytes has been identified [43], which is 

likely to be regulated by 5mC. Methylation of the promoter 
for cortisol releasing factor/hormone (CRF/CRH) alters the 
expression of this peptide hormone and influences circulat-
ing cortisol levels-and thereby all of its downstream effects, 
including immune suppression and cognitive functioning in 
rodent models [44-46]. Increased methylation of the 
GR/NR3C1 gene is associated with child maltreatment [41, 
47-49] and with suicide victims with a history of child abuse 
[50].  
 Variations in mental health outcomes after adversity may 
in part be mediated by individual-specific single nucleotide 
polymorphisms in the genome, which may occur as far as 5 
genes away from the methylation site [51]. Such effect has 
been found for the glucocorticoid response elements and the 
FKBP5 gene. In children from the Bucharest Early Interven-
tion Project who were institutionalized at a very early age, 
buccal cells collected at age 12 displayed altered methylation 
of the serotonin transporter gene (5htt/sert/slc6a4) and 
Fkpb5 [52]. In a recent report of 5mC tested in saliva from 
maltreated children, altered levels of methylation were found 
in a large number of sites with significant p-values [38]. 
Among these were 5 sites in the first exon of Aldh2 (an en-
zyme that protects against oxidative stress), Ankk1 (a kinase 
associated with the dopamine system and mutated in some 
cases of schizophrenia) and glucocorticoid receptor gene, 
Nr3c1. Abnormal DNA methylation in the serotonin trans-
porter gene, 5htt/sert/slc6a4, has been associated with sexual 
abuse [31], and this could influence the brain as well as the 
GI tract, coagulation, the immune system and the brain. An-
other recent study suggests that some aspects of early life 
adversity, including 5mC levels in Fkbp4, Fkpb5, Nr3c1 and 
Nr3c2, may improve stress management in the adult [53], an 
idea reminiscent of Homberg and Lesch’s proposal that the 
long or short promoter alleles in the serotonin transporter 
may confer resilience [54]. This finding suggests that methy-
lation patterns may contain clues to resilience. 
 Socio-Economic Status (SES), which is suspected of 
producing high rates of stress in children [55, 56], has been 
controversially linked to altered 5mC patterns in whole 
blood [57, 58], although in many of the early studies using 
high-throughput-whole genome epigenetic (Epigenome-
Wide Association Study) (EWAS) analysis the importance 
of accounting for cell composition of the biospecimen is not 
always recognized [32]. These studies showed altered tran-
scriptional activity for cortisol-related and inflammatory 
genes in low versus high SES groups [55] and some of these 
changes appear to be correlated with methylation of a Gluco-
corticoid Response Element (GRE) in the gene for Kitlg 
[33]. These changes may underlie the findings of altered 
immunity in abused children where various serologic mark-
ers of immune activation, such a C-reactive protein [59], and 
depressed immune reactivity [60-64] are reported.  
 Finally, incarcerated male adults reporting early life ad-
versity have a consistent pattern of changes in methylation 
levels in EWAS studies [39]. Internationally adopted adoles-
cents, who were adopted as young children from conditions 
of poverty and deprivation, demonstrate altered 5mC profiles 
in 30 of 413,000 CpG sites as compared to adolescents 
raised in affluent American families [42].  
 Early life trauma heightens the risk for PTSD in adult-
hood, thus methylation changes identified in adults with 
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PTSD may have occurred in childhood, although evidence 
for this remains to be found. For example changes in expres-
sion of the pituitary adenyl cyclase-activating peptide, PACP 
[65, 66] found in adults with PTSD could be mediated by 
5mC alterations, possibly stimulated by corticoid response 
elements in response to cortisol levels [33]. Such changes 
may begin in childhood. An example of increased suscepti-
bility to PTSD from a single nucleotide polymorphism 
(SNP), rs717947, was found to associate with the gold-
standard diagnostic measure for PTSD in combat veterans, 
and with a methylation quantitative trait locus (meQTL) in 
female subjects from the Grady Trauma Project [67]. It is 
expected that such SNP-conferred susceptibility would also 
be found in children but has yet to be sought. 
 Retrospective reports of adversity have been important in 
the study of DNA methylation. However, the time between 
the event and the study leaves several questions to be an-
swered: How do early life events correlate with adult 5mC 
patterns? Is the impact direct or indirect, do changes evolve 
over time, and what is the role of resiliency and 5mC in 
those who report adversity and have normal (non-ACE) 5mC 
patterns? 
Factors that could influence results from these studies in-
clude 
- baseline methylation pattern of the child before the in-
jury/event(s) 
- type of biospecimen used and the cellular composition of 
each sample (saliva, blood, brain, other tissue) 
- type of methodology used to assay for methylation levels 
(whole genome bisulfite sequencing, (RRBS) representation 
sequencing, methylated DNA immunoprecipitation (aka, 
methyl-binding pull-down (MeDIP) sequencing), or high 
density arrays, such as the Illumina BeadChip arrays, etc. 
- age of the child when events occurred and the normal bio-
logical timing of 5mC changes during childhood 
- temporal relationship between the traumatic event and 
sample collection 
 Currently, the 5mC baseline for “normal” in any given 
child is unknown, making detection of a change after trauma 
difficult. This unknown baseline may be influenced by pre-
natal experience, the methylation patterns in the parents, and 
the age of the child. Studies of the Dutch famine, which oc-
curred towards the end of World War II, reported that indi-
viduals who were prenatally exposed to famine during 
the Dutch Hunger Winter in 1944-45 had, 6 decades later, 
less DNA methylation of the imprinted Igf2 gene compared 
with their unexposed, same-sex siblings [68]. Other exam-
ples of prenatal impact on methylation levels include the 
finding that maternal stress links to abnormal infant re-
sponses to acute stress [69], possibly mediated in part by 
altered methylation of the glucocorticoid receptor gene in the 
newborn, which is modified in babies of mothers with de-
pression [70]. Moreover, some evidence suggests that there 
may be trans-generational transmission of methylation levels 
either directly or indirectly through microRNA inheritance 
from both sperm and egg [71]. Intergenerational transmis-
sion of violence is recognized [72] and attributed to the be-
havior of parents, but could also be transmitted through in-

herited epigenetic processes, or acquired during intra-uterine 
development [73]. Finally, methylation patterns in the brain 
dramatically change during normal childhood [74], and con-
tinue to change across the lifespan. An epigenetic "clock" of 
aging based on evolving methylation profiles has been iden-
tified that is independent of experience, ethnicity, or sex 
[15]. Most exciting, changes in global methylation of regula-
tory regions for the DNA methyltransferase (Dnmt) genes, 
whose protein products add methyl groups to DNA, correlate 
with maternal care in the rat hippocampus [75], suggesting 
that early life experience affects the very machinery of de-
velopmental methylation. Expression of these genes appears 
to be highly regulated during development, both pre- and 
postnatal [76]. Thus early life stress may impact the normal 
"clock" and alter the development of immune, hormonal, and 
neural systems globally. 

2.2. DNA Methylation as a Biomarker 
 In this review, we are focusing on altered 5mC patterns 
as a major indicator and mediator of the impact of early life 
trauma on the lifespan. In this section, more detailed infor-
mation on the biochemical process of methylation is pro-
vided.  
 Covalent modification of DNA by addition of methyl 
groups was initially recognized in X-chromosome inactiva-
tion [77, 78]. The power of DNA methylation analysis as a 
method to detect gene expression is now being realized for 
cancer diagnosis and treatment [79, 80], and technology is 
being developed for that application that can be re-directed 
for studies of other disorders where epigenetic dynamics are 
suspected, such as brain development and the impact of early 
life experience [81]. DNA methylation in promoter and en-
hancer regions of genes regulates expression of their gene 
products (Fig. 3) [35], although some methylated sites may 
have other functions [82]. Methylated promoters are often 
repressed and may be activated by de-methylation [83]. 
Hence, alterations in DNA methylation levels are expected to 
influence expression levels of proteins or other gene prod-
ucts. Enzymes involved in methylating and demethylating 
DNA include the DNMTs and the Ten-eleven translocation 
methylcytosine dioxygenases (TETs) [84-86]. The TET en-
zymes convert the methyl to a hydroxyl group, and addi-
tional enzymes are needed to complete the process of de-
methylation once the methyl group is converted. These addi-
tional factors include Gadd45 [87] among others. Other 
mechanisms for 5mC removal include excision-repair proc-
esses by which the methylated nucleotide may be removed 
and replaced. 
 How these enzymes are activated and whether that activ-
ity is selective for specific genes or global across the genome 
are areas of intense investigation. One proposal is that breaks 
in DNA trigger activation of the TET enzymes, possibly 
through Gadd45 [88] and others suggest that an Activation-
Induced Deaminase (AID) is responsible for gene-specific 
rather than whole genome demethylation [89]. In the brain, a 
neuronal activity-induced DNA demethylase in the dentate 
gyrus of the adult mouse hippocampus may represent TET1 
activity [88, 90]. Studies in the Tet1-knockout mouse have 
shown that TET1 is critical for neuronal activity-regulated 
gene expression and memory extinction [91], that hydroxyla-
tion of 5mC by TET1 promotes active DNA demethylation 
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[90], and epigenetic priming of memory updating during 
reconsolidation attenuates remote fear memories [92]. Al-
though these studies were performed in the adult, they sug-
gest that 5mC changes in early life would promote adult vul-
nerability. Indeed evidence for a two-hit model for impact of 
early life stress on the epigenome has been found in a mouse 
experimental system for depression [93]. In this case, early 
life stress was induced by limited bedding in the post-natal 
period, which increased susceptibility to depressive behav-
iour after adult social defeat stress via long-lasting transcrip-
tional programming mediated by Otx2 [93]. 
 DNA methylation/demethylation regulates neuronal ar-
borization during post-natal development, as shown in the 
Dnmt3b knockout mouse [94]. In the absence of DNMT3b 
the normal stochastic expression of the protocadherin gene 
cluster, that regulates single neuron dendritic diversity in the 
cerebellum, is lacking. This loss results in abnormal den-
dritic trees in Purkinje cells [94]. Intriguingly, alternative 
splicing of the protocadherin cluster may also regulate ax-
onal tiling and global arborizations of the neuromodulatory 
serotonergic and noradrenergic systems that develop in early 
life. Conditional deletion of a domain in mouse protocad-
herin α (Pcdhα) gene cluster disrupts normal distribution of 
these systems in the hippocampus and ventral pallidum [95]. 
This coincides with changes in methylation of the protocad-
herin gene cluster in humans reporting early life adversity 
[96]. Dnmt promoter methylation and DNMT expression are 
altered in response to maternal care in the hippocampus of 
rats [75]. Taken together these observations suggest that if 
early life stress alters 5mC methylation, it could interfere 
with the development of the normal anatomy of neuromodu-
latory systems, impacting emotional experience and re-
sponse. 
 Critical to our ability to understand a DNA methylation 
(5mC) response to trauma is to determine when methylation 
changes occur in relation to the traumatic event, whether 
persistence leads to future pathology, whether any sites are 
unique to the type of trauma, and whether alterations persist 
or resolve to normal levels. These questions may best be 
resolved in animal experimental systems, where many of the 
variables that remain either unknown quantities or are un-
controllable confounders in human studies can be experi-
mentally determined. 
2.3. Animal Experimental Systems Provide Cause-effect 
Evidence for Childhood Adversity and Alterations in 
5mC Levels 
 Primate studies pioneered the relationships between envi-
ronment, genes and behavior with the work of Stephen 
Suomi, who applied Harry Harlow’s maternal deprivation 
protocol in rhesus monkeys to show an association between 
outcomes and allelic variation in the serotonin transporter 
gene [19, 97-100]. Even though primate research is under 
increased scrutiny, some studies are still being done. In par-
ticular now that the genomes have been reported for the 
vervet [101] and the marmoset (https://www.hgsc.bcm.edu/ 
non-human-primates/marmoset-genome-project) behavioral 
studies are on-going and will yield new insights into gene x 
environment interactions that may be more relevant to the 
human condition than current rodent systems [102, 103]. 
 Several types of experimental systems that test for the 
impact of early life stress in rodents have emerged [104], a 

few of which are naturalistic [105] while others are dramatic 
and abnormal. Perhaps the most naturalistic is the spontane-
ous behavior of mother rats who naturally, without experi-
mental manipulation, have either a low or high degree of 
maternal licking and grooming [106]. Pups of mothers with 
low grooming have lower cortisol levels and altered methy-
lation of the promoter in the gene encoding CRF/CRH com-
pared to high-groomed pups [44, 49, 50]. Other rodent pro-
tocols have been developed to replicate maternal neglect by 
depriving the dam of adequate bedding [107]. These off-
spring display elevated cortisol as adults and altered tran-
scriptional activity for the gene encoding CRF/CRH in the 
hypothalamus [107, 108]. These mice also show disrupted 
hippocampal microstructure by diffusion-weighted Magnetic 
Resonance Imaging (MRI) post-mortem [109].  
 Since ACE is a risk factor for vulnerability to PTSD, a 
number of studies have been done in animals towards dis-
covering the biological basis of that association. Rodent 
models of depression and anxiety with good face-, construct, 
and predictive validity when compared to the human condi-
tion include: Two rat lines (Finders Sensitive (FSL) and 
High Anxiety-Like Behavior (HAB) lines); two transgenic 
models (5-Htt knockout in mouse and rat), and the experi-
mentally provoked PTSD-like response induced by exposure 
to predator odor [110]. The 5-Htt (Sert) knockout mouse has 
been found to have altered limbic system circuitry in adoles-
cence in imaging studies using manganese-enhanced MRI 
[25]. Circuits from the prefrontal cortex into the deeper lim-
bic system are also altered in mice with life-long disruption 
of dopamine or noradrenergic systems [26, 27]. New work 
shows that these systems are also altered by exposure to in-
nate fear (predator odor) and by Early Life Stress (ELS), and 
that this alteration is greater in Sert knockout mice than in 
wild type (Barto, Bearer and Jacobs, MS in progress). 
Changes in circuitry of ELS-exposed mice replicate areas of 
altered neural activity induced by predator odor or by Sert 
knockout. 
 In rodents it is difficult to develop naturalistic experi-
ments that mimic all types of human child abuse, which in-
clude emotional abuse and neglect, as well as physical or 
sexual abuse. Perhaps the most successful are systems for 
neglect and for physical abuse. Methods to mimic maternal 
neglect in rodents include fragmented care systems, in which 
insufficient bedding is provided to the dam during nursing 
[107, 108] and other types of maternal deprivation as de-
scribed above. For physical harm, the adoptive dam model 
may prove the most promising model to harm by a parent on 
the child [111-114]. When rodent dams are given a pup from 
a mother of a different strain, the dam turns physically abu-
sive to the adopted pup [112, 115, 116]. These manipulations 
alter 5mC levels in the promoter of the Bdnf gene [111, 113, 
117, 118] that encodes the Brain-Derived Neurotrophic Fac-
tor (BDNF). Site-specific decrease in methylation in the 
exon IV of Bdnf correlates with prenatal exposure to predator 
odor, which presumably activated a fear response in the 
pregnant dam. 
 Life-long impacts of ACE on the rodent brain include 
altered anatomy of limbic system circuitry. These anatomical 
changes could be a consequence of fear-activated neuronal 
activity, which could abnormally stimulate neuronal cell 
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migrations, axonal sprouting and/or synaptic strength during 
brain development in young children. Any or all of these 
consequences could collude to alter the neuronal cell methy-
lome, thereby changing neuronal expression patterns and 
perpetuating circuitry abnormalities. Iteratively, these 
changes could beget one another in a vicious cycle.  
 Some evidence exists to support this idea of a vicious 
cycle. Notably mice carrying knockout of Tet1, one of the 
three hydroxylation enzymes, do not have changed expres-
sion levels of other gene products after fear conditioning as 
do wild-type mice [91], suggesting that stress-activated ex-
pression changes are mediated in part by the DNA methyla-
tion machinery; and in the case of hormonal regulation, al-
tered cortisol levels [29, 119-121], or other neural growth 
factors, such as BDNF, correlate with maltreatment [111]. 
For the hippocampus, the cold swim test in rodents induces 
alterations of c-Fos, Per1 and Sgk1 genes [122], which may 
be dependent on adrenalin rather than cortisol [123], and 
would influence neural activity, circuitry and secondarily 
behavior. 
 Animal experimental systems suffice for testing causal 
impact of some but not all experience-driven epigenetic 
events in human. Hence investigators must be prudent to 
choose the system carefully and compare results to human 
earlier rather than later. Because of the high evolutionary 
conservation of the limbic and monoaminergic systems, both 
at the molecular and structural levels, rodents may best be 
deployed to study conserved molecular mechanisms and 
anatomy rather than behavioral responses and outcomes, 
which are highly variable even in genetically identical mice, 
and differ greatly between rodents and humans. 

2.4. Methods to Assay for DNA Methylation 
 DNA methylation is perhaps the most biochemically ac-
cessible epigenetic event. Methylation is thought to influence 
transcriptional activity and chromosome packaging through 
recruitment of methyl-binding proteins. Methylation is quite 
stable in vitro and can be identified either by methyl-pull-
downs (MeDIP), by bisulfite conversion followed by DNA 
sequencing or by high-density array hybridization as in the 
Illumina BeadChips. MeDIP takes advantage of methyl-
binding proteins to pull-down methylated DNA fragments. A 
new method, recently reported, using targeted selection of 
highly differentially methylated sites across 25 different cell 
types shows promise [124] and could potentially be deployed 
to identify methylation dynamics in pre-clinical animal sys-
tems for which no array is available. These various assay 
methods can produce widely differing results, as will be dis-
cussed below. 
 The most common methylated nucleotide is cytosine, and 
cytosine followed by a guanine (CpG) is thought to be even 
more commonly methylated, although CA, CC and CT may 
also be methylated [74]. Conversion of the methyl group to a 
hydroxyl also occurs and may persist, and other nucleotides 
may also be methylated/hydroxylated. The human genome is 
47% CG, and 60-80% of these are methylated in mammals. 
Early work focused on analysis of methylated promoter re-
gions for candidate genes in genomic DNA, primarily using 
bisulfite conversion followed by Polymerase-Chain Reaction 
(PCR) amplification and sequencing of the products [125]. 

Bisulfite treatment converts un-methylated cytosines in the 
DNA to uracil but leaves methylcytosine unconverted (Fig. 
3). During polymerase-chain reaction amplification (PCR) 
the uracil is read as thymine (T), thus altering the sequence 
of the DNA. Hence when sequenced after bisulfite conver-
sion, methylated cytosines are preserved as C, and un-
methylated are converted to T. Pyrosequencing, while useful 
for short DNA segments (<200bp) of known sequences for 
clinical tests, is too intensive for efficient analysis of whole 
genome methylation levels [10]. One caveat to the bisulfite 
approach is the rare event of the C being already mutated to 
a T at particular sites. In this case, the "T" in the sequence 
would not evidence a methylated C. Thus, sequencing of the 
DNA without bisulfite treatment is necessary. 
 Since genomic DNA samples include material from a 
mixture of diploid human cells, both methylated and un-
methylated sites are present in resulting sequences. Saliva, 
buccal swabs, blood and post-mortem brain are all useful 
biospecimens for DNA extraction and all contain varying 
mixtures and differing ratios of cell types. Saliva is emerging 
as an especially accessible biospecimen from living children 
[126], but contains white blood cells as well as buccal 
keratinocytes in different proportions depending on the 
child's oral physiology at the time of collection. Microbes 
give little to no signal when alignments or probes are human-
specific. However, as will be shown below, accounting for 
the relative contributions to the methylation pattern of 
keratinocytes versus that of blood cells is critical in the 
analysis [32]. While a reference-free cell composition 
deconvolution algorithm is reported and incorporated into 
analysis software [127, 128], depending on the size and vari-
ability of the dataset, the algorithm may inaccurately esti-
mate the relative components of the samples. As will be 
shown below, the emerging wealth of the Genome Expres-
sion Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) 
databank provides cell-specific 5mC measurements, which 
may be used for a reference-based approach. Care must be 
taken to use data from the same detection approach (bisulfite 
sequencing, Illumina BeadChip, etc.) when using GEO ref-
erence data. 
 Methylation levels are typically reported as percent 
methylated, i.e. what proportion of the DNA at each site was 
C (methylated) versus T (un-methylated) in bisulfite se-
quencing. A serious drawback for whole genome methyla-
tion analysis by bisulfite sequencing is that the converted 
DNA sequence is challenging to align with standard genomic 
sequence databases, especially as it contains a mixture of 
sequences, and the number of potential sites is enormous. 
Often the DNA fragments obtained (75-200bp) are long 
enough to have multiple methylation sites, all with partially 
converted sequences. Similarly, methyl-binding pull-downs 
result in enrichment for heavily methylated sites, especially 
those in centromeres, telomeres and gene bodies, and not in 
the low-methylated sites in the more dynamic promoter-
enhancer and transcriptional regulatory regions. An alterna-
tive method to MeDIP is reduced RRBS [23]. In this case, 
the genomic DNA is digested using a methylation-
insensitive enzyme, such as Msp1, which targets 5’CCGG3’ 
sequences. After addition of methylated adaptors to each end 
of the sized fragments, the DNA is bisulfite-converted and 
PCR amplified. Resultant fragments can be sequenced. Simi-
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lar to MeDIP or whole-genome bisulfite sequencing, align-
ments of the resulting sequences to the standardized human 
genome may be complicated by the sequence conversions 
[129]. 
 The lack of a high density BeadChip array for rodent 
genomes has limited whole genome methylation analysis for 
the ACE models described above. These models have been 
tested for impact on 5mC in four main ways: 1) Bisulfite 
pyrosequencing or PCR of candidate loci/genes; 2) RRBS; 3) 
MeDIP followed by either sequencing or Affymetrix mouse 
genome promoter chip array. Examples of sites in candidate 
genes are Bdnf and Crf/Crh (Table S1 in Supplemental Ma-
terial); 4) transgenic animals lacking methylation machinery, 
such as Tet and Dnmt knockouts. 
 RRBS has been applied to identify differentially methy-
lated sites in mouse [130], although this approach has not 
been applied to early life adversity to our knowledge. In ad-
dition to the difficulty aligning bisulfite-converted sequences 
to template DNA, there is also the drawback that bisulfite 
treatment poses problems for sequencing machines, which 
produce orders of magnitude fewer sequences than expected 
for each run of bisulfite-converted genomic DNA.  
 Others have used Affymetrix mouse promoter arrays to 
identify DNA sequences after MeDIP [36]. For the 5-
htt(sert/slc6a4)-knockout mouse, prenatal stress results in a 
re-programming of promoter DNA methylation in at least 25 
genes genome-wide in the hippocampus at 3 months of age. 
This discovery was made using the MeDIP procedure fol-
lowed by GeneChip Mouse Promoter tiling arrays [36]. 
These findings will prove exciting for future explorations 
where the power of mouse genetics, tools for manipulation 
of the mouse genome, and a vast array of transgenic lines 
can be coupled with robust experimental procedures to in-
duce early life stress.  
 The large number of potentially methylated sites has one 
huge advantage: statistical power. If a single site is un-
methylated reproducibly in even as few as 3 individuals who 
share a trait or an experience, as compared to individuals 
lacking that trait, the chance of this happening by chance is 
extremely low. Of course this power is only possible when 
the trait is clearly defined across individuals, often not cur-
rently possible using self-reports and other psychosocial 
measures which can be highly variable and unreliable deter-
minants of a trait. This statistical advantage for conserved 
sequences could be exploited to obtain trait-methylation cor-
relations without the enormous sample sizes typically re-
quired for SNP-trait correlations. 
 In addition to discovery of sites, new methodology is 
needed to implement methylation testing of multiple sites for 
diagnosis. Smaller platforms that test for a limited number of 
sites confirmed to be clinically relevant would be useful in 
clinical laboratories or even at the bedside. Promising de-
vices are already in development, and include nanofluidic 
channels that accommodate single DNA strands [131], which 
can then be probed for specific methylated sites with labeled 
methyl-binding proteins [132]. Decrease in the channel size 
and transparency of the silica using lithography may increase 
multiplexing to hundreds of sites within a few microns de-
tectible by fluorescence labeling and high-density high-
sensitivity cameras [133, 134].  

3. MATERIALS AND METHODS 
 De-identified saliva samples (n=45) from children were 
obtained from other studies. All samples were de-identified 
and numerically labeled. This study was approved by the 
UNM IRB. DNA was extracted using the Qiagen kit and 
submitted for testing on the Illumina 450k BeadChip. For 4 
samples, DNA was analyzed by three different methods in 
parallel: MeDIP followed by bisulfite conversion and then 
sequencing by either the IonProton at the ATG facility at 
UNM, or the Illumina MiSeq in the lab of Darrell Dinwiddie 
at UNM. Parallel aliquots of the same DNA were submitted 
for Illumina BeadChip. Resulting sequences were aligned 
using Interactive Genome Viewer (GV; (http://soft-
ware.broadinstitute.org/software/igv/). Results from the Il-
lumina BeadChip were further analyzed using RNBeads. 
Methylation patterns of brain, keratinocytes and whole blood 
for cell type deconvolution were from the Genome Omnibus 
(GEO). Please see figure legends for more detail on 
methods. 

4. RESULTS 
4.1. Example Comparing DNA Methylation Assays in 
Humans 
 To compare two of these methods, we isolated DNA 
from saliva collected from four normal children and prepared 
the genomic DNA in parallel for either MeDIP or Illumina 
HM450 BeadChip in parallel according to the flowchart 
shown in Fig. (4). While some reports suggest that either 
method produces equivalent results based on number of sites 
obtained [135], we took a closer look at what specific sites 
were identified and found large differences between the two 
methods. We compared resulting methylation sites by align-
ing both sets of results with a standard hg38 human genome 
in Integrative Genome Viewer (IGV) (http://soft-
ware.broadinstitute.org/software/igv/) [136, 137] (Fig. 5). 
Note that MeDIP produces a high density of hits in the cen-
tromeric location of the chromosome, a region known to be 
highly methylated, while high density array identifies indi-
vidual sites in regulatory and promoter regions not found in 
the results from MeDIP. Alignments of results from the 
MeDIP-sequencing are complicated by the bisulfite conver-
sion, which alters sequence, and the low yield from sequenc-
ers-we used both IonTorrent and Illumina MiSeq on the 
same genomic DNA with similar low yields for either ma-
chine. These sequencing platforms should have theoretically 
yielded over 100 million reads. We obtained about 13 mil-
lion reads, only half of which were usable- i.e. they had few 
sequencing errors and could be aligned. Because of this we 
decided to use the Illumina BeadChip arrays. The HM450 
has more than 450,000 pre-selected methylation sites across 
the genome [114, 138], and the EPIC, 850,000 [139]. 
 High-density arrays provide an alternative approach that 
overcomes both of the drawbacks of bisulfite sequencing 
(low yield and difficulty of alignment), although the number 
of sites is currently limited by chip capacity. By using syn-
thetic DNA oligomers as the target on the array, the precise 
genomic location of the methylated cytosine is known, and 
sites can be selected for their relevance to transcriptional 
regulation and chromatin packaging. Single nucleotide 
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Fig. (4). Diagram for comparing assay methods for detecting genome-wide methylations. Diagram comparing two methods for identify-
ing differences in methylation levels at specific sites across the genome, with high-density array on the left and MeDIP on the right. In both 
cases the DNA is fragmented, the fragments are sized and adaptors ligated. Both protocols use bisulfite conversion. Fragmentation may occur 
before or after bisulfite conversion for the BeadChip analysis but must be done before conversion when using MeDIP since this method de-
pends on the 5mC to pull-down fragments. For the BeadChip, single-stranded DNA is hybridized to known sequences on the chip that encode 
the unconverted or converted cytosine methylation site. Fluorescently labeled nucleotides are added for single nucleotide extension [140], and 
the ratio of red or green fluorescent methylated probes intensity gives the ratio of methylated to un-methylated fragments at that site. For 
MeDIP, many more steps are required and computational analysis is complicated by the multiple methylation sites in many of the fragments 
that are altered after bisulfite conversion is performed. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this paper.) 
 

 
Fig. (5). Comparison of sites identified by MeDIP or Illumina BeadChip aligned on a template human genome. Shown are screen shots 
from the Integrative genomics viewer (IGV) showing alignments for four children at two loci on chromosome 10 analyzed by two different meth-
ods: Illumina BeadChip HG450 and methyl-binding pulldown (MeDIP) with bisulfite sequencing. In (A) the centromeric region of ch10 is 
shown. Note that alignment of the Illumina BeadChip data shows no hits over this centromeric region and only a few sites adjacent to it (red ar-
row). In contrast, sequences from the MeDIP in the centromeric region are numerous (green arrow). Only one of the four children is shown for 
the MeDIP, but all showed the same pattern of hits. In (B) the Illumina BeadChip identified two sites with significant differences between the 
children (red arrows). These sites are not detected in the MeDIP for any of the four children, even when results for each of the four children are 
separately aligned. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper.) 
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addition during amplification is used for detection of methy-
lation sites [140] (Fig. 4). An Illumina BeadChip, EPIC, is 
currently available for 850,000 sites on the human genome 
[139], and previous versions with smaller numbers of sites 
have already produced a wealth of information about DNA 
methylation across the whole human genome. Although we 
predict 1 billion cytosines in the human genome, less than 
20% are likely to have dynamic methylation and play regula-
tory roles.  
 The methylation level at each site is quantified by a 
color-coding scheme for either the T or the C sequence at 
that site (Fig. 4). As the number of sites on these chips in-
creases, the reference cell-type data must be updated so that 
cell type deconvolution may be performed, and this step is 
lagging behind chip manufacture. Also older chips with 
fewer and slightly different sites, are not available, making it 
difficult for continuity in longer time-span studies, and im-
possible to validate results on the same chip type. No chip is 
currently available for other species, although one for ro-
dents has been in planning stages. 
 Types of tissue that can be used for studies of childhood 
trauma include saliva or whole blood or post-mortem brain. 
While changes in neural methylation will be very interesting, 
in human these require autopsy studies, which are possible 
but do not allow follow-up analysis for persistence or resolu-
tion. Autopsy studies will be useful to determine the rele-
vance of 5mC changes for brain development and function. 
Additionally, post-mortem brain analyses in experimental 
animals may be extremely enlightening. 

4.2. Saliva as a Bio-specimen to Test 5mC in Children 
 While saliva is the most accessible biospecimen from 
children, care must be taken to control for cell composition. 
Saliva contains both white blood cells and buccal keratino-
cytes, in different proportions in different samples even 
when taken from the same child (Fig. 6). Stressed children 
may have scant saliva since fear and anxiety in children pro-
duce a severe dry mouth, possibly due to catecholamines, 
which alters the cellular composition of saliva [141]. Hence 
the cell composition of the saliva must be accounted for in 
any analysis of methylation sites, since keratinocytes and 
white blood cells, being differentiated down divergent path-
ways, will have widely different methylation patterns, as has 
been shown for mouse [129], and discussed for human [32]. 
There are two ways to manage this: purify each cell type 
from the sample, or de-convolve the contribution of each cell 
type within the methylation results. Purification of cell types 
from saliva seems daunting, as saliva contains enzymes and 
microbes as well as thick mucus that would interfere with 
standard cell purification approaches. Hence de-convolution 
of the contribution of each cell type to the 5mC patterns is 
currently the method of choice. In some cases, the cell type 
may not matter, as a subset of sites appear to respond to spe-
cific conditions similarly in blood, saliva and brain [33, 34, 
142], which gives further confidence that saliva may serve as 
a proxy for brain for some subgroup of 5mC changes. 
 While comparisons of the methylation levels at different 
sites between tissue types in the same group of subjects are 
useful, even better would be to have data on methylation 
patterns from purified cell types such as neurons, glia, 

keratinocytes and the various cell types found in blood. A 
limited number of these are available for the 450K Chip. 
New data to meet this need are being posted daily onto the 
US National Center for Biotechnology Information site, the 
Gene Expression Omnibus (GEO), yet much more is needed. 
In particular, 5mC patterns from many different cell types 
obtained from the 850k EPIC Chip are not yet available as of 
this writing. Since we are unlikely to perform brain biopsies 
on children to detect 5mC changes, saliva may prove the 
most useful proxy in living children [34], but normal stan-
dards of keratinocytes and, at minimum, whole blood, for 
cell de-convolution must be available to utilize this most 
accessible biospecimen. Saliva is more easily obtained than 
peripheral blood from children-spitting is both more accept-
able to a child, and easier for investigators to obtain permis-
sion from offices for protection of human subjects, such as 
US Federally required Institutional Review Boards (IRB). 
Buccal swabs are less acceptable to children as these involve 
scrapping the inner cheek and are somewhat painful. In our 
experience, children enjoy spitting into a cup, especially 
when given a sugar-free candy to suck during the collection. 
While some reference-free deconvolution computational 
approaches have been described for whole blood [127, 143, 
144], these have not been proven in saliva. Hence methyla-
tion data for purified buccal keratinocytes and blood cells 
would greatly advance our ability to identify interesting 
methylated sites in DNA from saliva specimens. 

4.3. Example of Methylation Pattern Analysis Useful for 
Saliva Analysis: The Case of Keratinocytes and White 
Blood Cells 
 As an example for this paper, we chose to perform an 
analysis of cultured human keratinocytes and whole blood 
cells using methylation data posted on GEO from 4 different 
DNA preparations of human keratinocytes [145, 146] and 4 
of whole blood [147] that had been analyzed with the 450k 
BeadChip from Illumina [114, 138]. Since these two cells 
are the major cellular components of saliva, data from com-
parisons of methylation levels in these two cell populations 
are useful for subsequent determination of the relative cell 
composition in individual saliva samples, with a reference-
based deconvolution. 
 The computational steps from this analysis are dia-
grammed in a flowchart (Fig. 7). We use an R package, 
RnBeads, to perform analysis including quality control and 
normalization with data obtained from the Illumina HM450 
BeadChip, preliminarily quality controlled in the Illumina 
GenomeStudio environment (http://rnbeads.mpi-inf.mpg.de) 
[128]. First, all data from the Illumina assay is best when in 
the same format to upload into R (IDAT or .csv files). Since 
the cellular data came from various studies posted in GEO, 
we performed all steps on all data from the 8 different analy-
ses from 4 keratinocyte primarily cell cultures and 4 whole 
blood samples from healthy volunteers. Thus this data is 
processed at the same time in batch to eliminate any variance 
introduced by differences in quality controls and preprocess-
ing. Due to the variation in results from different methylation 
assays, we only use data produced by Illumina chips for this 
strategy. Initial normalization and quality controls are per-
formed during finalization of the Illumina BeadChip assay. 
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Fig. (7). Flow chart of computational processing of Illumina 
BeadChip data. Workflow showing data sourcing/acquisition 
through site by site differential methylation assessment, starting 
with data acquisition and formatting, pre-processing steps, quality 
control, exploratory analysis, including heatmaps, and differential 
methylation tables with statistically significant values reported. 
Output from intermediate steps allows for global data trends to be 
reviewed, corrected and re-assessed along the way. Differential 
methylation output may be used to identify gene ontology with 
other software.  

 We begin with the IDAT Illumina HM450 output and 
repeat quality controls, using RnBeads, to ensure equivalent 
signal from all wells on the chip and elimination of sex 
chromosomes and ancestry-related SNPs. Further normaliza-
tion steps are also taken to account for the differences be-
tween different chips and collections. The HM450 contains a 
large number of control probes to assist with these controls 
that can be applied for determining and equalizing variance 
in stain intensities, hybridization, extension, target removal, 
bisulfite conversion, specificity and non-polymorphic hy-
bridizations. Also included on the chip are negative controls 
(8 probes) that provide information about background levels 
for both red and green probes, which is useful later for inten-
sity scaling. Single Nucleotide Polymorphisms (SNPs) on 
the chip can be used to identify sample mix-ups (Fig. 8). The 
read-out is filtered by removing the following probe sites: 
unreliable probes defined as having a β value with corre-
sponding detection p-values below the threshold we set at  
p > T = 0.05 using programs such as GreedyCut in R [148]; 
then all sites on sex chromosomes because these will create 
differentials based on gender; all -enriched probes where the 
SNP may influence the methylation independent of the ex-
perimental condition; and probes that include regions where 
an ethnically determined SNP site may interfere with methy-
lation status. DNA context-specific probes (CC, CAG, CAH, 
CTG, CTH and others) are also removed. In this case, SNP 
analysis reveals that two of the cultured cell samples were 
from the same individual, and suggests that the genetic 
backgrounds of the samples separate into four groups, which 
may indicate that four ethnic groups are represented (Fig. 8). 
 When .csvs are used as input format, background is sub-
tracted using the methylumi package (method, NOOB,

 
Fig. (6). Micrographs of saliva smears. To determine the types of cells in saliva, we first performed histopathology on saliva smears col-
lected from 6 healthy volunteers either directly onto a glass slide (A) or first into Oragene DNA collection cups which contain a buffer to 
preserve the DNA and then onto a glass slide (B). Slides were stained with haematoxylin and eosin according to normal pathology proce-
dures and cover-slipped in mounting media. Slides were reviewed and types of cells counted. Keratinocytes (an example indicated by the 
orange arrow) and WBCs (example indicated by green arrow) were present. Preparations differed in the relative number of each type of cell. 
After treatment with the Oragene buffer (B), keratinocytes appeared ghosted and lacked nuclear staining, consistent with DNA extraction 
(orange arrow). Some small round blue dots remaining apparently represent un-extracted nuclei or non-human microbes. These results con-
vinced us that methylation patterns obtained from saliva need to be corrected for relative amounts of DNA from keratinocytes versus white 
blood cells. Analysis of our 5mC data demonstrated that children with no stress-related cortisol elevation had a lower ratio of keratinocytes 
("skin cells", aka cheek or buccal cells) to blood cells than children with a history of trauma (lower table). Because 5mC levels at specific 
sites differs between cell types [162], 5mC levels can be used as a surrogate for quantifying cell types in saliva samples [151]. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the web version of this paper.) 
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Fig. (8). SNP distance heatmap. We obtained 8 IDAT files of methylation data from GEO, four for keratinocytes and four for whole blood, 
performed on the Illumina 450k chip. The Illumina 450k chip contains 65 genotyping probes that determine ancestry, and that can take one of 
three possible β-value levels: low (homozygous for one allele), high (homozygous for the other allele), or intermediate (heterozygous for both 
alleles). An individual should have the same  β -values at all sites regardless of cell type, since this is based on somatic genomic sequence. 
The heatmap is produced by unsupervised hierarchical clustering of the intensity signals for 65 SNPs. The dendrogram above the heatmap 
gives a global picture of genotype-related sample grouping and similarities. Shown is a heatmap for methylation of the 8 different cell lines 
posted on GEO (GSM2260732; GSM2260731; GSM2260730; GSM2260729; GSM1936951; GSM1936939; GSM2071075; GSM2071074) 
[124, 145-147]. Cell lines numerically coded (1-8) and indicated below the heatmap. The SNP heatmap shown here demonstrates that two of 
these cell lines numbers 1 and 2, were obtained from the same individual, known to have been performed as technical duplicates. As more 
buccal keratinocyte data is obtained, the database for cell composition will expand. Heatmaps for the other samples demonstrated different 
individual SNPs. Such clustering of SNP heatmaps can also be used to detect sample mix-ups. 
“Normal Exponential Out Of Bounds”) (https:// 
www.rdocumentation.org/packages/methylumi/versions/2.18
.2) [149], and in both cases methylation β values are normal-
ized using the BMIQ normalization method [150]. Once 
these quality controls are completed, RnBeads produces fig-
ures demonstrating the success of the processing-a subset is 
shown in Fig. (9). A methylation value densities plot shows 
similar distribution of methylation values for each cell type 
before and after quality controls, filtering and normalization 
steps, and similar distribution of β values for probe catego-
ries (Fig. 9A-C). The types of sites retained or removed can 
be compared between sample sets. For example, whether 
promoters or CpG Islands were preferentially removed in 

one set compared to the other, which would lead us to review 
all steps in the procedure. The final outcome of these filter-
ing steps may remove as many as 150,000 probes from a 
typical 850,000-site bead chip. In this case, only ~13,000 
probes were removed (Fig. 9C).  
 Following these steps, a principal component analysis 
reveals the source of variation in the dataset, which is impor-
tant in order to control for batch effects, such as different 
chips, different dates of harvest or other technical variations 
(Fig. 9D). In this case, only three principal components ex-
plained 95% of the variance: cell type being the most impor-
tant, with the anatomic location of the keratinocyte (buccal
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Fig. (9). Quality controls of cell type methylation data from keratinocytes and whole blood. A. Original probe distribution. Note similar 
methylation level distribution in both cell types. B. Distribution of probes in genomic locations: Open sea (between genes); Shelf (2kb flank-
ing genes); Shore (region where methylation levels are highly variable, usually close to promoters, likely to encode enhancers); Island (CpG 
island, typically at least 200 bp with a CpG ratio greater than 50%). Note sites in all genomic locations. C. Histogram comparing the removed 
and retained sites after quality controls and filtering. Note the relatively sparse numbers of sites removed for both datasets. D. Principal Com-
ponent Analysis (PCA) of data from three cell types: Buccal keratinocytes, foreskin keratinocytes and whole blood from 8 different cell cul-
ture samples. Shown is a graph of principal components 1 and 2. Three components were identified that predict >95% of all variance as based 
on all sites remaining after filtering. The keratinocytes (orange and green circles) are widely separated from the whole blood, as has also been 
shown for mouse cell types assayed by reduced representation bisulfite sequencing (RRSS) [128, 162]. The range of the x-axis is -80 to +80, 
and the range for the y-axis is -30 to +30. DNA was from primary cultures of keratinocytes from foreskin (green, Kerat.f) or from buccal (red, 
Kerat.b) and whole blood (purple, WB). E. Scatter plot of group-wise mean DNA methylation levels for all keratinocyte and blood samples 
across all promoter sites. Sites with significant differences between cell types are colored red, as determined by RnBeads via a three-part met-
ric. Sites with similar methylation levels in both samples lie on the diagonal and are colored blue. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this paper.) 
versus foreskin) also contributing. An expected result for 
samples of mixed cell composition that validates the dataset 
is to find that the trait being analyzed is responsible for at 
least 50% of the variance in the first principal component. If 
the first three principal component’s (PCA) variance is pri-
marily attributed to the chip ID, gender, or ethnicity, all of 
which should have been corrected for during the filtering and 
normalization steps, then filtering or normalization were not 
performed sufficiently, or the phenotypic trait in question did 
not contribute statistically enough to dictate differences 
within the PCA. If chip ID, gender or ethnicity arise as a 
statistically relevant trait after normalization, this suggests 
that the phenotypic trait does not explain the basis of the 
differences between the groups.  
 A scatter plot of group-wise-mean DNA methylation 
levels between the two cell types shows a wide degree of 
variance (Fig. 9E). In this example, all promoter sites for 
each cell type are shown, with those sites, shown in red, that 
meet the RnBead’s analysis-specific ("arbitrary") rank cut-
off, which is based on mean difference between the two 
groups, mean quotient, and t-test p-values (https:// 

rdrr.io/bioc/RnBeads/f/inst/doc/RnBeads.pdf). The plot re-
veals both lower and higher methylation level differences 
across multiple sites between keratinocytes and blood cells. 
These sites are useful for the development of automated ad-
justment for cell composition distributions between samples.  
 For a global assessment of whether the data have been 
properly prepared for subsequent differential methylation 
analysis, hierarchical clustering of percent methylation by 
specimen visualized as a heatmap can be useful (Fig. 10). 
Clustering by trait, in this case cell type, rather than by chip 
or other possible batch effects is expected after good filtering 
from a reliable dataset (Fig. 10A). Clusters are indicated by 
the dendrogram above the heatmap, with traits (i.e. cell 
types) color-coded in boxes above each heatmap column. 
Heatmaps for all 5mC levels at each site identified in kerati-
nocytes and whole blood by sample neatly separate into two 
clusters, demonstrated by density of methylation levels (Fig. 
10A) or by sites (Fig. 10B). Higher resolution analysis of 
1000 promoter sites reveals that the buccal and foreskin cul-
tured keratinocytes have slightly different patterns of methy-
lation levels, but both types cluster separately than whole
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Fig. (10). Exploratory analyses of methylation patterns. A. The degree of methylation across all sites in each sample of keratinocyte and 
whole blood is displayed as a heatmap of the number of sites in each sample with that percent of methylation, ranging from 0 to 100% (see 
color key in upper left). Pure red is 0% and blue is 100% methylated, with blended red/blue for partial methylation and no color for equally 
methylation/demethylated (50%). Note that cell types cluster together according to the dendrogram above the heatmap, with blood samples 
indicated by orange and keratinocyte samples by green bars above the heatmap. Note that even at this low level of analysis, the samples clus-
ter according to cell type. B. Heatmaps and unsupervised hierarchical clustering for all sites across all samples of both cell-types, correlation-
based, with complete agglomeration strategy (linkage), visualizing the 1000 most variable loci, demonstrates large differences between cell 
types, where some sites are highly methylated in blood and not much methylated in keratinocytes and others are vice versa. These dramatic 
differences represent the outer corners of the mean difference plot shown in Fig. (9E). The column to the left is color coded for the 5mC loca-
tion, whether in open sea (blue), shelf, (turquoise), shore (purple), or CpG island, (red) for each site. C. Heatmap from the same analysis visu-
alizing only promoter sites in the 1000 most variable loci, with the dissimilarity metric set for correlation-based and agglomeration strategy 
(linkage) average. Note the large difference in 5mC patterns between the two cell types. D. Children’s 5mC patterns from saliva clusters with 
either skin or blood cells. Heatmaps of hierarchical clustering of methylation data from brain (green), blood (purple) and keratinocytes (or-
ange) together with 45 saliva samples from healthy children (color coded in gray above the heatmap). Some children were sampled at two 
different time points, and some were run in duplicate. Note that these saliva samples fall into two clusters as shown in the dendrogram above 
the heatmap. One group clusters with blood and the other with keratinocytes. Brain clusters with all samples at a greater distance [163]. Ex-
amination of the samples revealed that a few children sampled at two different time points clustered differently: one time point with keratino-
cytes and the other time point with whole blood. This result demonstrates the critical need to adjust 5mC results for cell composition. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper.) 
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blood, which surprisingly shows little variance between sam-
ples in this analysis (Fig. 10C). 
 Next we obtained 45 different saliva specimens from 
children, isolated DNA, and obtained the methylation pat-
terns on HM450 or EPIC Illumina BeadChips. We converted 
IDAT files to .csv format with NOOB and loaded all into R. 
Data were merged such that only sites in common between 
HM450 and EPIC were included. We then loaded the methy-
lation data into RnBeads and processed our saliva data to-
gether with both cell type and additional human brain methy-
lation data obtained from GEO. This exploratory analysis 
demonstrated that each saliva sample clustered either with 
whole blood or with keratinocytes and by individual, nor by 
study, or phenotypic trait. The brain data clustered separately 
from either children’s saliva, or the other two cell types (Fig. 
10D). These samples did not cluster by age, sex, or ethnicity 
to any statistically significant degree (African American, 
Latina/o, and Caucasian individuals were represented). This 
result argues that cell composition in saliva is the primary 
variable governing methylation patterns and must be cor-
rected for in any analysis comparing between samples from 
the same child over time or between different children. 
 To account for cell composition, we performed a refer-
ence-based differential methylation analysis in RnBeads 
(Figs. 11 and 12). To begin we submitted the data to covari-
ate inference in RnBeads, which assesses the data in light of 
the differences between samples’ cell type concentration. We 
selected Houseman’s reference-based linear approach [151]. 
Once the samples and references are submitted to the decon-
volution process, the methylation markers of the references 
are found. These markers are used in building a model of 
both keratinocytes and whole blood, to which the samples 
are compared. The 50,000 CpGs with the most variance 
across all samples was compared to these models (Fig. 11A) 
and, by solving for the vectors of the samples, the program 
then assesses how much each cell type contributed to each 
methylation site in each individual sample (Fig. 11B). The 
projections of these samples are stored as covariates and later 
used to perform an association analysis, which theoretically 
equalizes the cell type composition among samples. This is 
then used in the differential methylation analysis to adjust 
the methylation levels at all sites based on the contribution 
from its unique cell composition.  
 A scatter plot of methylation results comparing ASD 
with non-ASD shows few sites surviving cell composition 
correction (Fig. 11C). These samples represent a subset of 
the 45 samples described above, and are part of a study com-
paring saliva methylation patterns in children with and with-
out ASD (Mulligan and Bearer et al., MS in preparation). 
Since the genetics of ASD remain complex and not well un-
derstood (https://www.sfari.org/resource/simons-simplex-
collection/), epigenetics may hold the answer. 

5. DISCUSSION 
 Prior to deconvolution, the differences between cell types 
overwhelmed the signal from sites that correlated with ASD. 
Thus deconvolution using reference samples for the types of 
cells known to be present in the biospecimen enables saliva 
to be used as a painless, meaningful and reproducible as-
sessment for global epigenetic changes after defined experi-
ence or with specific diagnoses. 

 Once significant 5mC differences in particular sites are 
identified, these sites can be located on the human genome and 
their relationship to adjacent genes determined. Gene names 
are then submitted to gene ontology programs. In the example 
shown here (Fig. 12) we submitted the list of gene names to 
DAVID (https://david.ncifcrf.gov), a bioinformatics resource 
from NIAID at NIH [152, 153]. Surprisingly, although the cell 
types in saliva are skin and blood, the largest number of asso-
ciations was found with neural genes (Fig. 12). Smith et al. 
also reported that saliva is more similar to brain than to blood 
in a study comparing saliva, blood and brain without cell 
composition corrections [34]. Of note is the large proportion 
of sites associating with each function that cluster with neural-
specific components, processes and functions. For example, 
post-synaptic density and post-synaptic membrane represent 
50% of the associations with cellular components. Almost all 
of the associations with biological processes are neural, in-
cluding long-term memory, axon guidance, neuron differentia-
tion, neurogenesis and neural system development. And the 
sites in genes associated with metabolic function are domi-
nated by binding factors, with contributions from transcription 
factors and co-factors. What these associations may mean in 
terms of brain function will be an exciting area for future ex-
ploration. 

5.1. Confirmation, Replication and Validation of 5mC 
Sites, Methylation Levels and Associations with Child-
hood Adversity and/or with Mental Health Outcomes 
 Ideas for how best to confirm, replicate and validate 5mC 
in childhood adversity are often drawn from the cancer 5mC 
literature, or from genetic findings in RNA transcriptomics, 
genomic mutations, and SNP correlations. Confirmation of 
5mC sites identified by Chip is typically performed via py-
rosequencing or bisulfite PCR sequencing across the high 
probability sites from the original DNA. Replication is tested 
by repeating, either by the whole genome analysis, individ-
ual site confirmation by bisulfite pyrosequencing or PCR 
sequencing of select high probability sites in another, differ-
ent, cohort recruited with the same intake parameters and 
exclusion criteria as the original samples. Alternatively, 
some studies simply search for sites already known to be 
associated with adversity, such as the Nr3c1, Nr3c2, 
Fkbp5, Crf/Crh, 5Htt/Sert/Slc6a4, Bdnf sites, to show re-
producibility of the altered methylation in a new cohort. 
Some investigators search for mutations or SNPs already 
shown to be associated with a given mental health outcome 
to discover whether these may impact methylation levels at 
high probability sites in their analysis [67], or are in genes 
whose expression levels have been shown to influence a 
mental health condition [154]. As the public databanks 
grow, more opportunities to compare results between stud-
ies will become increasingly available. Validation that the 
methylation has an effect on expression is done by express-
ing mutated constructs in tissue culture cells and measuring 
gene product [37]. Validation of mental health associations 
with outcomes in humans may require huge subject num-
bers for statistical power. Both the long delay between in-
sult and outcome and the cost may make this unfeasible for 
most labs if EWAS is attempted, although statistics are 
stronger, and thus fewer subjects are needed, for methyla-
tion sites than for DNA SNPs. Animal systems have also 
been used to confirm and extend results in human with ex-
perimental testing, but better platforms for animal 
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Fig. (11). Cell composition de-convolution: Adjusting methylation data for varying contributions of keratinocytes and nucleated 
blood cells. (A) The average ratios of cell types in four cohorts of children’s saliva. The top two pie-charts are for a cohort of children ages 4-
8 years old, and the bottom two from children ages 18 months to 4 years old. Red indicates blood cells and blue keratinocytes. Two of the pie-
charts (the 1st and 3rd down) are children without reported trauma and the other two are from children with high cortisol levels and reported 
traumatic experience (2nd) or an autism spectrum diagnosis (4th down). (B) Comparing profiles for individual children in the datasets, even 
though the pie-charts for the cohorts appear relatively similar, there is wide variation between individual samples of cell composition as de-
tected by covariate inference [151]. In the first step the reference methylomes were used to estimate the association of each CpG position to 
each of the cell types. The strength of association was measured using an F-test. To decrease the computational load, only 50,000 most vari-
able CpGs were considered. Finally, only 500 CpGs with the lowest F-test p-value were used in the contribution estimation. Selecting the 
most informative CpGs is equivalent to applying an F statistic cut-off of 1.788. (C) Scatterplots showing the significant sites between ASD 
and non-ASD (control) after cell composition de-convolution for promoters (top) or over all sites (bottom). Non-significantly different sites 
are colored blue, and those that met the automatically generated rank cutoff are red. Compare these scatterplots with the one shown in Fig. 
(9E) comparing 5mC patterns from cultured keratinocytes and whole blood, where many more significantly different sites appear. De-
convolution decreases the complexity of the sample, removes the confounder of variation in cell type ratios, and improves identification of 
trait-related differences. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper.) 

methylation patterns analogous to the Illumina BeadChips 
are needed. Especially exciting will be the new gene-editing 
technology by which DNA in the brain of living animals can 
be altered, generating new transgenic mice regulating ex-
pression of methylation/demethylation machinery [76, 155-
161]. Critically important in human data, where such ex-
perimentation is challenging, is the need for quantifying the 
cell-type composition of the specimen, particularly for saliva 
but also for blood and brain, and deconvolution of the con-
tributions to 5mC patterns from differing cell types, either 
experimentally before DNA extraction, or computationally 
during processing preferably using reference-based method-
ology. More precise information about the type of trauma 
and the temporal relationship between adverse experience 
and 5mC changes will improve the chances of finding sig-
nificant targets, of replicating them and validating them in 
new cohorts of subjects. 

CONCLUSION 
 Much progress has been made and many questions re-
main as to the biological impact of ACE on the child and its 
propagation throughout the lifespan. Most importantly, how 
pediatric trauma acutely affects the child's methylome will 
require longitudinal studies of the same child over time. Be-
ginning at birth with a comparison to the parents may help to 
know what that child's baseline methylation levels were prior 
to traumatic experiences, and knowledge of the prenatal 
events may be also important. Then, whether alterations oc-
cur at the time of trauma or emerge later must be determined 
also in longitudinal studies in which the time of trauma can 
be precisely documented. Finally, 5mC analysis longitudi-
nally after a traumatic event is key to understanding the per-
sistence or evolution of 5mC changes, with demographic and 
psychosocial information necessary to understand the con-
textual basis for resolution, evolution or persistence. Cross-
sectional correlations between different study groups are
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Fig. (12). Gene Ontologies of significant differentially methylated sites in saliva DNA after cell type deconvolution. Differential methy-
lation was analyzed in RnBeads after adjusting the methylation level for each site in each sample according to the estimated cell composition 
of that sample, using as references the keratinocyte and whole blood methylation patterns shown in Figs. (8-10). Gene names of regions asso-
ciated with each gene surviving statistically significant differentially methylated site between non-ASD and ASD cohorts (237 sites) were 
updated in DAVID (https://david.ncifcrf.gov) and submitted for associations in the DAVID v6.7 database in November 2017. Results of as-
sociations with cellular components, biological processes, and metabolic functions are shown in pie charts generated in Excel from the 
DAVID output. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper.) 

only useful if the altered sites are consistent between groups. 
Hence without experimental animals with shorter lifespans 
in which to test for impact under experimentally controlled 
conditions we will not achieve a thorough understanding of 
the mechanism of activation of 5mC changes, of the time 
course, nor of causal relationships between pediatric trauma 
and 5mC profiles. Such animal experimentation must be 
carefully controlled and targeted at those questions most 
difficult to address in human association studies. In the end, 
the functional impact of 5mC changes across the lifespan 
will be critical in understanding when, how, and whether to 
intervene, and will provide biomarkers and biotargets for 
objective diagnosis and effective interventions. 

LIST OF ABBREVIATIONS 
5mC = 5' methylcytosine 
ACE = Adverse Childhood Experience 

AID = Activation-Induced Deaminase 
BDNF = Brain-Derived Neurotrophic Factor 
CpG = Cyotsine nucleotide followed by a guanine 
CRF,CRH = Glucocorticoid release factor/hormone 
DNMT = DNA Methyl Transferase 
ELS = Early Life Stress 
EWAS = Epigenome-Wide Association Studies  
FSL = Finders Sensitive Line 
GEO = Genome Expression Omnibus 
GR/NR3C1 = Glucocorticoid receptor 
GRE = Glucocorticoid Response Element 
HAB = High Anxiety-like Behavior 
ID = Identity 
meDIP = Methylated DNA immunoprecipitation, 

methyl-binding pull-down 
meQTL = Methylation Quantitative Trait Locus 
MRI = Magnetic Resonance Imaging 
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NAT = Non-Accidental Trauma 
PCA = Principal Component Analysis 
Pcdha = Protocadherin alpha gene cluster 
PCR = Polymerase Chain Reaction 
PTSD = Post-Traumatic Stress Disorder 
SERT/5HTT = Serotonin transporter 
SES = Socio-Economic Status 
SNP = Single Nucleotide Polymorphism 
TET = Ten-eleven translocation methylcytosine 

dioxygenases 
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